$S^{3}CS$ 2014 - Sum of Squares - Homework 1.

Exercise 1. The notion of pseudo-distributions may be a bit counter-intuitive. This exercise attempts to motivate it by showing that it is in some sense inherently needed whenever trying to use a convex relaxation to solve a combinatorial search problem. Any combinatorial search problem can be thought of as follows. We have a universe Ω (typically isomorphic to $\{\pm 1\}^n$) and a number of conditions \mathcal{E} that implicitly define a set $S \subseteq \Omega$. The search task is find an element of S if it is not empty. An algorithm to solve the problem consists of a map $f: \Omega \to \tilde{\Omega}$ where $\tilde{\Omega}$ is some convex domain (typically \mathbb{R}^m for some m) and a way to translate the condition \mathcal{E} into conditions that define a *convex* set $\tilde{S} \subseteq \tilde{\Omega}$. The algorithm is a *valid relaxation* if for every $s \in S$, f(s) is in \tilde{S} .

- 1. Define a mapping F that maps any distribution \mathcal{D} on elements of Ω into a value $F(\mathcal{D}) \in \tilde{\Omega}$ such that:
 - (a) If \mathcal{D} is supported only on elements of S then $F(\mathcal{D})$ is in \tilde{S} .
 - (b) Conclude that if there is an algorithm A that given an element in \tilde{S} finds an element in S, then A must also be able to return an element of S given restricted access to a distribution \mathcal{D} over S of the following form: A only gets the value $F(\mathcal{D})$.
- 2. Explain what are Ω , \tilde{S} , f, F in the case that S is defined by a set of polynomial equations that include the constraints $\{x_i^2 = 1\}$ and the relaxation is the degree d SOS program.

Exercise 2. Prove that if $\{x\}$ is a pseudo-distribution of degree d and P is a polynomial of degree d' then $\{P(x)\}$ is a pseudo-distribution of degree |d/d'|.

Exercise 3. Prove the pseudo-distribution Cauchy-Schwarz condition: If $\{x\}$ is a pseudo-distribution of degree at most 2d, and P, Q are polynomials of degree d

$$\tilde{\mathbb{E}}PQ \leq \sqrt{\tilde{\mathbb{E}}P^2}\sqrt{\tilde{\mathbb{E}}Q^2}$$

Exercise 4. Let $P : \mathbb{R}^n \to \mathbb{R}$ of degree $\leq n$ such that $P(x) \geq 0$ for every $x \in \{\pm 1\}^n$.

- 1. Prove that there is an SOS proof of degree at most 2n that one cannot satisfy the equations $\{P(x) = -1\}, \{x_i^2 = 1\}_{i=1}^n$.
- 2. (Squared triangle inequality for $\{\pm 1\}$) Let $\{x\}$ be a pseudo-distribution of degree 6 satisfying the constraints $\{x_i^2 = 1\}$ for all *i*. Prove that for every i, j, k

$$\tilde{\mathbb{E}}(x_i - x_k)^2 \le \tilde{\mathbb{E}}(x_i - x_j)^2 + \tilde{\mathbb{E}}(x_j - x_k)^2$$

Exercise 5. 1. Let P be a homogenous polynomial of degree at most 4. Prove that P is SOS if and only if $\tilde{\mathbb{E}}P(x) \ge 0$ for every degree 4 pseudo-distribution $\{x\}$.

- 2. Show an example of a pseudo-distribution $\{x\}$ and a polynomial P such that $\tilde{\mathbb{E}}P(x) = 0$ but $\{x\}$ does not satisfy the constraint $\{P(x) = 0\}$.
- 3. Show an example of a degree 4 pseudo-distribution $\{x\}$ such that there does not exist an actual distribution $\{y\}$ such that $\tilde{\mathbb{E}}P(x) = \mathbb{E}P(y)$ for every polynomial P of degree at most 4.
- 4. Prove that if $\{x\}$ is a degree 2d pseudo-distribution and P is a polynomial of degree at most d such that $\mathbb{E}P^2(x) = 0$ then $\{x\}$ is also a degree d pseudo-distribution that satisfies the constraint $\{P(x) = 0\}$.