
Sum of Squares Algorithm: Open Problems / Boaz Barak

Here are some open problems regarding the Sum-of-Squares algorithm. In most cases I phrased
the problem as asking to show a particular statement, though of course showing the opposite
statement would be very interesting as well. These are not meant to be a complete or definitive
list, but could perhaps spark your imagination to think of those or other research problems of your
own. The broader themes these questions are meant to explore are:

• Can we understand in what cases do SOS programs of intermediate degree (larger than 2 but
much smaller than n) yield non-trivial guarantees?

• Can we give more evidence to, or perhaps refute, the intuition that the SOS algorithm is
optimal in some broad domains?

• Can we understand the performance of SOS in average-case setting, and whether there are
justifications to consider it optimal in this setting as well? This is of course interesting for
both machine learning and cryptography.

• Can we understand the role of noise in the performance of the SOS algorithm? Is noise a
way to distinguish between “combinatorial” and “algebraic” problems in the sense of http://
windowsontheory.org/2013/10/07/structure-vs-combinatorics-in-computational-complexity/?

Well posed problems

Problem 1: Show that for every constant C there is some δ > 0 and a quasipolynomial (npolylog(n))
time algorithm that on input a subspace V ⊆ Rn, can distinguish between the case that V contains
the characteristic vector of a set of measure at most δ, and the case that Eiv4i ≤ C(Eiv2i )2 for
every v ∈ V . Extend this to a quasipolynomial time algorithm to solve the small-set expansion
problem (and hence refute the small set expansion hypothesis). Extend this to a quasipolynomial
time algorithm to solve the unique-games problem (and hence refute the unique games conjecture).
If you think this cannot be done then even showing that the d = log2 n (in fact, even d = 10)
SOS program does not solve the unique-games problem (or the 4/2 norms ratio problem as defined
above) would be very interesting.

Problem 2: Show that there is some constant d such that the degree-d SOS problem can distinguish
between a random graph and a graph in which a clique of size f(n) was planted for some f(n) =
o(
√
n), or prove that this cannot be done. Even settling this question for d = 4 would be very

interesting.

Problem 3: Show that the SOS algorithm is optimal in some sense for ”pseudo-random” constraint
satisfaction problems, by showing that for every predicate P : {0, 1}k → {0, 1}, ε > 0 and pairwise
independent distribution µ over {0, 1}k, it is NP hard to distinguish, given an instance of MAX-P
(i.e., a set of constraints each of which corresponds to applying P to k literals of some Boolean
variables x1, . . . , xn), between the case that one can satisfy 1−ε fraction of the constraints, and the
case that one can satisfy at most Ex∼µP (x) + ε fraction of them. (In a recent work with Chan and
Kothari, we show that small degree SOS programs cannot distinguish between these two cases.)

Problem 4: More generally, can we obtain a ”UGC free Raghavendra Theorem”? For example,
can we show (without relying on the UGC) that for every predicate P : {0, 1}k → {0, 1}, c > s
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and ε > 0, if there is an n-variable instance of MAX-P whose value is at most s but on which the
Ω(n) degree SOS program outputs at least c, then distinguishing between the case that a CSP-P
instance as value at least c− ε and the case that it has value at most s+ ε is NP-hard?

Problem 5: Show that there is some η > 1/2 and δ < 1 such that for sufficiently small ε > 0,
the degree nδ SOS program for Max-Cut can distinguish, given a graph G, between the case that
G has a cut of value 1 − ε and the case that G has a cut of value 1 − εη. (Note that Kelner and
Parrilo have a conjectured approach to achieve this.) Can you do this with arbitrarily small δ > 0?

Problem 6: If you think the above cannot be done, even showing that the degree d = 10 (or even
better, d = log2 n) SOS program cannot achieve this, even for the more general Max-2-LIN prob-
lem, would be quite interesting. As an intermediate step, prove or disprove the Khot-Moshkovitz
conjecture that for an arbitrarily large constant c the Max-2-LIN instance they construct where the
degree d (for some constant d) SOS value is 1− ε, has actual value at most 1− cε. Some interme-
diate steps that could be significantly easier are: the Khot-Moshkovitz construction is a reduction
from a k-CSP on N variables that first considers all n-sized subsets of the N original variables and
then applies a certain encoding to each one of those

(
N
n

)
“cloud”. Prove that if they used a single

cloud then the reduction would be “sound” in the sense that there would be no integral solution
of value larger than 1− cε. (This should be significantly easier to prove than the Khot-Moshkovitz
conjecture since it completely does away with their consistency test; still to my knowledge it is not
proven in their paper. The reduction will not be “complete” in this case, since it will have more
than exponential blowup and will not preserve SOS solutions; but I still view this as an interesting
step. Also if this step is completed, perhaps one can think of other ways than the “cloud” approach
of KM to reduce the blowup of this reduction to 2δN for some small δ > 0; perhaps a “biased”
version of their code could work as well.) Another statement that can show the challenge in proving
the KM conjecture: Recall that the KM boundary test takes a function f : Rn → {±1} and checks
if f(x) = f(y) where x and y have standard Gaussian coordinates that are each 1 − α correlated
for some α� 1/n. Their intended solution f(x) = (−1)b〈a,x〉c for a ∈ {±1}n will fail the test with
probability O(

√
αn). Prove that there is a function f that passes the test with c

√
αn for some c but

such that for every constant d and function g of the form g(x) = (−1)bp(x)c where p a polynomial
of degree at most d, |Ep(x)f(x)| = o(1/n).

Problem 7: Show that there are some constant η < 1/2 and d, such that the degree d-SOS
program yields an O(logη n) approximation to the Sparsest Cut problem. If you think this can’t
be done, even showing that the d = 8 algorithm doesn’t beat O(

√
log n) would be very interesting.

Problem 8: Give a polynomial-time algorithm that for some sufficiently small ε > 0, can (ap-
proximately) recover a planted εn-sparse vector v0 inside a random subspace V ⊆ Rn of dimension
` = n0.6. That is, we choose v1, . . . , v` as random Gaussian vectors, and the algorithm gets an
arbitrary basis for the span of {v0, v1, . . . , v`}. Can you extend this to larger dimensions? Can you
give a quasipolynomial time algorithm that works when V has dimension Ω(n)? Can you give a
quasipolynomial time algorithm for certifying the Restricted Isometry Property (RIP) of a random
matrix?

Problem 9: Improve the dictionary learning algorithm of [Barak-Kelner-Steurer] (in the setting
of constant sparsity) from quasipolynomial to polynomial time.

Problem 10: (Suggested by Prasad Raghavendra.) Can SDP relaxations simulate local search?
While sum of squares SDP relaxations yield the best known approximations for CSPs, the same
is not known for bounded degree CSPs. For instance, MAXCUT on bounded degree graphs can
be approximated better than the Goemans-Willamson constant 0.878.. via a combination of SDP
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rounding and local search. Here local search refers to improving the value of the solution by locally
modifying the values. Show that for every constant ∆, there is some ε > 0, d ∈ N such that d
rounds of SOS yield an 0.878.. + ε approximation for MAXCUT on graphs of maximum degree
∆. Another problem to consider is maximum matching in 3-uniform hypergraphs. This can be
approximated to a 3/4 factor using only local search (no LP/SDP relaxations), and some natural
relaxations have a 1/2 integrality gap for it. Show that for every ε > 0, O(1) rounds of SOS give a
3/4− ε approximation for this problem, or rule this out via an integrality gap.

Problem 11: (Suggested by Ryan O’Donnell) Let G be the n vertex graph on {0, 1 . . . , n − 1}
where we connect every two vertices i, j such that their distance (mod n) is at most ∆ for some
constant ∆. The set S of n/2 vertices with east expansion is an arc. Can we prove this with an
SOS proof of constant (independent of ∆) degree? For every δ > 0 there is a c such that if we let
G be the graph with n = 2` vertices corresponding to {0, 1}` where we connect vertices x, y if their
Hamming distance is at most c

√
n, then for every subsets A,B of {0, 1}` satisfying |A|, |B| ≥ δn,

there is an edge between A and B. Can we prove this with an SOS proof of constant degree?

Fuzzier problems

The following problems are not as well-defined, but this does not mean they are less important.

Problem 12: Find more problems in the area of unsupervised learning where one can obtain an
efficient algorithm by giving a proof of identifiability using low degree SOS.

Problem 13: The notion of pseudo-distributions gives rise to a computational analog of Bayesian
reasoning about the knowledge of a computationally-bounded observer. Can we give any interesting
applications of this? Perhaps in economics? Or cryptography?

SOS, Cryptography, and NP∩coNP. It sometimes seems as if in the context of combinatorial
optimization it holds that “NP ∩ coNP = P”, or in other words that all proof systems are
automatizable. Can the SOS algorithm give any justification to this intuition? In contrast note
that we do not believe that this assertion is actually true in general. Indeed, many of our candidates
for public key encryption (though not all— see discussion in [Applebaum,Barak, Wigderson]) fall
inside NP ∩ coNP (or AM ∩ coAM). Can SOS shed any light on this phenonmenon? A major
issue in cryptography is (to quote Adi Shamir) the lack of diversity in the “gene pool” of problems
that can be used as a basis for public key encryption. If quantum computers are built, then
essentially the only well-tested candidates are based on a single problem— Regev’s “Learning With
Errors” (LWE) assumption (closely related to various problems on integer lattices). Some concrete
questions along these lines are:

Problem 14: Find some evidence to the conjecture of Barak-Kindler-Steurer (or other similar
conjectures) that the SOS algorithm might be optimal even in an average case setting. Can you
find applications for this conjecture in cryptography?

Problem 15: Can we use a conjectured optimality of SOS to give public key encryption schemes?
Perhaps to justify the security of LWE? One barrier for the latter could be that breaking LWE and
related lattice problems is in fact in NP ∩ coNP or AM ∩ coAM.

Problem 16: Understand the role of noise in the performance of the SOS algorithm. The algorithm
seems to be inherently noise robust, and it also seems that this is related to both its power and
its weakness– as is demonstrated by cases such as solving linear equations where it cannot get
close to the performance of the Gaussian elimination algorithm, but the latter is also extremely
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sensitive to noise. Can we get any formal justifications to this intuition? What is the right way to
define noise robustness in general? If we believe that the SOS algorithm is optimal (even in some
average case setting) for noisy problems, can we get any quantitative predictions to the amount
of noise needed for this to hold? This may be related to the question above of getting public key
cryptography from assuming the optimality of SOS in the average case (see Barak-Kindler-Steurer
and Applebaum-Barak-Wigderson).

Problem 17: Related to this: is there a sense in which SOS is an optimal noise-robust algorithm or
proof system? Are there natural stronger proof systems that are still automatizable (maybe corre-
sponding to other convex programs such as hyperbolic programming, or maybe using a completely
different paradigm)? Are there natural noise-robust algorithms for combinatorial optimizations
that are not captured by the SOS framework? Are there natural stronger proof systems than SOS
(even non automatizable ones) that are noise-robust and are stronger than SOS for natural com-
binatorial optimization problems? Can we understand better the role of the feasible interpolation
property in this context?

Problem 18: I have suggested that the main reason that a ”robust” proof does not translate into
an SOS proof is by use of the probabilistic method, but this is by no means a universal law and
getting better intuition as to what types of arguments do and don’t translate into low degree SOS
proofs is an important research direction. Ryan O’Donnell’s problems above present one challenge
to this viewpoint. Another approach is to try to use techniques from derandomization such as use
of additive combinatorics or the Zig-Zag product to obtain ”hard to SOS” proofs. In particular,
is there an SOS proof that the graph constructed by Capalbo, Reingold, Vadhan and Wigderson
(STOC 2002) is a ”lossless expander” (expansion larger than degree/2)? Are there SOS proofs
for the pseudorandom properties of the condensers we construct in the work with Impagliazzo
and Wigderson (FOCS 2004, SICOMP 2006) or other constructions using additive combinatorics?
I would suspect the answer might be ”no”. (Indeed, this may be related to the planted clique
question, as these tools were used to construct the best known Ramsey graphs.)
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