
SOS Lecture 8: Semidefinite extension complexity lower bounds from SOS lower bounds
Boaz Barak

In this course we have alluded to an intuition that, at least in some domains, the SOS algorithm
is optimal, in the sense that no other efficient algorithm could beat it. There are several ways to
try to justify this intuition:

Ideally, we would want to simply prove this, under assumptions such as P 6= NP. There are
two main results along those lines:

• Siu-On Chan showed that for every ε > 0 and predicate P : Fkq → {0, 1} of the form 1V
where where V is an affine subspace of Fkq such that the uniform distribution on V is pairwise
independent, it is NP-hard to distinguish between the case that an CSP-P instance is 1 − ε
satisfiable and the case that it is |P−1(1)|/qk + ε satisfiable. Up to the ε, this exactly matches
the SOS lower bound of Tusliani (which itself is a natural extension of Grigoriev’s 3XOR
lower bound that we saw in class).

• Prasad Raghavendra showed that if the Unique Games Conjecture is true, then for every
ε > 0 and predicate P , beating the performance of the degree 2 SOS algorithm on Max-P by
ε > 0 is NP-hard. Thus, if the UGC is true, that would be very strong evidence for optimality
of SOS. Even if the UGC is false, but it is refuted by the SOS algorithm, one could hope
that there would be a ”modified Raghavendra theorem” showing that the SOS algorithm is
optimal. The ideal version would translate a degree d SOS lower bound into a reduction
that maps a (suitable variant of) label cover instance of n variables into an instance of the
target problem of size N = poly(n)2O(n/d), hence ruling out an No(d)-time algorithm under
the exponential time hypothesis.

However, given current knowledge in complexity, such proofs are always conditional on some
assumption. Even if we are not too concerned with taking P 6= NP, or even the ETH, as an axiom
(we cannot take such a blasé attitude towards the UGC), these assumptions are inherently limited
in the sense that they don’t apply (again, based on current knowledge) to average-case complexity.
Therefore, for several reasons it is also interesting to try to prove that some natural algorithms do
not beat the SOS algorithm in some interesting domains.

Perhaps the first question to ask is whether one can beat the SOS algorithm by simply using
stronger semidefinite programs. The degree d SOS algorithm can be thought of as obtaining a
tighter SDP by adding a set of very specific nd constraints to the original basic SDP, but perhaps it
is possible to add a different set of nd constraints that would give better performance. The formal
way to phrase this question is extension complexity. In this lecture we will discuss a very recent
result of Lee, Raghavendra and Steurer giving a “Raghavendra Theorem for Semidefinite extension
complexity”, by translating SOS lower bounds into semidefinite programming extension complexity
lower bounds. This can be thought of as the analog of the prior work of Chan,Lee,Raghavendra
and Steurer that showed a similar connection between Sherali-Adams lower bounds and linear
programming extension complexity lower bounds.

For example using this translation they use Grigoriev’s 3XOR lower bound to show the following
theorem:

Theorem 1. For every ε > 0 and subspace U of the functions from {±1}n to R of dimension less
than no(logn/ log logn), there is an instance I of 3XOR of value (i.e., maximum fraction of satisfied
constraints) at most 1/2 + ε , such that there is no U -proof that the value of I is less than 1 = ε.

1

The definition of a U prood that some function f : {±1}n → R satisfies f ≤ α is that there are
functions g1, . . . , gt ∈ U such that

f(x) = α−
t∑
i=1

gi(x)2

for every x ∈ {±1}n. Note that a degree-d SOS proof corresponds to a U -proof where U is the span
of all monomials of degree at most d, and hence U proofs are generalization of degree logn dim(U)-
SOS proofs.

It turns out that the notion of SDP rank plays here the same role that the notion of non-
negative rank plays for linear programming extension complexity. We say that a non-negative p× q
matrix M has psd-rank at most r if there exist r × r psd matrices {Ai}pi=1 and {Bj}qj=1 such that
Mi,j = Tr(AiBj). Exercise 1: Prove that M has non-negative rank at most r if and only if it has
a decomposition such as the one above where the Ai’s and Bj ’s are diagonal .

At the heart of their work is the following theorem:

Theorem 2. For d < m < n/2, f : {±1}m → [0,∞), let M = Mf
n be the

(
n
m

)
× 2n matrix such

that M(S, x) = f(xS) for every S ∈
(

[n]
m

)
and x ∈ {±1}n. If there is no degree d SOS proof that

f ≥ 0 then
rankpsd(M) ≥ nΩ(d)

The rest of this lecture will be devoted to outlining the proof of Theorem 2. To make things
concrete, we will consider the particular f : {±1}m → R that one obtains by taking the instance
of 3XOR I arising from Grigoriev’s 3XOR lower bond. That is, we let f(x) equal 0.7 minus the
fraction of I’s constraints that are satisfied by the assignment x. As we saw in class, for every x,
f(x) ≥ 0.1 but there is a degree (say) d = m/1000 pseudo-distribution D over {±1}m that satisfies
the constraint {f(x) = −0.3}.

There are several ways to represent such a pseudo-distribution. One representation (which is
the one we used in class) is to simply use the pseudo-expectation operator mapping a polynomial
P to Ẽx∼DP , but another one is to define for every x ∈ {±1}x, D(x) ∈ R to be a number such that

Ẽx∼DP = Ex∈{±1}nD(x)P (x) (1)

we shall follow the language of LRS and call this a “pseudo-density” operator. To move from the
previous representation to (1), we can simply define

D(x) =
∑
|α|≤d

(
Ẽx′∼D χα(x′)

)
χα(x)

where for α ⊆ [m], we define χα(x) =
∏
i∈α xi.

We suppose, toward a contradiction that rankpsd(Mf
n) = r for some r = no(1) demonstrated by

some decomposition {P (S)}
S∈([n]

m), {Q(x)}x∈{±1}n . We will consider the following quantity:

E
S∈([n]

m)Ex∈{±1}nD(xS)f(xS) (∗) (2)

On one hand for every fixed S and fixing of xS , (*) equals to Ex′∈{±1}mD(x′)f(x′) = −0.3.
On the other hand, by the psd decomposition this equals

ESEx∈{±1}nD(xS)Tr(P (S)Q(x)) = ESEx′′∈{±1}SEx′∈{±1}SD(x′)‖
√
P (S)

√
Q(x′, x′′)‖2F (3)

2

(where the square roots of P and Q are defined since these are p.s.d matrices.) Exercise 2: Prove

that for every psd matrices PQ, Tr(PQ) = ‖
√
PQ‖2F =

∑
i,j

√
PQ

2
i,j , where for a psd matrix

A =
∑
λiviv

>
i ,
√
A =

∑√
λiviv

>
i .

Note that for every fixed S, x′′, the function x′ 7→ ‖
√
P (S)

√
Q(x, x′′)‖2F is the sum of the

squares of the entries of these matrices, and so this function is some sum of squares g(x′). If by
some luck the degree of g was smaller than d < 2 we would get our contradiction and be done since
we know that

Ex′D(x′)g(x′) = Ẽg(x′) ≥ 0

for every SOS g of degree at most d/2.
The heart of the LRS proof is therefore in showing that this function g can in fact be sufficiently

well approximated by a low degree polynomial. They do so using two tools:

• Quantum learning — they use an instance of the following general principle that has turned
out to be useful again and again in computer science:

Simple tests can be fooled by (fairly) simple objects.

At a high level this phenomena underlies the whole theory of pseudorandomness, but we will
be focused on a particular set of manifestations of it, known as “Boosting”, “Impagliazzo’s
Hardcore Lemma”, ”Dense Model Theorem” and more. LRS use a quantum version of this
principle.

Their idea is that because in our case we test the function Q(x) against the degree m function
ESP (S)D(xS), we can approximate it with some function of the form h(x) = R2(x) where R
has degree at most Õ(m).

• Random restrictions — the above is still not sufficient since we need to reduce the degree
below m/1000. For this we use the other general tool

Simple functions become even simpler if we fix most of their inputs at random.

Specifically, using tools from Fourier analysis of Boolean functions, one can show that, once
we established the degree of h is not too large, if we choose a random S and fix the values of
x in S then we significantly reduce the degree of h further (up to some negligible error), and
hence we can apply the result above.

1 Boosting, dense model, hardcore lemma, multiplicative weights,
computational entropy, and their quantum/matrix/semidefinite
cousins

There is a set of results that has been used across many areas in mathematics and computer science.
Here are some examples of these results. (This is not meant to be comprehensive review of the
related literature— these are the kind of ideas that seem to have been rediscovered again and again
by people in different communities and for different purposes.)

• Suppose that you are trying to learn some unknown function F : Ω→ {0, 1} and that for every
distribution D over Ω, you can find a function fD : Ω → {0, 1} that has 1/2 + ε agreement

3

with F , then you can boost this to 1− δ agreement by combining poly(1/ε, log(1/ε)) of these
functions.

An algorithm achieving such boosting was first put forward by Schapire in 1989, with some
later improvements by Freund culminating in their 1995 AdaBoost algorithm.

• Suppose that you know that some function F : Ω → {0, 1} is mildly hard in the sense that
every efficient algorithm A has at most 1− δ agreement with it. It turns out that there is a
not-too-small subset H ⊆ Ω (in fact, of measure 2δ) on which F is extremely hard in the sense
that every efficient algorithm has at most 1/2+ε (where the ε plays a part in the quantitative
losses between our two instantiations of the word “efficient”).

This theorem, which turns out to be extremely useful in the theory of pseudo-randomness,
is known as “Impagliazzo’s Hardcore Lemma”, proven by Russell Impagliazzo in 1995 (with
an important quantitative improvement by Holenstein in 2005. (The connection for Boosting
was noted by Klivans and Servedio in 2003; see also my paper with Hardt and Kale.)

• Suppose that S ⊆ Ω is pseudorandom in the sense that one cannot distinguish a uniform
element of S from a uniform element of Ω via efficient algorithm, and suppose that P ⊆ S
satisfies |P | ≥ δ|S|. Then you can find some M ⊆ Ω with |M | ≥ δ|Ω| such that one cannot
distinguish a uniform element of P from a uniform element of M .

This theorem is known as the dense model theorem, and was first shown by Green and Tao
in the context of their 2004 work establishing that the set of primes contains arbitrarily long
arithmetic progressions. A more general explicit version was later given by Tao and Zeigler.
Some simplified proofs were later found by Gowers and (independently) Reingold, Trevisan
and Vadhan. Roughly speaking, Green and Tao used in their theorem number theoretic
results showing that the set S of pseudo primes (integers having only few large divisors) are
pseudorandom. Since the set P of primes has constant density in S, the dense model theorem
shows that it is indistinguishable from a set M dense in the set of all integers, but such sets
contain large arithmetic progressions by Szemeredi’s Theorem.

All these results share some the following properties:

• They are counterintuitive when you (or at least I) first hear about them.

• They are incredible useful.

• They are proven via the multiplicative weights algorithm or von Neumann’s min-max theorem
(aka linear programming duality or Hahn-Banach theorem).

• They are actually not that hard to prove once you have the nerve to guess that the result
might be true.

It turns out that they are all essentially equivalent. Let me sketch how you might prove the
Boosting result. You can think of this as a game between two players— Player I comes up with a
distribution D, and Player II responds with an algorithm fD that has 1/2 + ε agreement with f .
We know that by the min-max theorem that Player II could come up with a single distribution over
algorithms (or equivalently a probabilistic algorithm) A that would have such agreement with every
distribution, which means that it succeeds in solving F on any input with probability 1/2 + ε—
probability that can be boosted to 1 − δ via O(log 1/δ) repetitions. Now to converge to this
algorithm we can use a fairly simple process of back and forth between the distribution player and

4

the algorithm player. The distributions would be updated according to a multiplicate update rule,
and the final algorithm would be some weighted average of the algorithms obtained in each round.
So, if these intermediate algorithms are simple, then so will be the final one.

Further reading on the ”classical” versions. Luca Trevisan had several blog posts related to
this, see https://lucatrevisan.wordpress.com/2008/12/07/applications-of-low-complexity-approximations/
and also a survey in the 2011 theory of cryptography conference. Sitanshu Gakkhar’s Master’s thesis
http://summit.sfu.ca/item/12349, Russell Impagliazzo’s talk https://video.ias.edu/csdm/

densemodelthm and scribe notes https://www.math.ias.edu/files/russell_scribe.pdf, paper
of Trevisan, Tulsiani and Vadhan http://ttic.uchicago.edu/~madhurt/Papers/regularity-full.

pdf. These results can also be phrased in the language of computational entropy— intuitively a
set P as in the dense model theorem, has “pseudo-entropy” at least log |Ω| − log(1/δ). This was
first explored in my 2003 paper with Shaltiel and Wigderson (see also Dziembowski and Pietrzak
2008). (Note that our paper had a bug and proved a weaker result than originally claimed; see the
2011 paper of Benjamin Fuller and Leonid Reyzin for discussion.)

Semidefinite/quantum extensions People have looked at extension of these results to the quan-
tum setting. One can think of this as extending results from classical to quantum, from numbers
to matrices, or from linear programming to semidefinite programming. In any case one obtains
similar results, see the LRS paper. Note that (as we will see) LRS uses a very restricted special
case of this general principle focusing on a single test.

2 Random restrictions

The idea of random restriction is to take a function f : {±1}n → R and change it into the function

g : {±1}m → R obtain by picking an m-sized set S ⊆ [n] at random, and x′′ ∈ {±1}S , and then
define g(x′) = f(x′, x′′). The hope is that g is significantly simpler than f . This is not necessarily
always the case. For example, if f is simply the parity function x1 · · ·xn, then g is a parity as
well, but if f is “simpler” than the parity in some sense, then g could be significantly even simpler.
This idea has been used in Hastad’s switching lemma, where one can use random restriction to
show that if f has a small constant depth circuit, then g has a circuit of even smaller depth. In the
current context we need an even simpler statement about the Fourier degree. (See Ryan O’Donnel’s
book for a thorough treatment of random restrictions.) If you have a monomial

∏
i∈T xi, then after

restricting to a random set S you are left with the monomial,
∏
i∈S∩T xi which is expected to have

size about |S||T |/n which would be much smaller than both |S| and |T | if they are both much
smaller than n. Specifically, if we take a unit norm function f : {±1}n → R of degree at most
` = Õ(m), and restrict it to a random m sized set S, then the norm squared of the part of f that
has degree at least m/104 would be in expectation less than

(
`

m/104

)
(m/n)m/104 which for n � m

would be n−Ω(m). If the presumed PSD rank r satisfies r = no(m) then it turns out that this is
small enough to be treated as negligible.

3 Proof sketch

We want to obtain a contradiction to the statement

E
S∈([n]

m)Ex∈{±1}nD(xS)f(xS) = −0.3 (4)

5

https://lucatrevisan.wordpress.com/2008/12/07/applications-of-low-complexity-approximations/
http://summit.sfu.ca/item/12349
https://video.ias.edu/csdm/densemodelthm
https://video.ias.edu/csdm/densemodelthm
https://www.math.ias.edu/files/russell_scribe.pdf
http://ttic.uchicago.edu/~madhurt/Papers/regularity-full.pdf
http://ttic.uchicago.edu/~madhurt/Papers/regularity-full.pdf

under the assumption that f(xs) = Tr(P (S)Q(x)) where P (S) and Q(x) are r× r psd matrices for
r = mo(1).

We first phrase the LHS of (4) as
Tr(MQ)

where M is the block matrix with 2n r×r blocks with the xth block corresponding to ESD(xS)P (S),
and the Q is the block matrix 2n r × r blocks with the xth block corresponding to 2−nQ(x).

We will later show using a quantum learning type argument that there exists a matrixR = p(M),
for some polynomial p with degree Õ(1), such that Tr(R2) = Tr(Q) and

Tr(MR2) ≤ Tr(MQ) + 0.1 = −0.2 (5)

Let’s defer the proof of this for a moment and see what it yields. Since every element of M is a
polynomial in x of degree at most m, we can think of R as a matrix-valued Õ(m) degree polynomial
in x and rewrite (5) as

E
S∈([n]

m)Ex∈{±1}nD(xS)Tr(P (S)R2(x)) = E
S∈([n]

m)P (S)Ex′∈{±1}SD(x′)E
x′′∈{±1}SR

2(x′, x′′) (6)

If we fix a “typical” value for S and x′′, then as mentioned above, we can argue using random
restrictions that the function R′(x′) = R(x′, x′′) equals L(x′) +H(x′) where L(x′) is a degree o(m)
polynomial and ‖H(x′)‖ ≤ r−ω(1). Since without loss of generality, using the fact that P (S) is an
r × r matrix, ‖P (S)‖ ≤ r2, the effect of H(x) will be negligible and we get that

Ex′∈{±1}SD(x′)Tr(P (S)L2(x′)) ≤ −0.2 + o(1) (7)

Now define g(x′) to be Tr(P (S)L2(x′)) = ‖
√
P (S)L(x′)‖2F . Since for a fixed S, every entry of

the matrix
√
P (S)L(x′) is a degree o(m) polynomial in x′, this quantity is a polynomial of degree

o(m) which is a sum of squares, and so we get

ẼDg(x′) = Ex′D(x′)g(x′) ≤ −0.2 + o(1) < 0

contradicting the fact that D is a degree m/1000 pseudo distribution.

3.1 Quantum learning argument

We only need a rather restricted version of quantum learning (see the LRS paper for a much more
general statement). We want to prove the following:

Lemma 3. Let M,Q be s×s matrices such that Q is psd and Tr(Q) = 1, then there exists a degree
poly(log ‖Q‖s, 1/ε, ‖M‖) polynomial p such that

Tr(Mp(M)2)/Tr(p(M)2) ≤ Tr(MQ) + ε (8)

Proof. We will show that this holds where instead of using a polynomial we write a matrix expo-
nential p(M) = αe(θ/2)M for θ = poly(‖M‖, log ‖Q‖s, 1/ε), and the result would then follow from
a Taylor approximation. (Note that in our case ‖Q‖ = poly(r)/s; more generally LRS work with a
lower bound on the von Neumann entropy of Q which is simply the Shannon entropy of the eigen-
values. If Q has trace 1 and ‖Q‖ ≤ α/s then the von-Neumann entropy is at least log s− log(1/α)
using known relations between min-entropy and Shannon entropy.)

6

By making the transformation M 7→ I −M/‖M‖ we can change to the case that M is psd of
norm at most 1 and that our goal is to show that for θ = O(log ‖Q‖s, poly(1/ε))

Tr(MeθM) ≥ Tr(MQ)− ε (9)

What is the maximum value a matrix Q can achieve for Tr(MQ) subject to being psd, trace 1,
and having norm at most some value α/s? It’s not hard to see that this would be obtained by

having Q = (α/s)
∑s/α

i=1 viv
>
i where v1, v2, v3, . . . are the eigenvectors of M sorted in descending

order of the eigenvalues λ1, λ2, In this case Tr(MQ) will simply be the average of the s/α top
eigenvalues of M . Once again, one can see that the most extreme situation would be if all the top
s/α eigenvalues would be equal to 1 while the rest are zero, since that would maximize Tr(MQ)
under our conditions. Now, if we consider the matrix

eθM =
∑

eθλiviv
>
i

we can see that it gives weight 1 to the eigenvectors corresponding to zero, and weight eθ to the
eigenvectors corresponding to 1, since there are at most α times more of the former than the latter,
if θ � logα then almost of all of the weight will be on the top eigenvectors, and we get that the
matrix (after normalizing to trace 1) will give a value very close to Tr(MQ).

7

	Boosting, dense model, hardcore lemma, multiplicative weights, computational entropy, and their quantum/matrix/semidefinite cousins
	Random restrictions
	Proof sketch
	Quantum learning argument

