
SOS Lecture 4: Finding planted sparse vector and dictionary learning / Boaz Barak

Based on scribed (and greatly expanded) notes by Samuel Hopkins and Jerry Li

Finding Sparse Planted Vector

1 Introduction

In this lecture we will see how the SOS algorithm can be used to solve the following problem:
Suppose that V ⊆ Rn is a random k-dimensional linear subspace in which someone “planted” a
sparse vector v0. Sparse here means that v0 has few nonzero coordinates in the standard basis—
perhaps εn. The goal is to recover v0 given an arbitrary basis of V . We give a more formal
description below.

The problem itself is somewhat natural, and can be thought of as an average-case real (as
opposed to finite field) version of the “shortest codeword” or “lattice shortest vector” problem.
This also turns out to be related (at least in terms of techniques) to problems in unsupervised
learning such as dictionary learning / sparse coding.

There is a related problem, often called “compressed sensing” or “sparse recovery” in which we
are given an affine subspace A of the form v0 +V , where v0 is again sparse and V is an (essentially)
random linear subspace, and the goal is again to recover v0. Note that typically this problem is
described somewhat differently: we have an m× n matrix A, often chosen at random, and we get
the value y = Av0. This determines the k = n −m dimensional affine subspace v0 + Ker(A), and
we need to recover v0.

One difference between the problems is parameters (we will think of k � n, while in sparse
recovery typically k ∼ n− o(n)), but another more fundamental difference is that a linear subspace
always has the all-zeroes vector in it, and hence, in contrast to the affine case, v0 is not the sparsest
vector in the subspace (only the sparsest nonzero one).

This complicates matters, as the algorithm of choice for sparse recovery is L1 minimization:
find v ∈ A that minimizes ‖v‖1 =

∑n
i=1 |vi|. This can be done by solving the linear program:

min
n∑
i=1

xi

subject to xi ≥ vi
xi ≥ −vi
v ∈ A

But of course if A were a linear subspace but not affine, then this would return the all-zero vector.
(Though see below on variants that do make sense for the planted vector problem.)

1.1 Formal description of problem

We assume that v1, . . . , vk ∈ Rn are chosen randomly as standard Gaussian vectors (i.e. with
i.i.d. entries drawn from N(0, 1)), and v0 is some arbitrary unit vector with at most εn nonzero
coordinates. We are given an arbitrary basis B for Span{v0, v1, . . . , vk}. The goal is to recover v0.

For this lecture, this means recovering a unit vector v such that 〈v, v0〉2 ≥ 0.99 (though see the
paper [BKS14] for recovery with arbitrary accuracy). For simplicity let’s also assume that v0 is
orthogonal to v1, . . . , vk. (This is not really needed but helps simplify some minor calculations.)
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1.2 Ratios of Norms

Rather than trying to directly trying to find a sparse vector, we will define some smoother proxy
for sparsity, that is some polynomial P (·) so that P (v) is larger for sparse vectors than for small
ones. Then we will look for a vector v in the subspace that maximizes P (v) (subject to some
normalization) and hope that (a) we can efficiently do this and (b) that the answer is v0. This
makes the problem more amenable for the SOS algorithm and also makes for a more robust notion,
allowing for some noise in v0 (and lets us not worry about issues of numerical accuracy).

So, we want some function that will favor vectors that are ”spikier” as opposed to ”smoother”.
We use the observation that taking high powers amplifies ”spikes”. Specifically, we note that if
q > p a sparse/spiky vector v would have a larger ratio of ‖v‖q/‖v‖p than a dense/smooth one.
Indeed, compare the all 1’s vector ~1 with the vector 1S for a set S of size εn. ‖~1‖q/‖~1‖p = n1/q−1/p

while ‖1S‖q/‖1S‖p = (εn)1/q−1/p which means that if q > p, the latter ratio is larger than the
former by some power of 1/ε. Moreover, an application of Hölder’s inequality reveals that if v is
εn-sparse then its q vs p norm ratio can only be higher than this.

Claim 1. If v ∈ Rn has at most εn nonzero coordinates, then

(Ei
[
v(i)q

]
)1/q ≥ ε1/q−1/p(Ei

[
v(i)p

]
)1/p.

Proof. Let 1|v|>0 be the vector which is 1 if |v(i)| > 0 and 0 otherwise. Let w ∈ Rn be given by

w = 1|v|>0/n
1−q/p. Then by Hölder’s inequality,

(Ei
[
v(i)p

]
) =

∑
i

w(i)
v(i)p

nq/p

≤ (
∑
i

w(i)1/(1−p/q))1−p/q(
∑
i

v(i)q/n)p/q

= ε1−p/q(Ei
[
v(i)q

]
)p/q.

Rearranging gives the result.

How good a proxy for sparsity is this? We know that vectors which are actually sparse “look
sparse” in the ratio-of-norms sense, but what about the other way around—could the ratio of norms
be fooled by vectors which are not actually sparse? The answer is yes. For example, if q = ∞
and p = 1, the vector which has a 1 in one coordinate and ε in the other coordinates looks like an
ε-sparse (or more accurately ε−1/n-sparse) vector as far as the∞ versus 1 norm ratio is concerned,
but in the strict `0-sense is actually maximally non-sparse.

However, as the gap between p and q shrinks, a random subspace becomes less and less likely
to contain these kind of “cheating vectors” that are not sparse but look sparse when comparing
`q versus `p norms. Alternatively phrased, the closer we can take p and q, the higher dimension
random subspace we can tolerate before the subspace becomes likely to contain a vector which
confuses the `q versus `p sparsity proxy. Unfortunately, there are very values q > p for which
we know how to compute maxv∈V ‖v‖q/‖v‖p (e.g. q = ∞, p ∈ {1, 2}; not sure if there are any
other examples, see also Bhaskara and Vijayaraghavan (SODA 2011) for a discussion of related
questions, though note that they are talking of a slightly different question, max‖v‖p=1 ‖Av‖q for a
linear operator A (which for p = 2 can encapsulate our question by taking A to be a generator or
projector operator to the subspace V , and also, somewhat confusingly, their roles for p and q are
switched, and so they mostly deal with the case q ≤ p which is not our focus.)
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Demanet and Hand [HD13] and Spielman, Wang, and Wright [SWW13] use the `∞ versus `1
proxy for sparsity to attack this problem. This can be efficiently computable by running the n
linear programs

max vi subject to

xi ≥ vi
xi ≥ −vi∑
i

xi = 1

v ∈ Span{v0, v1, . . . , vk}

and picking the best optimum.
However, if k � 1, this will not detect a vector v that is 0.01-sparse.
Exercise 1: Prove that for every subspace V of dimension k, there exists a vector v ∈ V with

maxi vi = 1 and
∑
|vi| ≤

√
k/(10n)

Some works have suggested to use the `2 vs `1 proxy. Which actually works pretty well in the
sense that if V is a random subspace of dimension at most ηn, then there is no vector v ∈ V whose
`2 vs `1 ratio pretends to be a δ-sparse vector where δ is some function of η.

Exercise 2:

1. Prove that for every η < 1 there exists some δ = δ(η) such that if v1, . . . , vηn are random
Standard Gaussian vectors (each coordinate is distributed according to N(0, 1)) then with
probability at least 0.9 for every x ∈ Rεn with ‖x‖22 = 1

εn∑
i=1

|〈vi, x〉| ≥ δn

See footnote for hint1

2. Conclude that for every η < 1, there is some δ = δ(η) such that a random subspace (in our
model above) does not contain a δ-sparse vector.

However, the `2 vs `1 problem has one caveat - we don’t know how to compute it, even for
a random subspace. In fact, this problem seems quite related to the question of certifying the
restricted isometry property of a matrix— this is the goal of certifying the a random m× n matrix
A (for n > m) satisfies that ‖Ax‖2 ∈ (C, 1/C)‖x‖2 for every sparse vector x. In particular this
would be false if there was a sparse vector in the Kernel of A, which is a subspace of Rn of
dimension m− n. Known methods to certify this property require that the sparse vector x has at
most

√
m nonzero coordinates. See also this blog post of Tao http://terrytao.wordpress.com/

2007/07/02/open-question-deterministic-uup-matrices/ and a paper of Koiran and Ziyzuas
connecting this problem to the planted clique problem. (Although note that, unlike the planted
clique problem, even a quasipolynomial time algorithm for this problem would be very interesting.)

In the following, we will use `4 versus `2 as our proxy for sparsity. A priori this is the ”worst
of both worlds”. On one hand, though it is better than the `∞ vs `1 proxy, the `4/`2 ratio is a

1Hint: This uses concentration of measure. See the papers of Guruswami, Lee and Razoborov and Guruswami, Lee and Wigderson for

discussion of this result, its proof, and derandomization.
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worse proxy than the `2 vs `1 ratio, and to detect 1/100-sparse vectors we will need to require
the dimension k of the subspace to be at most ε

√
n for some ε > 0 (which is much better than

k = O(1) needed in the `∞/`1 case but k = Ω(n) achieved in the `2/`1 case). On the other
hand, we don’t know how to compute this ratio either. In fact, [BBH+12] showed (via connections
with the quantum separability problem) that computing this ratio cannot be done in nO(logn) time
unless SAT has a subexponential time algorithm, and that even achieving weaker approximations
would break the Small-Set Expansion (and hence probably also the Unique Games) conjecture.
Nevertheless, we will show that we can in fact compute this ratio in the random case, using the
degree 4 SOS system. However, as mentioned above, this cannot detect 1/100-sparse vectors if the
subspace as dimension �

√
n:

Exercise 3: Prove that if V ⊆ Rn has dimension k >
√
n then there is a vector v ∈ V such

that Ev4
i ≥ k2

10n

(
Ev2

i

)2
.

2 Using SoS to Do Better

2.1 Description of the Algorithm

We need to phrase our problem as one of polynomial optimization. We have already mentioned
that we will optimize the ratio ‖v‖4/‖v‖2. To be more specific: on input a basis B for the subspace
V we have real variables v1, . . . , vn. Our program is

max‖v‖44 subject to

‖v‖22 = 1

v ∈ V

(Note that the condition v ∈ V can be expressed as n− k linear equations.)
We run the level-4 SoS algorithm on this program to obtain a pseudodistribution {v} with

attending pseudoexpectation operator Ẽ. We then run the Quadratic Sampling Lemma to obtain
a random vector w ∈ V that matches the second moments of {v}. The result will then follow from
the following result

Lemma 2 (Sparse vector recovery— main lemma). If the subspace V = Span{v1, . . . , vk} is chosen
at random and v0 is ε-sparse for ε ≤ k2/(100000n) then Ẽ‖Pw‖22 ≤ 0.01 where P is the projector
to Span{v1, . . . , vk}.

This result means that if w ∈ V is a vector such that both ‖w‖2 and ‖Pw‖22 are close to their
expectations (which are 1 and at most 0.01 respectively) then, writing w = 〈w, v0〉v0 + w′ where
w′ is in the span of {v1, . . . , vk}, we see that ‖w′‖2 ≤ 0.01 and hence 〈w, v0〉2 ≥ 0.99. Somewhat
cumbersome but not too hard calculations spelled out below will show that we can get sufficiently
close concentration (especially since we can repeat the process and output the sparsest vector w
we can find).

Remark Note that the algorithm only looks at the first two moments of the distribution {v}.
So, why did we need {u} to be a degree 4 (as opposed to degree 2) pseudo distribution? This
is only for the proof, though note that the `4/`2 SOS program doesn’t even make for degree < 4
pseudo-distributions.

4



2.2 Proof of Main Lemma

The SoS algorithm gives us a pseudodistribution satisfying the constraints

E =
{
‖v‖44 = C4/n, ‖v‖22 = 1, v ∈ Span{v0, . . . , vk}

}
where C is some number so that C4/n is the value of the solution returned by the level-4 SoS
relaxation.

We first prove the main lemma for actual distributions and then demonstrate an instance of
“Marley’s Hypothesis” [?]: if you proved it for real distributions and didn’t use anything too fancy,
then every little thing gonna be all right (when you try to prove it for pseudodistributions).

The main result we will take at the moment as a given is the following:

Lemma 3 (random subspaces don’t contain `4 versus `2 sparse vectors—actual distributions). If
k �

√
n, with high probability

‖Pv‖44 ≤ 10‖Pv‖42/n (1)

for every v.

We will show that Lemma 3 implies our Main Lemma for actual distributions. Namely,

Lemma 4 (an `4 versus `2 sparse vector must be correlated with v0—actual distributions). If P
satisfies (1) then for every unit vector w ∈ V with ‖w‖4 ≥ ‖v0‖4/100 = C/100n1/4, the square
correlation of w with v0 satisfies 〈w, v0〉2 ≥ 1−O(1/C).

(Note that this is indeed equivalent to the main lemma since ‖w‖22 = 〈w, v0〉2 + ‖Pw‖22.)

Proof of Lemma 4. Let w ∈ V be a unit vector. We can write w = αv0 + Pw. Hence, using the
triangle inequality for the `4-norm,

‖w‖4 ≤ α‖v0‖4 + ‖Pw‖4

which can be rearranged to

α ≥ 1− ‖Pw‖4
‖v0‖4

But since ‖v0‖4 = C/n1/4, and Lemma 3 ‖Pw‖4 ≤ 2/n1/4, the RHS is at least 1− 2/C.

3 Pseudo-distribution version and proofs

We now state the pseudo-distribution versions of our lemmas and prove them:

Lemma 5 (random subspaces don’t contain `4 versus `2 sparse vectors—pseudodistributions).
With high probability

‖Pv‖44 � 10‖Pv‖42/n (2)

where we now think of ‖Pv‖44 and ‖Pv‖42 as polynomials in indeterminates v and with coefficients
determined by P , and � denoting that the polynomial 10‖Pv‖42 − ‖Pv‖44 is a sum of squares.

Lemma 6 (an `4 versus `2 sparse vector must be correlated with v0—pseudodistributions). If P
satisfies (2) then for every degree 4 pseudo-distribution {x} satisfying {‖x‖22 = 1, ‖x‖44 = ‖v0‖44 =
C4/n} it holds that Ẽ

[
〈x, v0〉2

]
≥ 1−O(1/C).
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Now we test “Marley’s Hypothesis” by lifting the proof of Lemma 4 to a proof of Lemma 6,
using Lemma 5 rather than Lemma 3 to do the heavy lifting. We need to be able to mimic all the
steps we used when everything is wrapped in pseudoexpectations. The main interesting step was
a use of the triangle inequality.

Lemma 7 (Triangle Inequality for Pseudodistributions). Let {x, y} be a degree-4 pseudodistribu-
tion. Then

Ẽ
[
‖x+ y‖44

]1/4 ≤ Ẽ
[
‖x‖44

]1/4
+ Ẽ

[
‖y‖44

]1/4
.

Exercise 4: Prove Lemma 7
We note that the following easier bound would be fine for us (and follows from past exercises):

if the distribution satisfies the constraint ‖x‖44 ≥ ‖y‖44 then

Ẽ
[
‖x+ y‖44

]
≤ Ẽ

[
‖x‖44

]
+ 15

(
Ẽ
[
‖x‖44

]1/4)3/4 (
Ẽ
[
‖y‖44

])1/4
.

Proof of Lemma 6 from Lemma 5. The proof is almost identical to the proof of Lemma 4. Let P
satisfy

‖Px‖44 �
10‖Px‖42

n

where we interpret both sides as polynomials in x. Let {x} be a degree-4 pseudodistribution
satisfying {‖x‖22 = 1, ‖x‖44 = ‖v0‖44 = C4/n}. Using the pseudodistribution triangle inequality,

Ẽ
[
‖x‖44

]1/4 ≤ Ẽ
[
‖〈x, v0〉v0‖44

]1/4
+ Ẽ

[
‖Px‖44

]
=

C

n1/4
Ẽ
[
〈x, v0〉4

]1/4
+ Ẽ

[
‖Px‖44

]1/4
.

Rearranging and using our assumptions on {x} ,

Ẽ
[
〈x, v0〉4

]1/4 ≥ n1/4

C
(Ẽ
[
‖x‖44

]1/4 − Ẽ
[
‖Px‖44

]1/4
) = 1− n1/4

C
Ẽ
[
‖Px‖44

]1/4
.

Now we use our assumption on P to get

Ẽ
[
‖Px‖44

]1/4 ≤ 2
Ẽ
[
‖Px‖42

]1/4
n1/4

.

Moreover, note that ‖Px‖42 � ‖x‖42, since both are homogeneous degree-4 polynomials all of whose
monomials are squares and the coefficient of every monomial on the left-hand side is smaller than
the corresponding coefficient on the right. This gives

Ẽ
[
‖Px‖42

]
≤ Ẽ

[
‖x‖42

]
.

Putting it together, we get

Ẽ
[
〈x, v0〉4

]1/4 ≥ 1− 2

C
Ẽ
[
‖x‖42

]1/4
.

Since {x} satisfies Ẽ
[
‖x‖22

]
= 1, we have

Ẽ
[
‖x‖22

(
‖x‖22 − 1

)]
= 0

and therefore Ẽ
[
‖x‖42

]
= 1. Plugging this in to the above,

Ẽ
[
〈x, v0〉4

]1/4 ≥ 1− 2

C
.
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The last step is to relate Ẽ
[
〈x, v0〉4

]
and Ẽ

[
〈x, v0〉2

]
. Again using that {x} satisfies Ẽ

[
‖x‖22

]
= 1,

we have
Ẽ
[
〈x, v0〉2‖x‖22

]
= Ẽ

[
〈x, v0〉2

]
.

Moreover, since 〈x, v0〉2 � ‖x‖22 we must have 〈x, v0〉4 � 〈x, v0〉2‖x‖22 (the difference of the two
sides in the former is a sum of squares; multiplying that SoS polynomial by the square polynomial
‖x, v0‖2 yields another SoS polynomial which is the difference between the two sides in the latter
case).

All together, we get

Ẽ
[
〈x, v0〉2

]
≥ Ẽ

[
〈x, v0〉4

]
≥
(

1− 2

C
Ẽ
[
‖x‖42

]1/4)4

≥ 1− 8

C

and we are done.

4 Proof of Lemma 5

True to form, we would like to start by proving Lemma 3 and then lift the proof to the SoS setting.
Lets start with a heuristic argument on why would Lemma 3 be true. Think of the case that we
fix a unit vector x ∈ Rk and pick v1, . . . , vk as random Gaussian vectors of unit norm in Rn, i.e.,
each entry is distributed as N(0, 1/

√
n). Then, the vector w =

∑
xivi would have each coordinate

be a Gaussian random variable distributed as N(0, 1/
√
n) (since

∑
x2
i = 1). Now the probability

‖w‖44 ≥ C4/n is the probability that
∑n

i=1 g
4
i ≥ nC4 where the gi’s are independent standard

Gaussians. The dominant term in this probability is the probability that one of those gi’s is at
least Cn1/4 which happens with exp(−C2√n) probability. So, if C2√n � k, we would be able to
do a union bound over a sufficiently fine net of Rk and rule this out.

This argument can be turned into a proof, but note that we have used a concentration and
union bound type of argument, i.e. the dreaded probabilistic method, and hence cannot appeal to
Marley’s Corollary for help. So, we will want to try to present a different argument, that still uses
concentration but somehow will work out fine.

4.1 Intuition and Heuristic Argument

A formulation that will work just as well for the proof of the main theorem is: given an orthonormal
basis matrix B for Span{v1, . . . , vk},

‖Bv‖44 ≤ 10‖v‖42/n (3)

Now, the matrix B whose columns are v1/
√
n, . . . , vk/

√
n is almost such a matrix (since these

vectors are random, they are nearly orthogonal), and so let’s just assume it is the basis matrix. So,
we need to show that if B has i.i.d. N(0, 1/

√
n) coordinates and n� k2 then with high probability

(3) is satisfied.
Let w1, . . . , wn be the rows of B.

n‖Bv‖44 =
n∑
i=1

〈wi, v〉4 = 1
n

n∑
i=1

n2〈wi, v〉4

That means that we can think of the polynomial Q(v) = ‖Bv‖44n as the average of n random
polynomials each chosen as 〈g, v〉4, where g =

√
nw has i.i.d N(0, 1) entries. Since in expectation
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〈g, v〉4 ≤ 5‖v‖42 (Exercise 5: verify this), we can see that if n is sufficiently large then Q(v) will
with high probability be very close to its expectation and so have Q(v) ≤ 10‖v‖42.

It turns out that “sufficiently large” in this case means as long as n� k2.
We now give some high level arguments on how to make this into a proper proof. We first recall

the following exercise:
Exercise 6: Let P,Q be two homogenous n-variate degree 4 polynomials, then P � Q if

and only if there exist matrices MP ,MQ such that for every x ∈ Rn, P (x) = 〈MP , x
⊗4〉 and

Q(x=〈MQ, x
⊗4〉 such that MP � MQ in the spectral sense. (i.e., where we say that a matrix A

satisfies 0 � A if w>Aw ≥ 0 for all w.)
As a corollary, such a polynomial P satisfies P � λ‖x‖42 if there exists such a matrix MP with

‖MP ‖ ≤ λ where ‖MP ‖ denotes the spectral norm. (Can you see why?)
This connection suggest using the Matrix Chernoff Bound and specifically the following theorem

Theorem 8 (Matrix Chernoff Bound, Ahlswede and Winter). Let X1, . . . , Xn be i.i.d. m × m
matrix valued random variables with expectation M and with M − cI � Xi �M + cI, then

Pr[ 1
n

∑
Xi 6∈M ± εI] ≤ m exp(−ε2n/c2)

(One intuition for this bound is that it turns out that diagonal matrices are the hardest ones,
and if the distribution was on diagonal matrices, then we need to use the usual Chernoff bound m
times and so lose a factor of m in the probability bound.)

In our case, the distribution of Xi’s is the distribution of the matrix corresponding to the
polynomial 〈g, x〉4 whose largest eigenvalue is ‖g‖2 = k, and so the RHS becomes k2 exp(−ε2n/k2)
and so if n� k2 log k this will suffice. It turns out that (at considerable pain) one can avoid that
log k factor.

5 Full proof of Lemma ??

These next sections contain a great exposition of the full proof with the right, k = O(
√
n) bound,

as heroically written by Samuel Hopkings.

5.1 Lemma 5 Holds in Expectation

As in the heuristic argument, the first step in both proofs is to show that the SoS relation we need
holds in expectation. For convenience we now change notation and let x be a typical vector in
Span{v1, . . . , vk}. That is, for some indeterminates α1, . . . , αk, we have x =

∑
αivi. We want to

show

‖x‖44 �
10‖x‖42
n

. (4)

where both sides are now polynomials in α1, . . . , αk. We mechanically expand both sides to the
equivalent formulation∑

s

∑
i,j,k,l

αiαjαkαlvi(s)vj(s)vk(s)vl(s) �
10

n

∑
s,t,i,j,k,l

αiαjαkαlvi(s)vj(s)vk(t)vl(t)

Our task in this section is to hit both sides with Ev1,...,vk

[
·
]

and show

Ev1,...,vk

∑
s

∑
i,j,k,l

αiαjαkαlvi(s)vj(s)vk(s)vl(s)

 � Ev1,...,vk

10

n

∑
s,t,i,j,k,l

αiαjαkαlvi(s)vj(s)vk(t)vl(t)

 .
(5)
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We need to calculate the expected coefficient of every monomial αiαjαkαl on both the right-and
left-hand sides of (5). This is an unpleasant but not terribly difficult case analyis.

Notational Conventions We need to distinguish between ordered multisets of indices i, j, k, l,
which we will denote just like that, and sets of indices which do not have repeated elements (even
though in our notation some elements may be listed multiple times), which we denote {i, j, k, l}.
When we want to sum over all pairs i, j we write

∑
i,j , and if we don’t want to double-count, we

use
∑

i≤j .

Left-Hand Side of (5) For each {i, j, k, l} we calculate∑
π∈S4(i,j,k,l)

E
[∑
s

vπ(i)(s)vπ(j)j(s)vπ(k)(s)vπ(l)(s)
]

which is the coefficient of αiαjαkαl, where S4 is the symmetric group on the set {i, j, k, l}.
First note that each term in the sum is identical, so we may equivalently calculate

n|S4(i, j, k, l)|E
[
vi(1)vj(1)vk(1)vl(1)

]
.

If one of {i, j, k, l} is unique then this is 0. If the {i, j, k, l} has exactly two unique elements, then
E
[
vi(1)vj(1)vk(1)vl(1)

]
= E

[
γ2γ′2

]
= 1, where γ, γ′ ∼ N(0, 1), and |S4(i, j, k, l)| = 3. If {i, j, k, l}

has just one unique element, then E
[
vi(1)vj(1)vk(1)vl(1)

]
= E

[
γ4
]

= 3 and |S4(i, j, k, l)| = 1. In
sum, the left-hand side is equal to

3n
∑
i≤j

α2
iα

2
j . (6)

Right-Hand Side of (5) For each i, j, k, l we calculate∑
π∈S4(i,j,k,l)

∑
s,t

E
[
vπ(i)(s)vπ(j)(s)vπ(k)(t)vπ(l)(t)

]
.

We split it into two sums:∑
π∈S4(i,j,k,l)

∑
s=t

E
[
vπ(i)(s)vπ(j)(s)vπ(k)(t)vπ(l)(t)

]
+

∑
π∈S4(i,j,k,l)

∑
s 6=t

E
[
vπ(i)(s)vπ(j)(s)vπ(k)(t)vπ(l)(t)

]
.

In the first, we have recovered exactly the left-hand side of (5). In the second:

• If {i, j, k, l} has some element appearing just once, then the corresponding terms are all 0, as
before.

• If {i, j, k, l} contains exactly two unique elements then there are four elements π of S4(i, j, k, l)
which will have π(i) = π(j) and π(k) = π(l) and n2 − n terms in the inner sum, so we get
4n2 − 4n

• If {i, j, k, l} has just one unique element, we have

E
[
vπ(i)(s)vπ(j)(s)vπ(k)(t)vπ(l)(t)

]
= E

[
γ2γ′2

]
= 1.

and so the corresponding sum over s 6= t contributes n2 − n.

9



All in all, the right-hand side is equal to

10

n

3n
∑
i≤j

α2
iα

2
j + (n2 − n)

∑
i<j

4α2
iα

2
j +

∑
i

α4
i

 . (7)

It’s now a straightforward exercise to check that (6) � (7).

5.2 First Proof of Lemma 5, k = O(n1/4)

We now know that (4) holds in expectation, by which we mean that some polynomial R(α) is a
sum of squares. Conceptually, what remains to do is show that R is close to its expectation with
high probability. What is the right sense of closeness? We will see in the next section that, to
achieve the optimum bound of k = O(n1/2), we need to interpret “close” to mean that some matrix
derived R’s coefficient matrix is close to its expectation in the spectral norm.

However, we can achieve k = O(n1/4) with a somewhat cruder argument. Our first observation
is that

αiαjαkαl � α2
iα

2
j + α2

kα
2
l (8)

−αiαjαkαl � α2
iα

2
j + α2

kα
2
l . (9)

At a high level, the idea is that so as long as the coefficients of the terms αiαjαkαl which are not
squares do not get too big (they are 0 in expectation) and the coefficients of the dominating terms
α2
iα

2
j and α2

kα
2
l do not get too small, we can use this relation to preserve SoS-ness.

Now we get a little more formal. Let

R(α) =
10

n

∑
s,t,i,j,k,l

αiαjαkαlvi(s)vj(s)vk(t)vl(t)−
∑
s

∑
i,j,k,l

αiαjαkαlvi(s)vj(s)vk(s)vl(s).

We will be a little fast-and-lose with the constants for the sake of readability. In particular, we
don’t lose too much if we ignore the permutations π and just treat each permutation individually.

We will charge to the coefficient of α2
iα

2
j the coefficients of αiαjαkαl for all indices k, l. As long

as for all i, j the coefficient of α2
iα

2
j stays positive when we subtract off the absolute values of the

coefficients we are charging to it, R is SoS by (8) and (9).
Unfortunately, even for this cruder version of the argument we need a concentration inequality

whose proof is outside scope of these notes. The following statement is a special case of Theorem
1.10 in [SS12], who refer the reader to [Jan97] for a proof.

Theorem 9. Consider a degree-q polynomial f(Y ) = f(Y1, . . . , Ym) of independent centered Gaus-
sian random variables Y1, . . . , Ym. Then

Pr [|f(Y )− E [f(Y )] | ≥ λ] ≤ e2e
−
(

λ2

AV ar[f(Y )]

)1/q

where A is a universal constant.

We will apply Theorem 9 with the degree-4 polynomials which are the coefficients in R(α). To
apply the theorem we must estimate the variances of the coefficients. Let

fijkl =
10

n

∑
s,t

vi(s)vj(s)vk(t)vl(t)−
∑
s

vi(s)vj(s)vk(s)vl(s).

10



By independence considerations, V ar[fijkl] ≤ V ar[fiiii]. It is a somewhat involved and unenlight-
ening calculation to check that V ar[fiiii] = O(n). 2 We assume it here, and note that in the
preceding section we showed that the coefficients of α2

iα
2
j in R are at least 5n in expectation.

We are nearly there—the rest of the analysis is a standard combination of the concentration
inequality and a union bound, so we will be hand-wavy and ignore the log factors needed to make
things precise.

The probability that the coefficient of α2
iα

2
j is less than 4n is O(e−n

1/2
) by application of

Theorem 9. On the other hand, the probability that any of the k2 coefficients (of αiαjαkαl) being
charged to α2

iα
2
j is greater than 3n/k2 in absolute value is, again by application of the theorem, at

most e−3n/k4
. As long as k4 < n, we can pick constants and polylog factors to complete the proof.

5.3 Second Proof of Lemma 5, k = O(n1/2)

The arguments in the following section first appear in section 7 of [BBH+12], and are fleshed out
in [DS].

The first proof loses something in requiring a particular SoS decomposition of R. The following
more delicate argument avoids this by using a single application of a concentration inequality to
the entire polynomial at once rather than bounding each coefficient separately.

Matrix Concentration Setup Matrix concentration inequalities are the analogue of Cher-
noff/Bernstein/Azuma/Hoeffding/etc. bounds when the terms being summed are independent or
weakly-dependent random matrices rather than scalars. They bound the distance of the resulting
random matrix from its expectation in the spectral norm. For a readable treatment of “elementary”
matrix concentration inequalities, see [Tro12] or [Tao12]. Most of these inequalities rely on variables
which are bounded; our variables instead have Gaussian tails. This could be dealt with by some
truncation business, but instead we will use a higher-tech result which simultaneously handles the
Gaussian-ness of the underlying distribution and saves a log factor over more elementary methods.

The following presentation follows [BBH+12], with notation somewhat modified to fit these
notes. For background on the ψp norm (in particular the ψ2 case) see [Ver10], especially section
5.2.3 on sub-Gaussian random variables.

The ψp norm of a distribution {a} on Rk3 is the least C > 0 so that

max
w∈Rk,‖w‖2=1

E
[
e
|〈w,a〉|p

kp/2CP

]
≤ 2.

(We let it be∞ if no such C exists.) Observe that for p = 2 this is quantifying the “Gaussian-ness”
of the one-dimensional marginals of the distribution {a}. The scale factor of kp/2 is not in the usual
definition but we want to match the theorem statement in [ALPTJ11].

We also require a bounded-ness condition: that there is a constantK ≥ 1 so that for independent
samples a1, . . . , an ∼ {a},

Pr

[
max
i≤n
‖ai‖2 ≥ K(nk)1/4

]
≤ e−

√
k.

2To check this, expand the variance as E
[
·2
]
− E

[
·
]2

and count how many terms in each resulting sum cancel
between the square-expectation and the expectation-squared. Terms always cancel unless indices match up, violating
independence.

3We have to use k and n here on purpose—when we apply the theorem, each sample will correspond to a dimension
of our ambient space and there will have dimension the same as the dimension of our subspace.
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Now we can state the main theorem of [ALPTJ11, ALP+10], as stated in [BBH+12] (modulo a
minor adjustment of scale factors).

Theorem 10. Let {a} be a distribution on Rk so that E
[
aaT

]
= I, the ψ1 norm of {a} is at most

ψ ≥ 0, and the boundedness condition holds for {a} with constant K. Let a1, . . . , an be independent

samples from {a}. Then for some universal constants c, C > 0, with probability at least 1−2e−c
√
k,

(1− ε)I � 1

n

n∑
i=1

aia
T
i � (1 + ε)I

where I is the identity matrix, � is the PSD ordering, and ε = C(ψ +K)2
√
k/n.

From Matrix Concentration to Lemma 5: Plan of Attack We recall the correspondence
between polynomials and coefficient matrices that makes the SoS algorithm tick in the first place. If
we can find matrices MA and MB for A,B polynomials so that xTMAx = A(x) and xTMBx = B(x),
and if MA �MB, then A � B.

We will use this method to show that two inequalities each hold with high probability:

1

3
E
[
‖x‖42

]
� ‖x‖42 (10)

‖x‖44 � 3E
[
‖x‖44

]
. (11)

Since we already know

E
[
‖x‖44

]
� 10

n
E
[
‖x‖42

]
this gives us Lemma 5 (modulo a minor adjustment of the constants).

Warm Up: Concentration for ‖x‖22 We turn now to showing that ‖x‖22 is rarely too much
smaller than its expectation. We will be able to leverage this to show that (10) holds with high
probability. We expand ‖x‖22 as a polynomial in α1, . . . , αk:

‖x‖22 =
∑
s,i,j

αiαjvi(s)vj(s).

Let a1, . . . , an ∈ Rk be the rows of the matrix whose columns are v1, . . . , vk. Let {a} be the
distribution of the ai’s. Observe that we can rewrite the previous equation as

‖x‖22 =
∑
s,i,j

αiαjas(i)as(j)

which has coefficient matrix
∑

s asa
T
s . Furthermore, E

[
aaT

]
= I. Now we need to calculate the

ψ1 norm. The distribution {a} is rotationally invariant, so we may take w = e1 to be the first
standard basis vector, in which case we need to find C so that

E
[
e|a(1)|/k1/2C

]
≤ 2

Mathematica says that 2 is an upper bound.
The last thing to check before applying the matrix concentration theorem is the boundedness

condition. The event max ‖ai‖2 ≥ K(nk)1/4 is equivalent to the event max ‖ai‖22 ≥ K2(nk)1/2.

12



Since ‖ai‖22 is a degree-2 polynomial of independent Gaussians, we can use Theorem 9 to show that
K = 1 suffices if k ≈

√
n.4

Now we can apply the concentration theorem with k =
√
n to get that with probability at least

1− e−c
√
k,

(1− 9C2n−1/4)I � 1

n

n∑
i=1

aia
T
i � (1 + 9C2n−1/4)I.

As soon as n gets big enough, this yields

0.99E
[
‖x‖22

]
� ‖x‖22.

Concentration for ‖x‖42 We now make some observations:

1. If A,B are SoS polynomials with A � B, then A2 � B2. To see this, write B2 − A2 =
(B +A)(B −A) and note that the multiplicands in the latter are both SoS by hypothesis, so
their product is as well.

2. E
[
‖x‖42

]
and E

[
‖x‖22

]2
differ only by a constant factor. The proof is mechanical. In particular,

E
[
‖x‖42

]
� 3E

[
‖x‖2

]2
.

3. ‖x‖22 � E
[
‖x‖22

]
� 0.

Taken all together, we get 0.1E
[
‖x‖42

]
� ‖x‖42 which, modulo some adjustments to the constants,

is (10).

Concentration for ‖x‖44 It remains only to dispatch (11). This we also do by appeal to our
matrix concentration theorem, but we will have to be somewhat more careful in using it, for a
couple reasons:

1. We will not initially end up with a distribution {a} with E
[
aaT

]
= I.

2. The calculations to show that the ψ1 and boundedness conditions hold will be somewhat more
arduous.

To handle the first of these, we will start in the same way as before by finding the distribution
whose empirical covariance matrix is the coefficient matrix of ‖x‖44, but then we will have to hit
these vectors with the pseudo-inverse of E

[
‖x‖44

]
to get a distribution which has true covariance

matrix I. Then we use the lemma below to get the result we want. To handle the second issue, we
shut up and calculate. Be prepared for some Taylor series.

Lemma 11. Let Σ be a symmetric real PSD matrix, Σ1/2 its square root, Σ−1 its pseudo-inverse,
and Σ−1/2 the square root of its pseudo-inverse. Then

• Σ−1/2ΣΣ−1/2 = I.

• Σ1/2Σ−1/2 = I.

4Actually we could take K to be o(1) in this case. The analysis where we have to worry about these things is for
‖x‖44.
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Proof. The proofs of both facts are straightforward applications of the characterization of the
pseudoinverse and square roots of diagonal PSD matrices (respectively, take the inverses and square
roots of the diagonal entries) plus the fact that a symmetric real matrix can be diagonalized.

We recall that ‖x‖44 expands as

‖x‖44 =
∑
s

∑
i,j,k,l

αiαjαkαlvi(s)vj(s)vk(s)vl(s).

Once again, let the vectors a1, . . . , an be the rows of the matrix whose columns are the vi’s. Then
we can rewrite:

‖x‖44 =
∑
s

∑
i,j,k,l

αiαjαkαlas(i)as(j)as(k)as(l).

The coefficient matrix of ‖x‖44 therefore
∑

s(as ⊗ as)(as ⊗ as)T where ⊗ is the tensor product. Let
{a} again be the distribution of the as’s, and let Σ = E

[
(as⊗ as)(as⊗ as)T

]
be the true covariance

matrix of (as ⊗ as). Since it is a covariance matrix, Σ is symmetric and PSD, so the results of
Lemma 11 apply.

Consider now the distribution {b} given by Σ−1/2(a ⊗ a). By Lemma 11, the true covariance
matrix satisfies E

[
bbT
]

= I. Let b1, . . . , bs be independent samples from {b}. If we could prove∑
s

bsb
T
s � 3I

with high probability, then by hitting both sides with Σ1/2 on right and left and again applying
Lemma 11 we would have (11). Hence, all that remains to do is calculate ψ1 norm and the
boundedness constant for {b} in order to apply the matrix concentration theorem.

We begin with the ψ1-norm calculation. We need an upper bound on C so that

max
w∈Rk2 ,‖w‖2=1

E
[
e
|〈w,b〉|
kC

]
≤ 2.

Making the substitution u = Σ−1/2w, we need to find C so that for all u with uTΣu ≤ 1,

E
[
e
|〈Σ1/2u,a⊗a〉|

kC

]
≤ 2.

The entires of Σ are all either zeroth, first, or second moments of a standard Gaussian, depending
on how many repeated indices are at a particular entry. In particular, Σiiii = 3 and Σijij = Σiijj =
. . . = 1, and all other entires are 0. (See our analysis of E

[
‖x‖44

]
.)

The condition uTΣu ≤ 1, if we interpret u as a k × k matrix M , implies that∑
ij

M2
ij +

∑
ij

MijMji +
∑
ij

MiiMjj ≤ 1.

(where we have dropped some 3’s to 1’s, which can only reduce the left-hand side). Because a⊗ a,
considered as a k × k matrix, is symmetric, we may assume that M is also symmetric (otherwise
take M ′ij = (Mij + Mji)/2 and note that the inner product with a ⊗ a is preserved). With the
symmetry assumption we get

2
∑
ij

M2
ij +

(∑
i

Mii

)2

≤ 1

14



which we wastefully use to get ∑
ij

M2
ij +

(∑
i

Mii

)2

≤ 1.

Since the trace of a matrix is the sum of its eigenvalues, we get(∑
i

λi

)2

+
∑
i

λ2
i ≤ 1

which gives
∑

i λi ≤ 1 and
∑

i λ
2
i ≤ 1. All this shows that it will now suffice to prove that there is

C = O(1) so that for every symmetric k × k matrix M with TrM ≤ 1 and TrM2 ≤ 1,

E
[
e
|aTMa|
kC

]
≤ 2.

By rotational invariance of a, we may actually assume that M is diagonal. Then

1

kC
|aTMa| = 1

kC
|
∑
i

λia
2
i | ≤

1

kC

(∣∣∣∣∣∑
i

λi

∣∣∣∣∣+

∣∣∣∣∣∑
i

λi(a
2
i − 1)

∣∣∣∣∣
)
≤ 1

kC
+

1

kC

∣∣∣∣∣∑
i

λi(a
2
i − 1)

∣∣∣∣∣
where the second-to-last step is the triangle inequality and the last step is since TrM ≤ 1.

Conditioned on |
∑

i λi(a
2
i −1)| ≤ 0, the expectation we’re bounding becomes at most e1/kC +1,

so clearly we can take C = O(1) in this case. So we may assume that at least half of the total
expectation comes from the case when |

∑
i λi(a

2
i − 1)| ≥ 0. By independence and the preceding

analysis, we get

E
[
e
|aTMa|
kC

]
≤ 2e1/kC

∏
i

E
[
eλi(a

2
i−1)/kC

]
. (12)

Now we Taylor expand:

E
[
eλi(a

2
i−1)/kC

]
=
∑
p

1

p!
E
[

1

(kC)p
λpi (a

2
i − 1)p

]
.

We want to bound each term in the Taylor expansion with something involving λ2
i so we can use

the condition TrM2 ≤ 1. Recall that the moments E
[
a2p
i

]
grow like

∏
q odd, q≤p q ≈ p!2p. So as

long as 1/(kC) ≤ 1/16 or so, recalling that
∑

i λ
2
i ≤ 1 and therefore |λi| ≤ 1 for all i, we can

estimate
1

(kC)p
λpi a

2p
i ≤ p!(1/kC)2λ2

i 2
−p.

Plugging this into the Taylor expansion, using Jensen’s inequality on (a2
i − 1)p, and splitting off

the terms with p ≤ 2 gives

E
[
eλi(a

2
i−1)/kC

]
≤ 2 + (kC)−2λ2

i

∑
k≥2

2−k ≤ eO((kC)−2λ2
i ).

Finally, plugging this back into (12) we get

E
[
e
|aTMa|
kC

]
≤ 2e1/kCeO((kC)−2)

∑
λ2
i ≤ 2
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for all k and sufficiently small C. So the ψ1 norm of {b} is O(1).
The very last thing we need to do is check the boundedness condition for {b}. Note that it

will suffice to show that (a⊗ a) satisfies the boundedness condition rather than {b} if we can show
that the largest nonzero eigenvalue of Σ−1/2 is O(1), which would follow if we could show that the
smallest nonzero eigenvalue of Σ is Ω(1).

The proof of the boundedness condition for a⊗ a is similar to that for {a}.

6 Analyzing success probability, proof of the qaudratic sampling
lemma

We restate the QSL here:

Lemma 12 (Quadratic Sampling Lemma). If {x} is a degree d ≥ 2 pseudo distribution, then there
exists a Gaussian distribution {u} such that Ẽ

[
P (x)

]
= E

[
P (u)

]
for every polynomial P of degree

at most 2. This distribution can be efficiently computed from input {x}.

Proof. By shifting we can assume that Ẽ
[
xi
]

= 0 for all i. Since {x} is a degree 2 pseudo-

distribution, its second moment matrix M = Ẽ
[
x⊗2

]
= Ẽ

[
xx>

]
is psd. Hence, we can write

M = B>B where B is a d × n matrix with columns b1, . . . , bn and so Mi,j = 〈bi, bj〉. Choose a
random standard Gaussian vector g = (g1, . . . , gn) and let zi = 〈bi, g〉.

Then, for every i, j, we get that

E
[
zizj

]
= E

[
〈bi, g〉〈bj , g〉

]
=
∑
a,b

bi(a)gabi(b)gb =
∑

ai(a)bj(a) = 〈bi, bj〉 = Mi,j

using the fact that the Gaussians are independent and so E
[
gagb

]
equals 0 if a 6= b and equals 1

otherwise.

Proof of Main Theorem from Main Lemma and Quadratic Sampling Lemma. Let {u} be the Gaus-
sian distribution obtained from {x} which satisfies E . The Main Lemma says that Ẽx

[
‖Px‖22

]
≤

0.001 with high probability, and since ‖Px‖22 is a degree-2 polynomial, the Quadratic Sampling
Lemma then implies that Eu

[
‖Pu‖22

]
≤ 0.001. By the same argument, Eu

[
‖u‖22

]
= 1.

We can argue using standard techniques to transfer the expectation statements to probability
bounds (the proof comes at the end of the proof of the main theorem).

1. Pru
[
‖u‖22 ≤ 1

2

]
≤ 5

6

2. Pru
[
‖Pu‖22 ≥ 0.01

]
≤ 1/10.

Hence, with probability at least 1/15 the algorithm samples u with ‖u‖22 ≥ 1/2 and ‖Pu‖22 ≤ 0.01.
In this case, ‖Pu‖22 ≤ 0.02‖u‖22. We assumed v0 ⊥ v1, . . . vk, which means we can write

‖u‖22 = 〈u, v0〉2‖v0‖22 + ‖Pu‖22 = 〈u, v0〉2 + ‖Pu‖22.

Since ‖Pu‖22 makes up only a 0.02 fraction of this mass, 〈u, v0〉 must make up the rest, and we get
〈u, v0〉 ≥ 0.98‖u‖22. Scaling u to be unit, we recover a unit vector u/‖u‖ with very high correlation
with v0.

By the first part of the main lemma, to test whether it has succeeded, the algorithm simply
checks the `4-versus-`2 sparsity of the vector u. To succeed with probability 1 − 1/poly(n) it will
need to sample about log n times.
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Proof of (1). We start with a standard second-moment concentration inequality, which we prove
here for completeness. Let X be a nonnegative random variable and let θ > 0. Then

E [X] ≤ θ + Pr [X ≥ θ]E [X | X ≥ θ]

E
[
X2
]
≥ Pr [X ≥ θ]E

[
X2
∣∣ X ≥ θ] Jensen

≥ Pr [X ≥ θ]E
[
X2
∣∣ X ≥ θ]2 .

Combining the equations by eliminating E
[
X
∣∣X ≥ 0

]
and rearranging gives

Pr [X ≥ θ] ≥ E [X − θ]2

E [X2]
.

We apply this to the random variable ‖u‖22 for some θ to be chosen later to get

Pr
[
‖u‖22 ≥ θ

]
≥

E
[
‖u‖22 − θ

]2
E
[
‖u‖42

] . =
(1− θ)
E
[
‖u‖42

] .
We need to upper-bound E

[
‖u‖42

]
. We expand

E
[
‖u‖42

]
=
∑
i,j

E
[
u(i)2u(j)2

] Cauchy-Schwarz
≤

∑
i,j

√
E [u(i)4]

√
E [u(j)4] =

(∑
i

√
E [u(i)4]

)2

.

For fixed i, let µi, σi be such that u(i) ∼ N(µi, σi). It is a Wikipedia-able fact that

E
[
u(i)2

]
= µ2

i + σ2
i

E
[
u(i)4

]
= µ4

i + 6µ2
iσ

2
i + 3σ4

i .

Hence,

E
[
u(i)4

]
= E

[
u(i)2

]2
+ 4µ2

iσ
2
i + 2σ4 ≤ 3E

[
u(i)2

]2
which yields (∑

i

√
E [u(i)4]

)2

≤ 3

(∑
i

E
[
u(i)2

])2

= 3.

So if we pick θ = 1
2 we get Pr

[
‖u‖22 ≥ 1

2

]
≥ 1

6 .

Proof of (2). This is straight Markov’s inequality.

Dictionary Learning

7 Introduction

The dictionary learning / sparse coding problem is defined as follows: there is an unknown n×m
matrix A = (a1| · · · |am) (think of m = 10n). We are given access to many examples of the form

y = Ax+ e (13)
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for some distribution {x} over sparse vectors and distribution {e} over noise vectors with low
magnitude.

Our goal is to learn the matrix A, which is called a dictionary.
The intuition behind this problem is that natural data elements are sparse when represented in

the “right” basis, in which every coordinate corresponds to some meaningful features. For example
while natural images are always dense in the pixel basis, they are sparse in other bases such as
wavelet bases, where coordinates corresponds to edges etc.. and for this reason these bases are
actually much better to work with for image recognition and manipulation. (And the coordinates
of such bases are sometimes in a non-linear way to get even more meaningful features that eventually
correspond to things such as being a picture of a cat or a picture of my grandmother etc. or at
least that’s the theory behind deep neural networks.) While we can simply guess some basis such
as the Fourier or Wavelet to work with, it is best to learn the right basis directly from the data.
Moreover, it seems that in many cases it is actually better to learn an overcomplete basis: a set of
m > n vectors a1, . . . , am ∈ Rn so that every example from our data is a sparse linear combination
the ak’s. (Sometimes just considering the case that the am’s are a union of two bases, such as
the standard and Fourier one, already gives rise to many of the representational advantages and
computational challenges.)

Olshausen and Field were the first to define this problem - they used a heuristic to learn such
a basis for some natural images, and argued that representing images via such an dictionary is
somewhat similar to what is done in the human visual cortex. Since then this problem has been
used in a great many applications in computational neuroscience, machine learning, computer vision
and image processing. Most of the time people use heuristics without rigorous analysis of running
time or correctness. There has been some rigorous work using a method known as ”Independent
Component Analysis”, but that method makes quite strong assumptions on the distribution {x}
(namely independence). Lately, starting with the Spielman-Wang-Wright paper mentioned earlier,
there was a different type of rigorously analyzed algorithms, but they all required the vector x to
be very sparse— less than

√
n nonzero coordinates. The SOS method allows recovery in the much

denser case where x has up to εn nonzero coordinates for some ε > 0.
Once again this problem has a similar flavor to the ”sparse recovery” problem. In the sparse

recovery problem, we know the dictionary A (which is also often assumed to have some nice prop-
erties such as being random or satisfying ”restricted isometry property”) and from a single value
y = Ax we need to recover x. In the dictionary learning problem we get many examples but,
crucially, we know neither A nor x, which makes it a more challenging problem.

7.1 Model

First, we will ignore the vector e in (13). Morally, the SOS algorithm is naturally robust to noise,
and thus these small perturbations change little in the analysis, so we will omit them for simplicity.
The simplified problem is already quite interesting.

To allow recovery of A, even in the statistical sense, we need to make some assumptions on
the distribution {x}. These assumptions should capture ”sparsity”. Most rigorous work assumed
a hard sparsity constraint, but we will assume a much softer one (as mentioned above). We also
make some additional assumptions that are still strictly weaker than those used by most other
works (and incomparable to the others). Nevertheless, trying to find the minimal assumptions
needed is a great open problem.

Second, we need to make some assumptions on the distribution {x} to allow recovery. It will
be convenient for us to assume that d is a power of 2. We also will make the following assumption:
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Figure 1: Using dictionary learning to remove overlaid text from images. The authors learned a

dictionary A from many natural images, and then removed the text from an image y by (roughly) first representing

y as
∑

xka
k and then zeroing out all the xi’s that are below some threshold. Photos taken from: J. Mairal, F. Bach,

J. Ponce, and G. Sapiro. Online Dictionary Learning for Sparse Coding. In ICML 2009 (See also Mairal, Julien,

Michael Elad, and Guillermo Sapiro. ”Sparse representation for color image restoration.” , IEEE Transactions on

Image Processing 17.1 (2008): 53-69 for a clearer description of the method as well as some nice images of how the

dictionary looks like that should be added to the scribe notes... )

for some large constant d, we normalize so that E
[
xdi
]

= 1 for every i, and then require that for
some parameter τ = o(1)

E
[
x
d/2
i x

d/2
j

]
≤ τ (14)

for every i 6= j. We will also make the additional condition that xi is somewhat symmetric around
zero, in the sense that for every non-square monomial xα of degree at most d (i.e.,

∑
αi ≤ d and

there is some i for which αi is odd )
E
[
xα
]

= 0 . (15)

Condition (14) is essentially minimal, and roughly corresponds to x having at most τn nonzero
(or significant) coordinates.

Example 13. For example, note that if the distribution {x} is obtain by setting τn random
coordinates to equal ±τ−(1/d) and the rest zero, then indeed E

[
xdi
]

= 1 for all i, and if i 6= j

E
[
x
d/2
i x

d/2
j

]
=
(
ττ−(1/2)

)2
= τ.

By appealing to the Arithmetic-Mean-Geometric-Mean inequality, one can show that if assume
condition (14) holds with the RHS equalling τ4d (which tends to zero if τ does) then we get the
stronger condition

E
[
xα
]
≤ τ (16)

for every degree d monomial xα that is not of the form xdi . Thus, we call a distribution {x} satisfying
(16) and (15) (d, τ)-nice.

Condition (15) is morally stronger, and it is not clear that it is essential, but it is still fairly
natural. In particular for this problem it is without loss of generality to assume that E

[
xki
]

= 0 for
every odd k, and so this can be considered a mild generalization of this condition.
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We will also assume that every column of A has unit norm, and the spectral norm σ of AA> is
at most O(1). These are fairly reasonable assumptions as well.

Example 14. For example, consider the case when A is the union of 10 orthonormal bases, so that
m = 10n. Then for any unit vector v ∈ Rn, we have that vTAAT v = ‖AT v‖2 = 10.

Another minor assumption we make is that E
[
x2d
i

]
≤ nO(1)— this is an extremely mild condition

and in some sense necessary for recovery, and so we will not speak much of it except in the one
place we use it.

Theorem 15 (Main Result (quasipoly version)). There are some constants d ∈ N, τ > 0 and an
quasipoly time algorithm R that given poly(n) samples from the distribution y = Ax outputs unit
vectors {ã1, . . . , ãm} that are 0.99 close to {a1, . . . , am} in the sense that for every i there is a j
such that 〈ak, ãj〉2 ≥ 0.99 and vice versa.

We should note that the paper has a version that runs in polynomial time while requiring
sparsity τ = n−δ for arbitrarily small δ > 0.

(See the paper for a version that runs in polynomial time while requiring sparsity τ = n−δ for
arbitrarily small δ > 0.)
Notes on constants:

• In the more general statement the constants d, τ depend on the accuracy (e.g., 0.99) and on
the top eigenvalue of AA>.

• We will think of d as chosen first and then τ > 0 being an extremely small constant depending
on d. So for the rest of the analysis we will think of d as some large constant and τ = o(1).

8 Outline of algorithm

The algorithm is very simple: given examples y1, . . . , yS do the following:

1. Construct the polynomial P̃ (u) = 1
S

∑S
i=1〈yi, u〉d

2. Run the SOS algorithm to obtain a degree k pseudo-distribution {u} satisfying the constraints
{‖u‖2 = 1} that maximizes Ẽu

[
P̃ (u)

]
. The parameter k = O(log n) would be specified later.

3. Pick t = O(log n) random (e.g. Gaussian) vectors w1, . . . , wt.

4. Compute the matrix M such that Mi,j = Ẽ
[∏t

`=1〈w`, u〉2uiuj
]
.

5. Output a random Gaussian vector v such that E
[
vivj

]
= Mi,j .

We will prove the following:

Lemma 16 (Main Lemma). Suppose the algorithm outputs v. With probability n−O(1), there exists
some i such that 〈v, ai〉2 ≥ 0.99‖v‖2.

The main lemma says that we can get one vector with inverse polynomial probability. We will
also show that we can verify when we are successful and so amplify this probability to as close to
1 as we wish. It is unclear how to use a black box reduction to get from this statement recovery of
all vectors, but it is possible to do so by a simple extension of the main ideas of this lemma, see the
paper for details. Intuitively, all we do at the next step is add a constraint to the SOS algorithm
which enforces that the next output we get is far away from the one we’ve found.
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8.1 Proof Outline—Main Ideas

We first give some intuition as to what this algorithm is doing and give an overview of the proof.
The first lemma we will need is that P̃ behaves in an interesting way:

Lemma 17. Let P (u) = ‖ATu‖dd. For S ≥??? then with probability ≥???

P (u)− τ‖u‖dd � P̃ (u) � P (u) + τ‖u‖dd.

Recall that f � g simply means that g − f is a sum of squares.

We make a few straightforward but important observations.
First, notice by repeated usage of the AMGM inequality, if {u} satisfies Ẽu

[
‖u‖22

]
= 1 then it

also satisfies Ẽu
[
‖u‖dd

]
≤ 1, thus Lemma 17 implies that∣∣∣Ẽu[P (u)

]
− Ẽu

[
P̃ (u)

]∣∣∣ ≤ τ, (17)

so the inequality holds in pseudo-expectation as well.
Second, we see that if u is unit with P (u) ≥ 1 then it must hold that ‖v‖dd ≥ 1 − τ , but for

fixed ε, and for τ sufficiently small and d sufficiently large, this implies that there is some i such
that v2

k = 〈ak, u〉2 ≥ 1− ε. Indeed, otherwise

1− τ ≤ ‖v‖dd =
∑

vdk ≤ max
k

vd−2
k

∑
v2
k ≤ (1− ε)d ·O(1)

and the RHS would be smaller than 1/2 if d is a large enough constant. Importantly, this implies
that we have the following:

Corollary 18. There is an oracle so that given a vector u, returns Accept if there exists ak so
that 〈ak, u〉 ≥ 1−O(τ), and Reject otherwise.

Proof. Plug the goddamn thing into P̃ (u).

Finally, if {u} is an actual distribution over unit u’s with P (u) ≥ 1 then every vector in the
support would have 〈ak, u〉2 ≥ 1− τ for some k. We wish to show that this holds even if it is only
a pseudo-distribution. This is captured in the following lemma:

Lemma 19. Let {u} be the pseudo-distribution returned by step 2 of our algorithm. If t > c logm
is an even integer and c sufficiently large then there exists some k0 such that

Ẽu
[
〈u, ak0〉t

]
≥ (1− τ)O(t) . (18)

At this point, if {u} were a real distribution, then we could just sample from it and we’d be
happy, since this lemma would also imply that with some nontrivial probability, 〈u, ak0〉2 ≥ 1−O(ε).
However, it’s a pseudo-distribution (boo). The normal thing to do here is just to match the first
two moments with a Gaussian, then sample form that. However, if we dropped Step 3-4 and simply
tried to define Mi,j = Ẽ

[
uiuj

]
then sample form a distribution matching these two moments, this

will not work:

Example 20. Let us assume that the psuedo-distribution {u} was simply the uniform distribution
over {±a1, . . . ,±am}. This does satisfy all of our conditions. The first moments of this distribution
are all zero, and the second moments are E

[
uiuj

]
= 0 if i 6= j and E

[
u2
i

]
= 2

∑
k a

2
ki, so what we

get is a random linear combination of the ak. This will not give us any information about the ak’s
(in fact can be shown that without loss of generality this would be simply a random vector in Rn,
if for instance ai = ei where ei is the ith standard basis vector).
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However, the reweighing we do in step 3-4 has the effect that if we are lucky, it will isolate
one of the ak’s. To see why in the case of Example 20 note that the matrix M we compute in the
particular case above is simply:

M = 2
∑

fW (ak) · (ak)⊗2

where for W = (w1, . . . , wt), fW (ak) =
∏t
`=1〈w`, ak〉2 and for every vector z, z⊗2 is the matrix Z

such that Zi,j = zizj .
Intuitively, the idea is that with some inverse polynomial probability, the correlation of each

random Gaussian we pick with a1 will be twice as much as the correlation it has with every other
ak, and hence since we take O(log n) of these, the weighting will be heavily skewed to (a1)⊗2.

In this lucky case we will have that for every i, j Mi,j = fW (a1)a1(i)a1(j) ± o(fW (a1)/n).
Therefore, if we sample a random v such that E

[
vivj

]
= Mi,j then (using ‖a1‖ = 1), we have

E
[
‖v‖2

]
=
∑
i

Mi,i = fW (a1)± o(nfW (a1)/n)

and

E
[
〈v, a1〉2

]
=
∑

a1(i)a1(j)Mi,j

= fW (a1)

∑
i,j

(a1(i)a1(j))2 ± o(1/n)
∑
i,j

a1(i)a1(j)


= fW (a1)(1 + o(1/n)

(∑
a1(i))2

)
= fW (a1)(1± o(1))

Thus, if we scale v to a unit vector ṽ, we will get that 〈ṽ, a1〉2 ≥ 1− o(1).
In general, this behavior is captured in the following lemma:

Lemma 21. For any degree k pseudo-distribution {u} satisfying {‖u‖22 = 1} so that there exists
some c so that Ẽu

[
〈u, c〉t

]
≥ e−εk, the sampling procedure described in steps 3-5 outputs a c′ with

〈c, c′〉 ≥ 1−O(ε) with probability 2−k/poly(ε).

By what we’ve done above, these three lemmas together prove Lemma 16. Since by Corollary
18 we have an oracle to check the correctness of a candidate solution, by repeatedly doing this a
polynomial number of times, we conclude that with high probability, we will succeed in finding the
desired solution. Now all we have to do is prove a bunch of lemmas, which we do in the remaining
sections.

9 Proof of Lemma 17

We restate Lemma 17 here for convenience.

Lemma 22. Let P (u) = ‖ATu‖dd. For S = poly(τ, d) then with arbitrarily high probability

P (u)− τ‖u‖dd � P̃ (u) � P (u) + 2τ‖u‖dd.

Proof. We first show that we can replace P̃ with its expectation. Recall that P̃ (u) = 1
S

∑S
i=1〈y, u〉d.

Let Q(u) = Ey
[
〈y, u〉

]d
. Associate to any degree d polynomial f(x) =

∑
|α|≤d cαx

α a matrix M(f)
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whose rows and columns are indexed by monomials of degree at most d/2 (recall d is even), so that
for every monomial β1, β2 with |β1|, |β2| ≤ d/2,

Mβ1,β2 =
1

Tβ1+β2

cβ1+β2

where Tα = #{α1, α2 : α1 +α2 = α}. Then it is straightforward to prove that f is a sum of squares
if and only if this matrix M is PSD.

We know that M(P̃ )→M(Q) in the Frobenius norm as we take more and more samples, since
all the monomials will converge, and moreover, we know that if we take poly(d, τ) samples, we will
have that with high probability, ‖M(P̃ )−M(Q)‖F ≤ τ/2 and hence in the spectral norm as well,
which implies that the matrices τI ± (M(P̃ ) −M(Q)) are PSD, which by the above is equivalent
to the statement that ±(P̃ −Q) � τ‖u‖dd.

We now show that P (u) � Q(u) � P (u) + τ‖u‖2d. This combined with what we just proved
suffices to complete the proof of Lemma 17. Let us open up this expression for Q. Letting v = A>u
and recalling that y = Ax, we have

Q(u) = Ey
[
〈y, u〉d

]
= Ey

[
〈x,AT , u〉d

]
=
∑
|α|≤d

Ex
[
xαvα

]
noting that the non-square moments here vanish, and that the moments that have more than one
variables are at most τ (both by the niceness assumption we place on {x}), we can see that

‖v‖dd � Q(u) � ‖v‖dd + τ
∑
|β|≤d/2

v2β � ‖v‖dd + τd!(
∑
k

v2
k)
d/2 (19)

where the last inequality follows by repeated application of the AMGM inequality. Note that∑
k v

2
k = ‖A>u‖22 � O(‖u‖22) under our assumption that σ = O(1), where σ is the largest singular

value of A, so if we choose τ ≤ O( 1
d!) ·O(1)d we obtained the desired result.

10 Proof of Lemma 19

We restate Lemma 19 here for convenience.

Lemma 23. Let {u} be the pseudo-distribution returned by step 2 of our algorithm. If t > c logm
is divisible by d− 2 and c sufficiently large then there exists some k0 such that

Ẽu
[
〈u, ak0〉t

]
≥ e−εt/d . (20)

where ε = O(τ + log σ + d log m
k ).

We note that if we assume Marley’s conjecture, we can prove something much stronger, which
is intuitively what we are trying to replicate with this lemma:

Proposition 24. If the {u} returned by our algorithm is a real distribution, then there exists a k0

so that
Ẽ
[
〈u, a〉t

]
≥ (1− τ)Ω(t) ≥ e−τ ·Ω(t).
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Proof. Since every vector in the support of {u} is close to some k, there exist k0 such that with
probability at least 1/m, 〈u, a〉2 ≥ 1− o(1). That means that

Ẽ
[
〈u, a〉t

]
≥ 1

m(1− τ)t ≥ (1− τ)t−logm ≥ 1− τ)Ω(t).

Proof of Lemma 19. First notice by Lemma 17 we know that there is some {u} satisfying ‖u‖22
with Ẽu

[
P̃ (u)

]
≥ 1 − τ ; take the real distribution which is identically a1, for instance. Thus, for

the pseudo-expectation that we get, this is satisfied as well, and we get that Ẽu
[
‖ATu‖dd

]
≥ 1− 2τ .

This implies by a straightforward averaging argument as above that there exists some k0 so
that

Ẽu
[
〈ak0 , u〉d

]
≥ 1

m
(1− 2τ).

To demonstrate this for larger t, we appeal to the following form of Hölder’s inequality:

(‖v‖dd)t/d−2 � (‖v‖22)t/(d−2) · ‖v‖tt

which holds whenever t is an integer multiple of d − 2. If we substitute in v = ATu, and since
moreover ‖ATu‖22 � σ‖u‖22 where σ = O(1) and we assume that our pseudo-expectation satisfies
{‖u‖22 = 1} we obtain by an additional application of Hölder’s inequality

σt/(d−2) Ẽu
[
‖ATu‖tt

]
≥ Ẽ

[
‖v‖dd

]t/(d−2) ≥ (1− 2τ)t/(d−2) ≥ e−2τt/(d−2),

so Ẽu
[
‖ATu‖tt

]
= e−Ω(t). We are playing fast and loose with constants a little bit, and the big-Oh

here hides some dependencies, but it is all morally correct. Then by the same averaging trick as
before, we get the desired result.

11 Proof of Lemma 21

We again restate the lemma we want to prove here for convenience.

Lemma 25. For any degree k pseudo-distribution {u} satisfying {‖u‖22 = 1} so that there exists
some c so that Ẽu

[
〈u, c〉t

]
≥ e−εk, the sampling procedure described in steps 3-5 outputs a c′ with

〈c, c′〉 ≥ 1−O(ε) with probability 2−k/poly(ε).

11.1 Motivation

Here is a crude argument as to why this should happen with good probability in the case described
in Example 20, which is roughly what we should expect is the hard case. In this case, for every
particular random random vector w, with probability 0.99 that maxi≥1〈w, ak〉2 ≤ logm but with
probability exp(−c log n) = n−O(1) we would have that 〈w, ak〉2 ≥ 2 logm, and these events are
essentially independent if the ak’s are sufficiently close to orthogonal. (In general we can’t assume
that, but it turns out that this doesn’t matter for our final argument.) Hence with n−O(t) =
n−O(logn) probability we would have that for every ` and k > 1, 〈w`, a1〉2 ≥ 2〈w`, ak〉2 meaning
that for every k > 1, fW (a1) ≥ 2tfW (ak) = n2fW (ak) if we set t = 2 log n.
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11.2 Less Heuristic Analysis

First, we need to prove the following technical lemma which says that the sampling procedure is
well-defined, since the covariance matrices for Gaussians only make sense if they’re PSD. Recall
that given {u}, the matrix that we wish to use to produce our Gaussian is defined as Mij =
Ẽ
[∏t

`=1〈w`, u〉2uiuj
]
. For any choice of W = (w1, . . . , wt) let us define fW (u) =

∏t
`=1〈w`, u〉2.

Lemma 26. The matrix M is positive semi-definite.

Proof. For any x ∈ Rn, we have

xTMx =
∑
i,j

Mijxixj

=
∑
ij

Ẽ
[
fW (u)xiuiujxj

]
= Ẽ

[
fW (u)

∑
ij

xiuiujxj
]

= Ẽ
[
fW (u)〈x, u〉2

]
≥ 0

as fW is a square polynomial and so is 〈x, u〉2.

We want to prove that with decent (i.e., n−O(1)) probability over the choice of the vectors
W = (w1, . . . , wt), if we select v that matching the first two moments of

Ẽ
[
fW (u)u⊗2

]
(21)

then it will satisfy
〈v, a〉2 ≥ (1−O(ε))‖v‖2 . (22)

We will prove that (with some decent probability over the choice of W ) condition (22) holds in
expectation. Since

E
[
〈v, a〉2

]
=
∑
ij

E
[
aiajvivj

]
=
∑
ij

aiaj Ẽ
[
fW (u)uiuj

]
= Ẽ

[
fW (u)〈u, a〉2

]
and

E
[
‖v‖2

]
=
∑
ij

Evivj
[
=
]
Ẽ
[
fW (u)

∑
i,j

uiuj
]

= Ẽ
[
fW (u)‖u‖2

]
as we choose {v} to match the second moments of {u}, this is equivalent to showing that

Ẽ
[
fW (u)〈u, a〉2

]
≥ 0.99 Ẽ

[
fW (u)‖u‖2

]
= 0.99 Ẽ

[
fW (u)

]
, (23)

where the final equality holds because {u} satisfies {‖u‖2 = 1}. One needs to add an additional
argument to show that this actually happens with decent probability, but it is not a very deep one,
and so we skip it here— as always, see the paper for details.

If we select a random standard Gaussian vector w then by the rotation invariance of the Gaussian
distribution, 〈w, c〉 is a standard Gaussian (i.e., distributed per N(0, 1)), and so E

[
〈w, c〉2

]
= 1 and

the probability that 〈w, c〉2 ≥ 11 equals some Wikipedia-computable constant p > 0.
Let A be this event and let C ≥ 10 be the the expectation of 〈w, c〉2 − 1 conditioned on A.
Note that by the rotation invariance of the Gaussian distribution, 〈w, b〉 is distributed like

N(0, ‖b‖) for every b ⊥ a even after conditioning on A.
For every vector unit u, we can write u = 〈u, c〉c + b where b ⊥ a has norm

√
1− 〈u, c〉2, and

so conditioning on A

Ew|A
[
〈u,w〉2

]
= 〈u, c〉2 Ew|A

[
〈c, w〉2 + 1− 〈u, c〉2

]
= C〈c, u〉2 + 1
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Since w1, . . . , wt are chosen independently, if we condition on A happening for every ` (which
would occur with probability pt = exp(−O(log n))) then, letting Q(u) = (C〈u, c〉2 + 1)t,

EW |A
[
Ẽu
[
fW (u)

]]
= Ẽu

[
Q(u)

]
by linearity, and

EW |A
[
Ẽu
[
fW (u)〈u, c〉2

]]
= Ẽu

[
Q(u)〈u, c〉2

]
So, we just need to prove that if {u} satisfies our conditions, then

Eu
[
Q(u)〈u, c〉2

]
≥ 0.99Eu

[
Q(u)

]
(24)

We will show that (24) follows from the assumption that Ẽu
[
〈u, c〉t

]
≥ e−εk. Indeed, write

Q(u) = Q′(u) + Q′′(u) by expanding the expression Q(u) = (C〈u, c〉2 + 1)t, and letting Q′(u)
contains all the terms where we take C〈u, c〉2 to a power larger than t/2 and letting Q′′(u) contain
the rest of the terms.

First, E
[
Q′′(u)

]
is negligible compared to E

[
Q(u)

]
, since the terms in Q′′(u) are each of the

form Cs〈u, c〉2s for some s ≤ d/2 and thus since Cs〈u, c〉2s � Cs‖u‖2s‖c‖2s � Cs‖u‖2s and {u}
satisfies {‖u‖2 = 1}, we have that in pseudo-expectation, each of the at most

(
t
t/2

)
terms in Q′′(u)

is bounded by (C + 1)t/2, while Q(u) contains the the much larger term Ct E
[
〈u, c〉2t

]
≥ 0.9992tCt.

Thus we can assume Q(u) = Q′(u), but then

Ẽ
[
Q′(u)〈u, a〉2

]
≥ (1−O(ε)) Ẽ

[
Q′(u)

]
since we can show this ratio holds for every term of Q′(u) since for every k ≥ t

Ẽ
[
〈u, a〉k+2

]
≥ Ẽ

[
〈u, a〉k

](k+2)/k
= Ẽ

[
〈u, a〉k

]
Ẽ
[
〈u, a〉k

]2/k ≥ (1−O(ε)) Ẽ
[
〈u, a〉k

]
where the first inequality uses Hölder’s inequality for psuedo-expectations and the last uses our
assumption (20).

This concludes the proof of the Main Lemma for actual distributions.
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