
Sum of Squares Upper Bounds, Lower Bounds, and Open Questions

Boaz Barak

December 10, 2014

2

Preface

These are lecture notes for a seminar series I gave at MIT in the fall of 2014. The notes are very
rough, undoubtedly containing plenty of bugs and tpyos, but I hope people would find them useful
nonetheless. (One particular area in which the notes are rough is that in most cases I mention
papers and work in the text without providing a formal references.) The notes were made before
the lectures, and in some cases I deviated quite a bit in class from the prepared presentation.
Thanks to all the students that participated in this series, and in particular to Adrian Vladu and
Henry Yuen who scribed the notes of the second lecture, as well as to Akash Kumar, Samuel
Hopkins, Jerry Li and Tal Wagner, who scribed notes from my summer 2014 course on this topic in
the Swedish Summer School on Computer Science, which I used as a basis for these notes. Thanks
to Jon Kelner and Ankur Moitra for giving guest lectures in this course.

3

4

Contents

1 Introduction 9

1.1 Introduction . 10

1.2 Polynomial optimization . 12

1.3 The SOS algorithm . 13

1.4 Several views of the SOS algorithm . 16

1.4.1 SOS Algorithm: convex optimization view . 16

1.4.2 Intuition— the Boolean cube . 17

1.5 Sum of Square Proofs . 18

1.6 Discussion . 19

2 Max-Cut, Sparsest Cut, Small Set Expansion and some relations of Isoperimetry
and Hypercontractivity 21

2.1 The Goemans Williamson Algorithm . 26

2.2 Can we do better with degree 2 SOS? . 28

2.3 Can we do better with higher degree? . 30

2.4 SOS’ing proofs of isoperimetric inequalities . 31

3 SOS Lower bounds: 3XOR/3SAT and planted clique 37

3.1 Lower bounds for random 3SAT/3XOR . 37

3.1.1 Proving Theorem 3.1 . 39

3.1.2 Proof of Lemma 3.4 . 40

3.1.3 Proof of Lemma 3.5 . 41

3.1.4 Proof of Lemmas 3.3 and 3.2 . 43

3.2 SOS Lower bounds for planted clique . 44

3.2.1 Proof of Theorem 3.9 . 44

3.2.2 Proof of Lemma 3.10 . 45

3.2.3 Proof of Lemma 3.11 . 46

3.3 Knapsack lower bound . 48

4 SOS Upper Bounds: Planted sparse vector and dictionary learning 49

4.1 Introduction . 49

4.1.1 Formal description of problem . 50

4.1.2 Ratios of Norms . 50

4.2 Using SoS to Do Better . 52

4.2.1 Description of the Algorithm . 52

4.2.2 Proof of Main Lemma . 53

4.3 Pseudo-distribution version and proofs . 54

5

6 CONTENTS

4.4 Proof of Lemma 4.5 . 55

4.4.1 Intuition and Heuristic Argument . 56

4.5 Full proof of Lemma 4.5 . 56

4.5.1 Lemma 4.5 Holds in Expectation . 57

4.5.2 First Proof of Lemma 4.5, k = O(n1/4) . 58

4.5.3 Second Proof of Lemma 4.5, k = O(n1/2) . 59

4.6 Analyzing success probability, proof of the qaudratic sampling lemma 64

4.7 Introduction . 66

4.7.1 Model . 66

4.8 Outline of algorithm . 68

4.8.1 Proof Outline—Main Ideas . 69

4.9 Proof of Lemma 4.17 . 71

4.10 Proof of Lemma 4.19 . 71

4.11 Proof of Lemma 4.21 . 72

4.11.1 Motivation . 72

4.11.2 Less Heuristic Analysis . 73

5 Sparsest Cut and the ARV algorithm 75

5.1 Problem Definition . 75

5.2 Main Theorem . 76

5.3 The ARV Algorithm . 76

5.3.1 The SoS Program . 76

5.3.2 The Algorithm . 77

5.4 Analysis . 77

5.4.1 Preliminaries . 78

5.4.2 Why is ∆� 1/
√

log n Necessary? . 78

5.4.3 Why is ∆� 1/
√

log n Sufficient? Proof of Lemma 5.5 79

5.4.4 From Vertex Separation to Sparse Cut: Proof of Lemma 5.6 80

5.4.5 From Actual Distribution to Pseudo-Distribution 81

5.5 Temp Graveyard . 81

5.5.1 Squared Triangle Inequality for {±1} . 81

6 The SOS approach to refuting the Unique Games Conjecture 83

6.1 The Small Set Expansion Hypothesis . 84

6.2 2 to q norm and small set expansion . 85

6.2.1 The relation between the 2 to 4 norm and small set expansion 85

6.3 Using SOS for the 2 to 4 problem . 87

6.4 Formal statement and proof of Theorem 6.1 . 89

7 Linear programming extension complexity 95

8 Semidefinite programming extension complexity 97

8.1 Boosting, dense model, hardcore lemma, multiplicative weights, computational en-
tropy, and their quantum/matrix/semidefinite cousins 100

8.2 Random restrictions . 101

8.3 Proof sketch . 102

8.3.1 Quantum learning argument . 103

CONTENTS 7

9 Open problems 105

8 CONTENTS

Chapter 1

Introduction

Reading Sections 1 and 2 of my survey with Steurer ”Sum of Squares proofs and the quest toward
optimal algorithms”

Additional reading Introduction of Ryan O’Donnell and Yuan Zhou’s paper ”Approximability
and Proof Complexity”

Lecture notes of Monique Laurent (https://sites.google.com/site/mastermathsdp/lectures)
and Pablo Parrilo (http://stellar.mit.edu/S/course/6/sp14/6.256/materials.html)

Disclaimer I haven’t tried to solve most of the exercises myself, and it could be that you’ll run
into various inaccuracies or issues while trying to solve them, let me know if you do. Also, all
historical discussions and references are from memory or second-hand sources, and not based
on the original texts, and so may be inaccurate.

Prelude

Consider the following questions:

1. Do we need a different algorithm to solve every computational problem, or can a single
algorithm give the best performance for a large class of problems?

2. In statistical physics and other areas, many people believe in the existence of a computational
threshold effect, where a small change in the parameters of a computational problems seems
to lead to a huge change in its computational complexity. Can we give rigorous evidence for
this intuition?

3. In machine learning there often seem to be tradeoffs between sample complexity, error prob-
ability, and computation time. Is there a way to map the curve of this tradeoff?

4. Suppose you are given a 3SAT formula ϕ with a unique (but unknown) satisfying assignment
x. Is there a way to make sense of statements such as ”The probability that x17 = 1 is 0.6” or
”The entropy of x is 1000”? (even though of course information theoretically x is completely
determined by ϕ, and hence that probability is either 0 or 1 and x has zero entropy).

5. Is Khot’s Unique Games Conjecture true?

9

https://sites.google.com/site/mastermathsdp/lectures
http://stellar.mit.edu/S/course/6/sp14/6.256/materials.html

10 CHAPTER 1. INTRODUCTION

If you learn the answers to these questions by the end of this seminar series, then I hope you’ll
explain them to me, since I definitely don’t know them. However we will see that, despite these
questions a-priori having nothing to do with Sums of Squares, that the SOS algorithm can yield a
powerful lens to shed light on some of those questions, and perhaps be a step towards providing
some of their answers.

1.1 Introduction

Theoretical computer science studies many computational models for different goals. There are
some models, such as bounded-depth (i.e. AC0) circuits, that we can prove unconditional lower
bounds on, but do not aim to capture all relevant algorithmic techniques for a given problem. (For
example, we don’t view the results of Furst-Sax-Sipser and H̊astad as evidence that computing the
parity of n bits is a hard problem.) Other models, such as bilinear circuits for matrix multiplication,
are believed to be strong enough to capture all known algorithmic techniques for some problems,
but then we often can’t prove lower bounds on them.

The Sum of Squares (SOS) algorithm (discovered independently by researchers from different
communities including Shor, Parrilo, Nesterov and Lasserre) can be thought of as another example
of a concrete computational model. On one hand, it is sufficiently weak for us to know at least
some unconditional lower bounds for it. In fact, there is a sense that it is weaker than AC0, since
for a given problem and input length, SOS is a single algorithm (as opposed to an exponential-sized
family of circuits). Despite this fact, proving lower bounds for SOS is by no means trivial, even for
a single distribution or instances (such as a random graph) or even a single instance. On the other
hand, while this deserves more investigation, it does seem that for many interesting problems, SOS
does encapsulate all the algorithmic techniques we are aware of, and that there is some hope that
SOS is an optimal algorithm for some interesting family of problems, in the sense that no other
algorithm with similar efficiency can beat SOS’s performance on these problems.

The possibility of the existence of such an optimal algorithm is very exciting. Even if at the
moment we can’t hope to prove its optimality unconditionally, this means that we can (modulo
some conjectures) reduce analyzing the difficulty of a problem to analyzing a single algorithm, and
this has several important implications. For starters, it reduces the need for creativity in designing
the algorithm, making it required only for the algorithm’s analysis. In some sense, much of the
progress in science can be described as attempting to automate and make routine and even boring
what was once challenging. Just as we today view as commonplace calculations that past geniuses
such as Euler and Gauss spent much of their time on, it is possible that in the future much of
algorithm design, which now requires an amazing amount of creativity, would be systematized and
made routine. Another application of optimality is automating hardness results— if we prove the
optimal algorithm can’t solve a problem X then that means that X can’t be solved by any efficient
algorithm.

But beyond just systematizing what we already can do, optimal algorithms could yield qual-
itative new insights on algorithms and complexity. For example, in many problems arising in
statistical physics and machine learning, researchers believe that there exist computational phase
transitions— where a small change in the parameter of a problems causes a huge jump in its compu-
tational complexity. Understanding this phase transitions is of great interest for both researchers
in these areas and theoretical computer scientists. The problem is that these problems involve
random inputs (i.e., average case complexity) and so, based on current state of art, we have no way
of proving the existence of such phase transitions based on assumptions such as P 6= NP. In some
cases, such as the planted clique problem, the problem has been so well studied that the existence of

1.1. INTRODUCTION 11

a computational phase transition had been proposed as a conjecture in its own right, but we don’t
know of good ways to reduce such reductions to one another, and we clearly don’t want to have as
many conjectures as there are problems. If we assume that an algorithm is optimal for a class of
problems, then we can prove a computational phase transition by analyzing the running time of this
algorithm as a function of the parameters. While by no means trivial, this is a tractable approach
to understanding this question and getting very precise estimates as to the location of the threshold
where the phase transition occurs. (Note that in some sense the existence of a computational phase
transition implies the existence of an optimal algorithm, since in particular it means that there is
a single algorithm A such that beating A’s performance by a little bit requires an algorithm taking
much more resources.)

Beyond all that, an optimal algorithm gives us a new understanding of just what is it about a
problem that makes it easy or hard, and a new way to look at efficient computation. I don’t find
explanations such as “Problem A is easy because it has an algorithm” or “Problem B is hard because
it has a reduction from SAT” very satisfying. I’d rather get an explanation such as “Problem A is
easy because it has property P” and ”Problem B is hard because it doesn’t have P” where P is some
meaningful property (e.g., being convex, supporting some polymorphisms, etc..) such that every
problem (in some domain) with P is easy and every problem without it is hard. For that, we would
want an algorithm that will solve all problems in P and a proof (or other evidence) that it is optimal.
Such understanding of computation could bear other fruits as well. For example, as we will see in
this seminar series, if the SOS algorithm is optimal in a certain domain, then we can use this to
build a theory of “computational Bayesian reasoning” that can capture the “computational beliefs”
of a bounded-time agent about a certain quantity, just as traditional Bayesian reasoning captures
the beliefs of an unbounded-time agent about quantities on which it is given partial information.

I should note that while much of this course is very specific to the SOS algorithms, not all of it
is, and it is possible that even if the SOS algorithm is superseded by another one, some of the ideas
and tools we develop will still be useful. Also, note that I have deliberately ignored the question
of what family of problems would the SOS be optimal for. This is clearly a crucial issue— every
computational model (even AC0) is optimal for some problems, and every model falling short of
general polynomial-time Turing machines would not be optimal for all problems. It definitely seems
that some algebraic problems, such as integer factoring, have very special structure that makes it
hard to conjecture that any generic algorithm (and definitely not the SOS algorithm) would be
optimal for them. (See also my blog post http://wp.me/p2bJCi-Gp on this topic.) The reason
I don’t discuss this issue is that we still don’t have a good answer for it, and one of the research
goals in this area is to understand what should be the right conjecture about optimality of SOS.
However, we do have some partial evidence and intuition, including those arising from the SOS
algorithm’s complex (and not yet fully determined) relation to Khot’s Unique Games Conjecture,
that leads us to believe that SOS could be an optimal algorithm for a non-trivial and interesting
class of problems.

In this course we will see:

1. A description of the SOS algorithm from different viewpoints— the traditional semidefinite
programming/convex optimization view, as well as the proof system view, and the ”pseudo-
distribution” view.

2. Discussion of positive results (aka ”upper bounds”) using the SOS algorithms to solve graph
problems such as sparsest cut, and problems in machine learning.

3. Discussion of known negative results (aka ”lower bounds” / ”integrality gaps”) for this algo-
rithm.

http://wp.me/p2bJCi-Gp

12 CHAPTER 1. INTRODUCTION

4. Discussion of the interesting (and not yet fully understood) relation of the SOS algorithm to
Khot’s Unique Games Conjecture (UGC). On one hand, implies that the SOS algorithm is
optimal for a large class of problems. On the other hand, the SOS algorithm is currently the
main candidate to refute the UGC.

1.2 Polynomial optimization

The SOS algorithm is an algorithm for solving a computational problem. Let us now define what
this problem is:

Definition 1.1. A polynomial equation is an equation of the form {P (x) ≥ 0} (in which case it is
called an inequality) or an equation of the form {P (x) = 0} (in which case it is called an equality)
where P is a multivariate polynomial mapping x ∈ Rn to R. The equation {P (x) ≥ 0} (resp.
{P (x) = 0}) is satisfied by x ∈ Rn if P (x) ≥ 0 (resp. P (x) = 0).

A set E of polynomial equations is satisfiable if there exists an x that satisfies all equations in
E .

The polynomial optimization problem is to output, given a set E of polynomial equations as
input, either an x satisfying all equations in E or a proof that E is unsatisfiable.

(Note: throughout this seminar we will ignore all issues of numerical accuracy— assume the
polynomials always have rational coefficients with bounded numerator and denominator, and all
equalities/inequalities can be satisfied up to some small error ε > 0.)

Here are some examples for polynomial optimization problems:

Linear programming If all the polynomials are linear then this is of course linear programming
that can be done in polynomial time.

Least squares If the equations consist of a single quadratic then this is the least squares algorithm.
Similarly, one can capture computing eigenvalues by two quadratics.

3SAT Can encode 3SAT formula as degree 3 polynomial equations: the equation x2
i = xi is

equivalent to xi ∈ {0, 1}. The equation xixj(1 − xk) = 0 is equivalent to xi ∧ xj ∧ xk =
xi ∨ xj ∨ xk.

Clique Given a graph G = (V,E) the following equations encode that x is a 0/1 indicator vector
of a k-clique: x2

i = xi,
∑
xi = k, xixj = 0 for all (i, j) 6∈ E.

Other examples Learning, etc...

The SOS algorithm is designed to solve the polynomial optimization problem. As we can see
from these examples, the full polynomial optimization problem is NP hard, and hence we can’t
expect SOS (or any other algorithm) to efficiently solve it on every instance. (Exercise 1.1: prove
that this is the case even if all polynomials are quadratic, i.e. of degree at most 2.) Understanding
how close the SOS algorithm gets in particular cases is the main technical challenge we will be
dealing with.

These examples also show that polynomial optimziation is an extremely versatile formalism,
and many other computational problems (including SAT and CLIQUE) can be directly and easily
phrased as instances of it. Henceforth we will ignore the question of how to formalize a problem
as a polynomial optimization, and either assume the problem is already given in this form, or use

1.3. THE SOS ALGORITHM 13

the simplest most straightforward translation if it isn’t. While there are examples where choosing
between different natural formulations could make a difference in complexity, this is not the case
(to my knowledge) in the questions we will look at.
Note: We can always assume without loss of generality that all our equations are equalities, since
we can always replace the equation P (x) ≥ 0 by P (x) − y2 = 0 where y is some new auxiliary
variable. Also, we sometimes will ask the question of minimizing (or maximizing) a polynomial
P (x) subject to x satisfying equations E , which can be captured by looking for the largest µ such
that E ∪ {P ≥ µ} is satisfiable.

1.3 The SOS algorithm

The Sum of Squares algorithm is an algorithm to solve the polynomial optimization problem. Given
that it is NP hard, the SOS algorithm cannot run in polynomial time on all instances. The main
focus of this course is trying to understand in which cases the SOS algorithm takes a small (say
polynomial or quasipolynomial) amount of time, in which cases it takes a large (say exponential)
amount. An equivalent form of this question (which is the one we’ll mostly use) is that, for some
small ` (e.g. a constant or logarithmic) we want to understand in which cases the ”n`-capped”
version of SOS succeeds to solve the problem and in which cases it doesn’t, where the ”T (n)-
capped” version of the SOS algorithm halts in time T (n) regardless of whether or not it solved the
problem.

In fact, we will see that for every value of d, the SOS of squares always returns some type of
a meaningful output. The main technical challenge is to understand whether that output can be
transformed to an exact or approximate solution for the polynomial optimization problem.

Definition 1.2 (Sum of Squares - informal definition). The SOS algorithm gets a parameter ` and
a set of equations E , runs in time nO(`) and outputs either:

• An object we will call a ”degree-` pseudo solution” (or more accurately a degree-` pseudo-
distribution over solutions).

or

• A proof that a solution doesn’t exist.

We will later make this more precise: what is exactly a degree-` pseudo solution, what is exactly
the form of the proof, and how does the algorithm work.

History. The SOS algorithm has its roots in questions raised in the late 19th century by Minkowski
and Hilbert of whether any non-negative polynomial can be represented as a sum of squares of other
polynomials. Hilbert realized that except for some special cases (most notably univariate polyno-
mials and quadratic polynomials), the answer is negative and that there is an example (which he
constructed by non constructive means) of non-negative polynomial that cannot be represented in
this way. It was only in the 1960’s that Motzkin gave a very concrete example of such a polynomial

1 + x4y2 + x2y43x2x2 (1.1)

In his famous 1900 address, Hilbert asked as his 17th problem whether any polynomial can be
represented as a sum of squares of rational functions. (For example, Motzkin’s polynomial (1.1)
can be shown to be the sum of squares of (I think) four rational functions of denominator and

14 CHAPTER 1. INTRODUCTION

Figure 1.1: SOS was used to analyze the “falling leaf” mode of the U.S. Navy F/A-18 ”Hornet”, see
A. Chakraborty, P. Seiler, and G. J. Balas, Journal of guidance, control, and dynamics, 34(1):7385,
2011

numerator degree at most 6). This was answer positively by Artin in 1927. His approach can be
summarized as, given a hypothetical polynomial P that cannot be represented in this form, to use
the fact that the rational functions are a field to extend the reals into a ”pseudo-real” field R̃ on
which there would actually be an element x̃ ∈ R̃ such that P (x̃) < 0, and then use a ”transfer
principle” to show that there is an actual real x ∈ R such that P (x) < 0. (This description is not
meant to be understandable but to make you curious enough to look it up..) Later in the 60’s and
70’s Krivine and Stengle extended this result to show that any unsatisfiable system of polynomial
equations can be certified to be unsatisfiable via a Sum of Squares proof, a result known as the
Positivstallensatz.

In the late 90’s / early 2000’s, there were two separate efforts on getting quantitative or algo-
rithmic versions of this result. On one hand Grigoriev and Vorobjov asked the question of how
large the degree of an SOS proof needs to be, and in particular Grigoriev proved several lower
bounds on this degree for some interesting polynomials. On the other hand Parrilo and Lasserre
(independently) came up with hierarchies of algorithms for polynomial optimization based on the
Positivstallensatz using semidefinite programming. (Something along those lines was also described
by Naum Shor in a 1987 Russian paper, and mentioned by Nesterov as well.)

It took some time for people to realize the connection between all these works, and in particular
the relation between Grigoriev-Vorbjov’s work and the works from the optimization literature took
some time to be discovered, and even 10 years after, it was still the case that some results of
Grigoriev were rediscovered and reproven in the Lasserre language.

Applications of SOS SOS has applications to: equilibrium analysis of dynamics and control
(robotics, flight controls, ...), robust and stochastic optimization, statistics and machine learning,
continuous games, software verification, filter design, quantum computation and information, auto-
mated theorem proving, packing problems, etc... (For two very different examples, see Figures 1.1,
1.2.)

1.3. THE SOS ALGORITHM 15

Figure 1.2: SOS was used to get the best known bounds on the classical ”sphere packing” problem.
See D. de Laat, F.M. de Oliveira Filho, F. Vallentin, Forum of Mathematics, Sigma, 2 (2014), e23

The TCS vs Mathematical Programming view of SOS

While the SOS algorithm is intensively studied in several communities, there are some
differences in emphasizes between the different aspects. While I am not an expert on all
SOS works, my impression that the main characteristics of the TCS viewpoint, as opposed
to others are:

1. In the TCS world, we typically think of the number of variables n as large and tending
to infinity (as it corresponds to our input size), and the degree d of the SOS algorithm
as being relatively small— a constant or logarithmic. In contrast, in the optimization
and control world, the number of variables can often be very small (e.g. around ten
or so, maybe even smaller) and hance d may be large compared to it.

Note that since both time and space complexity of the general SOS algorithm scale
roughly like nd, even d = 6 and n = 100 would take something like a petabyte of
memory (in practice, though we didn’t try to optimize too much, David Steurer and
I had a hard time executing a program with n = 16 and d = 4 on a Cornell cluster).
This may justify the optimization/control view of keeping n small, although if we
show that SOS yields a polynomial-time algorithm for a particular problem, then we
can hope that we would be able to then optimize further and obtain an algorithm
that doesn’t require a full-fledged SOS solver.

2. Typically in TCS our inputs are discrete and the polynomials are simple, with integer
coefficients etc. Often we have constraints such as x2

i = xi that restrict attention to
the Boolean cube, and so we are less concerned with issues of numerical accuracy,
boundedness, etc..

3. Traditionally people have been concerned with exact convergence of the SOS
algorithm—- when does it yield an exact solution to the optimization problem. This
often precludes d from being much smaller than n. In contrast as TCS’ers we would
often want to understand approximate convergence— when does the algorithm yield
an ”approximate” solution (in some problem-dependent sense).

Since the output of the algorithm in this case is not actually in the form of a solution
to the equations, this raises the question of a obtaining rounding algorithms, which
are procedures to translate the output of the algorithm to an approximate solution.

16 CHAPTER 1. INTRODUCTION

1.4 Several views of the SOS algorithm

We now describe the SOS algorithm more formally. For simplicity, we consider the case that the
set E only consists of equalities (which is without loss of generality as we mentioned before). When
convenient we will assume all equalities are homogenous polynomials of degree d. (This can be
always be arranged by multiplying the constraints.) You can restrict attention to d = 4— this will
capture all of the main issues of the general case.

1.4.1 SOS Algorithm: convex optimization view

We start by presenting one view of the SOS algorithm, which technically might be the simplest,
though perhaps at first not conceptually insightful.

Definition 1.3. Let Rnd denote the set of n-variate polynomials of degree at most d. Note that
this is a linear subspace of dimension roughly nd.

We will sometimes also write this as R[x]d where we want to emphasize that these polynomials
take the formal input x = x1 . . . xn.

Definition 1.4. Let E = {p1 = · · · pm = 0} be a set of polynomial equations where pi ∈ Rnd for all
i. Let ` ∈ N be some integer multiple of 2d. The degree-` SOS algorithm either outputs ’fail’ or
a bilinear operator M : Rn`/2 × Rn`/2 → R satisfying:

• Normalization: M(1, 1) = 1 (where 1 is simply the polynomial p(x) = 1).

• Symmetry: If p, q, r, s ∈ Rn`/2 satisfy pq = rs then M(p, q) = M(r, s).

• Non-nonnegativity (positive semi definiteness): For every p, M(p, p) ≥ 0.

• Feasibility: For every i ∈ [m], p ∈ Rn`/2−d, q ∈ Rn`/2, M(pip, q) = 0.

Exercise 1.2: Show that if the symmetry and feasibility constraints hold for monomials they
hold for all polynomials as well.

Exercise 1.3: Show that the set of M ’s satisfying the conditions above is convex and has an
efficient separation oracle.

Indeed, such an M can be represented as an n`/2 × n`/2 PSD matrix satisfying some linear
constraints. (Can you see why?) Thus by semidefinite programming finding such an M if it exists
can be done in nO(`) time (throughout this seminar we ignore issues of precision etc..). The question
is why does this have anything to do with solving our equations, and one answer is given by the
following lemma:

Lemma 1.5. Suppose that E is satisfiable. Then there exists an operator M satisfying the conditions
above.

Proof. Let x0 be a solution for the equations and let M(p, q) = p(x0)q(x0). Note that M clearly
satisfies all the conditions.

Since the set of such operators M is convex, for every distribution µ over solutions of E , the
operator M(p, q) = Ex∼µ p(x)q(x) also satisfies the conditions. As ` grows, eventually the only
operators that satisfy the condition will be of this form.

For this reason we will call M a degree-` pseudo-expectation operator. For a polynomial p of
degree at most `, we define M(p) as follows: we write p =

∑
αipi where each pi is a monomial of

1.4. SEVERAL VIEWS OF THE SOS ALGORITHM 17

degree at most `, and then decompose pi = p′ip
′′
i where the degree of p′i and p′′i is at most `/2 and

then define M(p) =
∑
αiM(p′i, p

′′
i). We will often use the suggestive notation Ẽ p for M(p).

Exercise 1.4: Show that M(p) is well defined and does not depend on the decomposition.

1.4.2 Intuition— the Boolean cube

To get some intuition, we now focus attention about the special case that our goal is to maximize
some polynomial p0(x) over over Boolean cube {±1}n (i.e., the set of x’s satisfying x2

i = 1.) This
case is not so special in the sense that (a) it captures much of what we want to do in TCS and (b)
the intuition it yields largely applies to more general settings.

Recall that we said that for every distribution µ over x’s satisfying the constraints, we can
get an operator M as above by looking at Ex∼µ p(x)q(x). We now show that in some sense every
operator has this form, if, in a manner related to and very reminiscent of quantum information
theory, we allow the probabilities to go negative.

Definition 1.6. A function µ : {±1}n → R is a degree-` pseudo-distribution if it satisfies:

• Normalization:
∑

x∈{±1}n µ(x) = 1.

• Restricted non-negativity: For every polynomial p of degree at most `/2, Ẽx∼µ p(x)2 ≥ 0,
where we define Ẽx∼µ f(x) as

∑
x∈{±1}n µ(x)f(x).

Note that if µ was actually pointwise non-negative then it would be an actual distribution on
the cube. Thus an actual distribution over the cube is always a pseudo distribution.

Exercise 1.5: Show that a degree 2n pseudo-distribution is an actual distribution.

Exercise 1.6: Show that if µ is a degree ` pseudo-distribution, then there exists a degree-`
pseudo-distribution µ′ such that Ẽx∼µ p(x) = Ẽx∼µ′ p(x) for every polynomial p and that µ′(x) is
a degree ` polynomial in the variables of x. (Hence for our purposes we can always represent such
pseudo-distributions with nO(`) numbers.)

Exercise 1.7: Show that for every polynomial p0 of degree at most `/2, there exists a degree `
pseudo-distribution µ on the cube satisfying Ẽx∼µ p0(x) ≥ λ if and only if there exists a degree `
pseudo-expectation operator M as above satisfying {x2

i = 1 : i = 1..n} such that M(p0) ≥ λ.

Therefore, we can say that the degree-` SOS algorithm outputs either a degree-` pseudo-
distribution over the solutions to E or ’fail’ and only outputs the latter if the former doesn’t exist.
In particular if it outputs ’fail’ then there isn’t any actual distribution over the solutions, and so
the fact that the algorithm outputs ’fail’ is a proof that the original equations are unsatisfiable.
We will see that by convex duality, the algorithm actually outputs an explicit proof of this fact
that has a natural interpretation.

Exercise 1.8: (optional— for people who have heard about the Sherali-Adams linear program-
ming hierarchy) Show that the variant of pseudo-distributions where we replace the condition that
expectation is non-negative on all squares of degree `/2 polynomials with the condition that it
should be non-negative on all non-negative functions that depend on at most ` variables can be
optimized over using linear programming and is equivalent to ` rounds of the Sherali-Adams LP.

18 CHAPTER 1. INTRODUCTION

Are all pseudo-distributions distributions? For starters, we can always find a distribution
matching all the quadratic moments.

Lemma 1.7 (Gaussian Sampling Lemma). Let M be a degree-` pseudo-expectation operator for
` ≥ 2. Then there exists a distribution (y1, . . . , yn) over Rn such that for every polynomial p of
degree at most 2, M(p) = E p(y). Moreover, y is a (correlated) Gaussian distribution.

Note that even if M comes from a pseudo-distribution µ over the cube, the output of y will be
real numbers that although satisfying E y2

i = 1, will be in {±1}.
Unfortunately, we don’t have an analogous result for higher moments:

Exercise 1.9: Prove that if there was an analog of the Gaussian Sampling Lemma for every
polynomial p of degree at most 6 then P=NP. (Hint: show that you could solve 3SAT, can you
improve the degree to 4? maybe 3?)

Unfortunately, this will not be our way to get fame and fortune:

Exercise 1.10: Prove that there exists a degree 4 pseudo-distribution µ over the cube such that
there does not exist any actual distribution ν that matches its expectation on all polynomials of
degree at most 4. (Can you improve this to 3?)

1.5 Sum of Square Proofs

As we said, when the SOS algorithm outputs ’fail’ this can be interpreted as a proof that the
system of equations is unsatisfiable. However, it turns out this proof actually has a special form that
is known as an SOS proof or positivstenelsatz. An SOS proof uses the following rules of inference

p ≥ 0, q ≥ 0 |= p+ q ≥ 0

p ≥ 0, q ≥ 0 |= pq ≥ 0

|= p2 ≥ 0

They should be interpreted as follows. If you know that a set of conditions E = {p1 ≥
0, . . . , pm ≥ 0} is satisfied on some set S, then any conditions derived by the rules above would
on that set as well. (Note that we only mentioned inequalities above, but of course {p = 0} is
equivalent to the conditions {p ≥ 0,−p ≥ 0}.)

Definition 1.8. Let E be a set of equations. We say that E implies p ≥ 0 via a degree-` SOS
proof, denoted E |=` p ≥ 0, if p ≥ 0 can be inferred from the constraints in E via a sequence of
applications of the rules above where all intermediate polynomials are of syntactic degree ≤ `.

The syntactic degree of the polynomials in E is their degree, while the syntactic degree of p+ q
(resp. pq) is equal to the maximum (resp. the sum) of the syntactic degrees of p, q. That is,
the syntactic degree tracks the degrees of the intermediate polynomials without accounting for
cancellations.

(Note: If we kept track of the actual degree instead of the syntactic degree we get a much
stronger proof system for which we don’t have a static equivalent form, and can prove some things
that the static system cannot. See the paper of Grigoriev, Hirsch and Pasechnik http://eccc.

hpi-web.de/report/2001/103/ for discussion of this other system.)

Definition 1.9. Let E be a set {p1 = · · · = pm = 0} of polynomial equalities. We say that E has
a degree-` SOS refutation if E |=` 0 ≥ 1.

http://eccc.hpi-web.de/report/2001/103/
http://eccc.hpi-web.de/report/2001/103/

1.6. DISCUSSION 19

It turns out that a degree-` refutation can always be put in a particular compact static form.
Exercise 1.11: For every d < `, prove that E = {p1 = · · · = pm = 0} (where all pi’s are

of degree d) has a degree-` SOS refutation if and only if there exists q1, . . . , qm of degree at most
`′ = O(`) and r1, . . . , rm′ of degree at most `′/2 such that∑

qipi = 1 + s (1.2)

where s =
∑m′

i=1 r
2
i , i.e. it is a sum of squares. (It’s OK if you lose a bit in each direction, i.e., in

the if direction it could be that `′ = 2` while in the only if direction it could be that `′ = `/2.)
Exercise 1.12: Show that we can take m′ to be at most n2`.
Exercise 1.13: Show that the set (p1, . . . , pm, s) satisfying (1.2) is a convex set with an efficient

separation oracle.

Positivstellensatz (Stengle 64, Krivine 74) For every unsatisfiable system E of equalities
there exists a finite ` s.t. E has a degree ` proof of unsatisfiability. Exercise 1.14: Prove P-satz
for systems that include the constraint x2

i = xi for all i. In this case, show that ` needs to be at
most 2n (where n is the number of variables). As a corollary, we get that the SOS algorithm does
not need more than nO(n) time to solve polynomial equations on n Boolean variables. (Not very
impressive bound, but good to know. In all TCS applications I am aware of, it’s easy to show that
the SOS algorithm will solve the problem in exponential time.)

Exercise 1.15: Show that if there exists a degree-` SOS proof that E is unsatisfiable then
there is no degree-` pseudo-distribution consistent with E .

SOS Theorem (Shor, Nesterov, Parrilo, Lasserre) Under some mild conditions (see The-
orem 2.7 in survey), there is an nO(`) time algorithm that given a set E of polynomial equalities
either outputs:

• A degree-` pseudo-distribution µ consistent with E
or

• A degree-` SOS proof that E is unsatisfiable.

1.6 Discussion

The different views of pseudo distributions The notion of pseudo-distribution is somewhat
counter-intuitive and takes a bit of time to get used to. It can be viewed from the following
perspectives:

• Pseudo-distributions is simply a fancy name for a PSD matrix satisfying some linear con-
straints, which is the dual object to SOS proofs.

• SOS proofs of unbounded degree is a sound and complete proof system in the sense that they
can prove any true fact (phrased as polynomial equations) about actual distributions over
Rn.

SOS proofs of degree d is a sound and not complete proof system for actual distributions, but it
is a (sound and) complete system for degree d pseudo-distributions, in the sense that any true
fact that holds not merely for actual distributions but also for degree d pseudo-distributions
has a degree d SOS proof.

20 CHAPTER 1. INTRODUCTION

• In statistical learning problems (and economics) we often capture our knowledge (or lack
thereof) by a distribution. If an unknown quantity X is selected and we are given the
observations y about it, we often describe our knowledge of by a the distribution X|y. In
computational problems, often the observations y completely determine the value X, but
pseudo-distribution can still capture our ”computational knowledge”.

• The proof system view can also be considered as a way to capture our limited computational
abilities. In the example above, a computationally unbounded observer can deduce from the
observations y all the true facts it implies and hence completely determine X. One way to
capture the limits of a computationally bounded observer is that it can only deduce facts
using a more limited, sound but not complete, proof system.

Lessons from History It took about 80 years from the time Hilbert showed that polynomials
that are not SOS exist non-constructively until Motzkin came up with an explicit example, and
even that example has a low degree SOS proof of positivity. One lesson from that is the following:
”Theorem”: If a polynomial P is non-negative and ”natural” (i.e., constructed by methods known
to Hilbert— not including probabilistic method), then there should be a low degree SOS proof for
this fact.
Corollary (Marley, 1980): If you analyze the performance of an SOS based algorithm pretending
pseudo-distributions are actual distributions, then unless you used Chernoff+union bound type
arguments, then every little thing gonna be alright.

We will use Marley’s corollary extensively in analyzing SOS algorithms. There is a recurring
theme in mathematics of ”power from weakness”. For example, we can often derandomize certain
algorithms by observing that they fall in some restricted complexity classes and hence can be fooled
by certain pseudorandom generator. Another example, perhaps closer to ours, is that even though
the original way people defined calculus with ”infitesimal” amounts were based on false permises,
still much of the results they deduced were correct. One way to explain this is that they used a
weak proof system that cannot prove all true facts about the real numbers, and in particular cannot
detect if the real numbers are replaced with an object that does have such an ”infitesimal” quantity
added to it. In a similar way, if you analyze an algorithm using a weak proof system (e.g. one
that is captured by a small degree SOS proof), then the analysis will still hold even if we replaced
actual distributions with a pseudo-distribution of sufficiently large degree.

Chapter 2

Max-Cut, Sparsest Cut, Small Set
Expansion and some relations of
Isoperimetry and Hypercontractivity

Lecture notes by Adrian Vladu and Henry Yuen

Suggested reading

• As I mentioned in the email, Spielman’s Spectral Graph Theory lectures 1,2 and 6 1 are
good reading for the background to this lecture. Spielman’s disclaimer (and in particular
the warning that you should “Be skeptical of all statements in these notes that can be made
mathematically rigorous”) also applies to the lecture notes in this course.

• See Section 6.2 (pages 143-147 in electronic version) of [WS11] for an overview of the Goemans-
Williamson Max-Cut algorithm.

• The Cheeger-Alon-Milman Inequality is covered in many places. One good source is Trevisan’s
CS359G Lecture Notes 2.

• The Feige-Schechtman graph is from their paper [FS02]. It is also described in several lec-
ture notes. One good source is the lecture of Ryan O’Donnell from the CMU “Advanced
Approximation Algorithms” course 3.

• The result that degree 4 SOS (or more accurately degree 2 + the squared triangle inequalities)
solve max-cut on random geometric (i.e. Feige-Schechtman) graphs is from [BHHS11].

• Chapter 9 (“basic hypercontractivity”) in Ryan O’Donnell’s book is highly recommended
reading. In particular what we show here is that what he calls “The Bonami Lemma” has a
degree 4 SOS proof. This result, as well as other applications, and an equivalence between
small set expansion and hypercontractive norm bounds is from [BBH+12a]. (The direction
of the equivalence we described was known before, and in particular appears in O’Donnell’s
book, but you may be interested in looking at the proof of the other direction.)

1See http://www.cs.yale.edu/homes/spielman/561/
2See http://theory.stanford.edu/~trevisan/cs359g/, Lectures 3 and 4
3Available on http://www.cs.cmu.edu/~anupamg/adv-approx/lecture16.pdf.

21

http://www.cs.yale.edu/homes/spielman/561/
http://theory.stanford.edu/~trevisan/cs359g/
http://www.cs.cmu.edu/~anupamg/adv-approx/lecture16.pdf

22CHAPTER 2. MAX-CUT, SPARSEST CUT, SMALL SET EXPANSION AND SOMERELATIONS OF ISOPERIMETRYANDHYPERCONTRACTIVITY

Both papers mentioned above are available on my home page.

Recap and some musings

The Sum of Squares algorithm is parameterized by a number `, known as its degree, and its running
time is nO(`). When ` = 1 this corresponds to linear programming, when ` = 2, it corresponds
to semi-definite programming, and when ` = n it corresponds to the brute force/exhaustive search
algorithm.

In this course, we are most interested in the range 2 < ` � n. To borrow an analogy from
Avi Wigderson, this regime is a bit like the “dark matter” of the SOS algorithm. We know it
exists, but we have surprisingly few examples of problems that cannot be solved by the degree 2
case, and can provably be solved by SOS of non-trivially small degree. This is related to the well
known phenomenon that, while we know by Ladner’s theorem that there are infinitely many “NP
intermediate”’ problems, most natural computational problems are either in P or NP-hard. In
fact, most natural problems either have a low-exponent polynomial-time algorithm (e.g., n2 or n3)
or are exponentially hard (e.g., no exp(n0.99) algorithm is known). There are of course problems,
such as k-SUM or k-CLIQUE, where the natural exhaustive search algorithm takes time nO(k)

where k is some parameter of the problem; I would consider those as “exponential” in the sense
that the best algorithm is still exhaustive search even if it runs in polynomial time.

One could play devil’s advocate and suggest that maybe the only problems in this “dark matter”
are artificial problems such as those constructed by Ladner, and so perhaps studying SOS for degree
larger than 2 is a waste of time. In this course, starting with this lecture, we will see several of the
few known examples where degree > 2 proofs help. I will leave to your judgment how natural they
are, and, most importantly, I hope you manage to find some new ones!

(I should remark that, even if we restrict attention to domains where SOS is optimal, the “dark
matter” region I am describing here is not identical to the set of problems that are not in P but not
NP complete. There are very few examples, perhaps the most notable ones arising from Lattice-
based cryptography, of natural problems in NP that are believed to be exponentially hard but not
NP-complete.)

Here are some exercises to make sure that you are comfortable with pseudo-distributions:

Exercise 2.1: Prove the pseudo-distribution Cauchy-Schwarz condition: If µ is a pseudo-
distribution of degree at most 2d, and P,Q are polynomials of degree d then

Ẽµ PQ ≤
√
Ẽµ P 2

√
ẼµQ2

Exercise 2.2: Recall that we say that a degree-d pseudo-distribution µ satisfies the constraint
{p = 0} if Ẽµ pq = 0 for every q for which this expectation makes sense (i.e. of degree at most
d−deg p). Give an example of a pseudo-distribution µ that satisfies Ẽ p(x) = 0, but does not satisfy
the constraint {p = 0}. How high can you make the degree of µ?

Exercise 2.3: Show that if Ẽµ p2 = 0 then Ẽµ pq = 0 for every q of degree at most d/2−degP .

Exercise 2.4: (Hölder’s inequality) Prove that if µ is a degree 4 distribution over variables

u1, . . . , un, w1, . . . , wn ∈ Rn then Ẽµ
∑

i u(i)3w(i) ≤
(
Ẽµ ‖u‖44

)3/4 (
‖w‖44

)1/4
.

23

A tale of two problems

Let G = (V,E) be a d-regular graph on n vertices with normalized adjacency matrix A (Ai,j = 1/d
if (i, j) ∈ E and Ai,j = 0 otherwise). Let L = I − A be its normalized Laplacian matrix. For a set
S ⊆ V , we consider the following quantities:

1. The expansion or conductance of S, denoted by φ(S), is defined as

φ(S) =
E(S, S)

d ·min{|S|, n− |S|}

Note that this number is always in [0, 1]; sometimes this number is defined as

φ(S) =
nE(S, S)

d|S||S|

(one can see that this is equivalent up to a factor of 2). The conductance of the graph G is
defined as φ(G) = minS φ(S).

2. The (fractional) cut size of S is the number

cut(S) =
E(S, S)

|E|

Note that for S = Θ(n), cut(S) = Θ(φ(S)). The maximum cut value of G, denoted by
maxcut(G) is maxS cut(S).

3. The (uniform) sparsest cut problem is the task of computing φ(G) (or possibly also finding
the set S such that φ(G) = φ(S) — we will not distinguish between these two problems).
The max-cut problem is the task of computing maxcut(G) (or finding the set S such that
cut(S) = maxcut(G)).

Known results. We now survey what is known about those two problems, which turn out to
be extremely similar in their computational status. In both cases, finding the exact solution is NP
hard, and so we are looking for some form of approximation.

A random subset of measure 1/2 will cut half the edges, and in particular this gives an algorithm
achieving a cut of value at least cut(G)/2 for the max-cut problem. In fact, this algorithm for max-
cut was suggested by Erdös in 1967, and is one of the first analyses of any approximation algorithm.

A priori, it is not so clear how to beat this. Let us consider the case of max-cut. In a random
d-regular graph (which is an excellent expander), one cannot cut more than a 1/2 + ε fraction
of the edges (where ε goes to zero as n goes to infinity). But locally, it is hard to distinguish
a random d-regular graph from a random d-regular ”almost bipartite” graph, where we split the
graph into two equal parts L and R and each edge is with probability ε inside one of those parts
and with probability 1 − ε between them. Such a graph G obviously has maxcut(G) ≥ 1 − ε but
every neighborhood of it looks like a d-regular tree, just as in the case of a random d-regular graph.
For this reason, ”combinatorial” (or even linear programming) algorithms have a hard time getting
an approximation factor better than 1/2 for max-cut. To support this claim, [CLRS13] shows that
no polynomial-time extension of the max-cut linear program can beat the 1/2 factor. For a similar
reason, a priori it is not clear how to find any set with φ(S)� 1/2, even if φ(G) = o(1). However, in
both those cases it turns out one can beat the ”combinatorial” (or linear programming) algorithms.

24CHAPTER 2. MAX-CUT, SPARSEST CUT, SMALL SET EXPANSION AND SOMERELATIONS OF ISOPERIMETRYANDHYPERCONTRACTIVITY

The famous Cheeger’s Inequality (or more accurately, its discrete variant by Alon, Alon-Milman,
Dodziuk) implies that there is a polynomial time algorithm to find S with φ(S) = O(

√
φ(G)).

Cheeger’s Inequality can be viewed as the degree-2 SOS algorithm. The analogous algorithm for
max-cut took more time, but was found eventually by Goemans and Williamson [GW95] who
gave an algorithm, based on rounding the degree-2 SOS algorithm; on an input graph G with
maxcut(G) ≥ 1−ε, it find a set S with cut(S) ≥ 1−f(ε) for some f(ε) = O(

√
ε). This algorithm is of-

ten described in terms of its approximation ratio cut(S)/maxcut(G), which is minε>0
1−f(ε)

1−ε ≈ 0.878.
Leighton and Rao gave a polynomial-time algorithm to find S with φ(S) = O(log n)φ(G) [LR99]
and in a breakthrough work, Arora, Rao and Vazirani improved this to an algorithm that outputs a
set S with O(

√
log n)φ(G) [ARV09]. Their algorithm uses the degree 4 SOS algorithm, and we will

see it in this course. Shortly thereafter, Agarwal, Charikar, Makarychev and Makarychev gave the
analogous result for max-cut, namely an algorithm that given G with maxcut(G) = 1− ε, outputs
S with cut(S) ≥ 1−O(

√
log n)ε [ACMM05].

Assuming the Unique Games Conjecture (or its close variant the Small-Set Expansion Con-
jecture), the algorithms of Cheeger and Goemans-Williamson are optimal. Namely, there is no
poly-time algorithm to find S with φ(S) = o(

√
φ(G)), and no poly-time algorithm that given G

with maxcut(G) = 1 − ε, finds a set S with cut(S) = 1 − o(
√
ε). One way to think of the Unique

Games Conjecture is that it is saying that degree 2 SOS is special in the sense that for great many
problems, improving on it requires to going to degree nΩ(1). (A priori you could perhaps think
that degree 2 is very special, in the sense that improving on it would require degree Ω(n), but that
has been refuted by the sub-exponential algorithm for unique games [ABS10] and its encapsulation
within the SOS framework [BRS11, GS11]. Degree 2 SOS is special in the sense that it seems much
easier to for us to analyze, but whether degree 4 offers no improvements, or is just more challenging
for us to prove that it does, remains to be seen. We will see today and in the next lectures some
examples where higher (but not super high) degree does help, but as of now these still fall short of
disproving the UGC.

25

Remark: Isoperimetry, local testing, and extremal questions

The max-cut and sparsest cut problems are all special case of the task of determining
isoperimetric properties of graphs.
The classical isoperimteric inequality states that the circle is the body with the most area
for a given perimeter. More generally, the isoperimetric question in a particular space, is
to determine the set in that space with the smallest surface area given some prescribed
volume. (With the circle being the answer in two dimensional Euclidean space, and spheres
in higher dimensions.) Such questions have a great many applications in a variety of areas,
including geometry, graph theory, probability theory and mathematical physics. In partic-
ular isoperimetric inequalities are often used to analyze the convergence times of random
walks. For a graph, φ(S) is a natural proxy for the surface area of a set S, and so one
variant of the isoperimetric question is to find, given some number δ > 0, the set S of
size δn that minimizes φ(S). This is known as the “small set expansion” question and is
intimately related to the unique games conjecture. We are often able to prove isoperimetric
inequalities for particular families of graphs, and understanding whether or not these proofs
can be ”SOS’ed” with low degree is key to understanding the power of this algorithm.
Isoperimetric inequalities are a special case of a more general paradigm of extremal questions
in mathematics. Such questions again arise in great many areas, and in particular not just in
geometry but also in coding theory and additive combinatorics. In many cases we have some
collection of objects Ω (e.g. all subsets of some space of a certain size, or maybe all strings
of some length, or all subsets of some group) and some parameter or “test” T : Ω→ R (e.g.,
T (S) can be the surface area of some set S, or T (S) might measure the probability that a
certain local test fails on S, or the size of the set S+S where + is the group operation). The
generalization of an isoperimetric inequality would be to show that there is some set C of
“special” objects (e.g., the spheres, or codewords of some code, or subgroups) that minimize
T (·). The next natural question is the “unique decoding” question, showing that if T (S) is
close to the minimum, then S itself is close to some member of C. Another natural question
is the “list decoding” question, showing that if T (S) is much smaller than the average value
of T (·), then S is at least somewhat correlated with an element of C.

Linear algebra view

Let x be the {±1} characteristic vector of S (i.e., xi = +1 if i ∈ S, and xi = −1 otherwise).
Then

〈x, Lx〉 = 〈x,
(
I − 1

dA
)
x〉 =

∑
i

x2
i − 1

2d

∑
i∼j

xixj = 1
2d

∑
i∼j

(xi − xj)2 = 4E(S, S)/d = 2n · cut(S)

Observe that each edge is counted twice in the sum over i ∼ j, and contributes 4 if it belongs to
the cut.

Similarly, if x is the {0, 1} characteristic vector instead (i.e., xi = 1 if i ∈ S and xi = 0 otherwise)
and |S| ≤ n/2 then

〈x, Lx〉 = 1
dE(S, S) = φ(S)‖x‖22

(since ‖x‖22 = |S|).
Exercise 2.5: Show that if x is the mean 0 characteristic vector of S (i.e., xi = n − |S| if

i ∈ S and xi = −|S| if i 6∈ S) then 〈x, Lx〉/‖x‖2 = nE(S,S)

d|S||S| . Show that this also equals φ(S) up to

a multiplicative factor of two.

26CHAPTER 2. MAX-CUT, SPARSEST CUT, SMALL SET EXPANSION AND SOMERELATIONS OF ISOPERIMETRYANDHYPERCONTRACTIVITY

2.1 The Goemans Williamson Algorithm

The Goemans-Williamson algorithm takes as input a graph G with maxcut(G) ≥ 1− ε and outputs
a set S such that cut(S) ≥ 1−O(

√
ε). It follows from the theorem below:

Theorem 2.1 (Goemans-Williamson). There is a polynomial-time algorithm R which, given

• an n-vertex d-regular graph G = (V,E)

• a degree 2 pseudo-distribution µ, such that Ẽx∼µ x2
i = 1 and Ẽ〈x, Lx〉 ≥ 2n(1− ε)

outputs a vector z ∈ {±1}n, such that 〈z, Lz〉 ≥ 2n(1− fGW (ε)) where fGW (ε) ≤ 10
√
ε.

This immediately implies the algorithm, because given a graph with maxcut(G) ≥ 1−ε, running
the degree-2 SOS algorithm on {x2

i = 1 ∀i, 〈x, Lx〉 = 2n(1 − ε)} yields a valid pseudo-distribution
satisfying the requirements for Theorem 2.1. Running algorithm R, then gives an integral cut of
value at least 1− fGW (ε) = 1−O(

√
ε).

At the heart of the proof of the Goemans-Williamson algorithm is the following very useful
lemma:

Lemma 2.2 (Quadratic Sampling Lemma). Let µ be a degree-2 pseudo-distribution over Rn. Then
there is a poly-time that algorithm can sample from a Gaussian distribution y over Rn such that
E p(y) = Ẽx∼µ p(x) for every polynomial p of degree at most 2.

Note on notation: In the rest of this course, in cases where there is little chance of confusion, we
will often denote a pseudo-distribution as {x} rather than µ and then use notation such as Ẽ p(x)
instead of Ẽx∼µ p(x). So, we could also write this lemma as:

Lemma 2 (Quadratic Sampling Lemma). Let {x} be a degree-2 pseudo-distribution over Rn.
Then there is a poly-time that algorithm can sample from a Gaussian distribution y over Rn such
that E p(y) = Ẽ p(x), for every polynomial p of degree at most 2.

Why does Lemma 2.2 imply Theorem 2.1? The theorem follows by simply letting zi =
sign(yi). Note that under our assumptions

1
2n Ẽ〈x, Lx〉 = 1

2n Ẽ

 1
2d

∑
i∼j

(xi − xj)2

 = 1
4dn

∑
i∼j

Ẽ(xi − xj)2 ≥ 1− ε

and hence
1

4dn

∑
i∼j

E(yi − yj)2 ≥ 1− ε

We need to show that 1
4dn

∑
i∼j E(zi − zj)2 ≥ 1 − O(

√
ε). Using convexity, this follows from the

following claim:

Claim: Let y, y′ be Gaussian variables with E y2 = E y′2 = 1 such that E(y − y′)2 ≥ 1 − δ. Then
Pr[sign(y) = sign(y′)] ≤ 10

√
δ.

This can be proven via a standard calculation (Exercise 2.6: do this), and essentially follows
from the fact that two unit vectors of inner product 1− δ have distance roughly

√
δ. Thus all that

remains is to prove the quadratic sampling lemma:

2.1. THE GOEMANS WILLIAMSON ALGORITHM 27

Proof of the quadratic sampling lemma. By shifting, it suffices to consider the case that
Ẽxi = 0 for all i (Exercise 2.7: show this). Let M be the n× n matrix such that Mi,j = Ẽxixj .
Since Ẽ f(x)2 ≥ 0 for every linear function f , it must holds that M is positive semidefinite and
hence M = V V > for some matrix V . Another way to say this is that Mi,j = 〈vi, vj〉 for some
N , and for some vectors v1, . . . , vn ∈ RN . Let g be a standard Gaussian vector in RN and define
yi = E〈vi, g〉. (Note that, as desired, E〈vi, g〉 = 0 for all i.) For every i, j we have that

E yiyj = E〈vi, g〉〈vj , g〉 =
∑
k,`

E vikgkv
j
`g`

but since we have that E gkg` =

{
1, if k = `

0, if k 6= `
, this equals

∑
k

vikv
j
k = 〈vi, vj〉 = Mi,j

Hence y agrees with x on all quadratic monomials and hence on all quadratic polynomials as
well.

Exercise 2.8: Prove that if x is an actual distribution over Rn with mean 0n, taking the
value x(α) ∈ Rn with probability pα, where α ranges over some finite index set I, we would get an
equivalent distribution to the one above by letting y =

∑
α∈I gαx

(α), where gα is a Gaussian with
mean 0 and variance pα.

Note that the algorithm resulting from the proof of Theorem 2.1 performs the following: given
the vectors v1, . . . , vn that arise from the pseudo-distribution {x}, we obtain a cut z (identified
with a vector in {±1}n) by choosing a random gaussian vector g and outputting zi = sign〈vi, g〉.
That is, we cut the vertices based on which side of the hyperplane defined by g they fall on. For
this reason, this rounding technique is often known as “random hyperplane rounding”.

Also note that in analyzing this algorithm we didn’t use ”Marley’s Corollary”, since the quadratic
sampling lemma is easy enough to prove even without assuming that {x} was an actual distribution,
but we will find that assumption useful as we analyze algorithms using higher degrees, including
the Arora-Rao-Vazirani algorithm.

28CHAPTER 2. MAX-CUT, SPARSEST CUT, SMALL SET EXPANSION AND SOMERELATIONS OF ISOPERIMETRYANDHYPERCONTRACTIVITY

Remark: Vector view of SOS

In the proof above, we used the convenient fact that an n× n matrix M is psd if and only
if there are vectors v1, . . . , vn ∈ RΩ (for some Ω) such that Mi,j = 〈vi, vj〉. Thus a degree
2 pseudo-distribution can be completely characterized by such vectors (along with another
vector which would correspond to the first moments / averages). This can be generalized
to higher degrees as follows:

Exercise 2.9: Let P be some basis for the degree ≤ d/2 polynomials (you can think of
the monomial basis). Prove that a bilinear operator M : Rnd/2 × Rnd/2 → R is a degree d

pseudo-expectation operator if and only if there exists vectors {vp}p∈P in RN for some N
such that M(p, q) = 〈vp, vq〉 and 〈vp, vq〉 = 〈vr, vs〉 whenever pq = rs.

Note that if M corresponded to the expectation of an actual random variable X, which we
can think of as a function from some probability space Ω to RN , then we could choose the
vector vp to have as its ωth coordinate the value p(X(ω)), where we will use the expectation
inner product, i.e. 〈〈〈u, v〉〉〉 = Eω∈Ω u(ω)v(ω) =

∑
ω∈Ω pωvi(ω)vj(ω) (pω is the probability of

the element ω; the space Ω can even be infinite in which case the sum is replaced with an
integral).

2.2 Can we do better with degree 2 SOS?

It is perhaps surprising that we can do better than the random cut algorithm, but knowing that
we can bypass it whets our appetite for more. So far, we don’t know if we can beat the Goemans-
Williamson algorithm, but we do know that won’t be possible with the degree-2 SOS program.

Theorem 2.3. There is a graph G and ε > 0 such that maxcut(G) ≤ 1 −
√
ε/10 but there is a

degree-2 pseudo-distribution {x} such that Ẽx2
i = 1 for all i and Ẽ〈x, Lx〉 ≥ 2n(1− ε).

Proof. The graph is simply the odd cycle on n = 1/
√
ε vertices. Since the graph is not bipartite,

every cut must cut at least one edge, so maxcut(G) ≤ 1−1/n = 1−
√
ε. For the pseudo distribution,

we arrange unit vectors v1, . . . , vn along the two dimensional circle such that 〈vi, vj〉 = −1 + ε if
j = i + 1 (mod n). Let Ẽxixj = 〈vi, vj〉. Then, for all i, Ẽx2

i = 〈vi, vi〉 = 1, and Ẽ〈x, Lx〉 =
Ẽ(
∑

i x
2
i − 1

2

∑
i∼j xixj) = n(2− ε) = 2n(1− ε/2) ≥ 2n(1− ε).

One issue with this result, apart from the fact that the odd cycle doesn’t seem like a very hard
instance, is that the value of ε here is 1/n2, which means that even finding a cut of 1−1/

√
ε is pretty

good (in fact, the best one can do, given that the graph isn’t bipartite). However, this of course can
be easily fixed by simply considering the disjoint union of many odd 1/

√
ε cycles, hence yielding an

instance where ε is independent of n. Another issue is to determine the right constant, and more
generally, for every ε > 0, come up with a graph that has a degree-2 pseudo-distribution pretending
to range over cuts with value 1− ε, but where the true max cut is at most 1− fGW (ε) + o(1) where
fGW (·) is the function obtained by the proof of the Goemans-Williamson theorem (Theorem 2.1).
This was achieved by Feige and Schechtman [FS02], who defined the following graph:

For ε > 0, `, n ∈ N, the Feige-Schechtman graph FS(ε, `, n) is obtained by sampling n random
unit vectors v1, . . . , vn in R` and letting i ∼ j if 〈vi, vj〉 ≤ −1 + ε. We will typically think of the
case that n is exponentially larger than ` and so this graph closely approximates the infinite graph
where vertices are all vectors in the unit `-dimensional sphere. In [FS02], Feige and Schechtman
proved the following two results about this graph:

2.2. CAN WE DO BETTER WITH DEGREE 2 SOS? 29

Figure 2.1: The odd-cycle graph, along with a depiction of a vector solution for the degree-2 SoS
program.

Lemma 2.4. There is a degree-2 pseudo-distribution {x} such that Ẽx2
i = 1 for all i and Ẽ(xi −

xj)
2 ≥ 2(1− ε) for all i ∼ j.

Proof. This is essentially by construction. Define Ẽxixj = 〈vi, vj〉 where v1, . . . , vn are the vectors
used to define the graph. Note that this is PSD and hence is a valid degree-2 pseudo-expectation
operator, and that it satisfies the conditions of the Lemma.

Lemma 2.5. For every δ > 0, if n is large enough, with high probability maxcut(FS(ε, `, n)) ≤
1− fGW (ε) + δ

This is the heart of their proof. To show this, one needs to show that the maximum cut
in the Feige-Schechtman graph is obtained by a hyperplane cut, namely by a set S of the form
{i : 〈vi, a〉 > 0} for some vector a. This turns out to be related to classical isoperimetric results of
Borell. We will prove a slightly weaker result. Namely, that the Feige-Schechtman graph is at least
not worse than the cycle:

Lemma 2.6. There is some constant c > 0 such that for every δ > 0, if n is large enough,
maxcut(FS(ε, `, n)) ≤ 1− c

√
ε.

Proof. We will assume that 1/
√

2ε− ε2 = k for some odd integer k (this assumption can be waived
with a bit more work, at the cost of having a suboptimal value for the constant c). For sufficiently
large n, we can imagine that the FS graph is simply on the continuous sphere. Pick a random edge
i ∼ j of the graph, and consider the intersection of the sphere with the plane spanned by vi and
vj . Inside that plane we can find a k-cycle subgraph of the graph that contains the edge i ∼ j. By
following this approach we obtain a set C1, . . . , CN of k-cycles that uniformly covers the edges of
the Feige-Schechtman graph (i.e., each edge of the Feige-Schechtman graph is contained in about
the same numbe of cycles). Now, for every possible cut S, it must miss at least one edge from
every one of those Ci’s. But by the uniformity condition, if a cut misses a α fraction of the edges
in the FS graph, on average it should miss an α fraction (or α ± o(1), to account for our finite
approximations) of the edges in the cycles.

30CHAPTER 2. MAX-CUT, SPARSEST CUT, SMALL SET EXPANSION AND SOMERELATIONS OF ISOPERIMETRYANDHYPERCONTRACTIVITY

This is a weaker result because the constant c will not match that in fGW .
Similar results hold for sparsest cut— the cycle (here it doesn’t matter if it’s even or odd) yields

an example of a graph with eigenvalue gap of ε but where the best cut has conductance
√
ε, and

the analog of the Feige-Schechtman graph can give better constant dependence.

2.3 Can we do better with higher degree?

This is a question many people are interested in, and we don’t know the answer. As mentioned
above, Khot’s Unique Games Conjecture implies that no polynomial-time algorithm (or even an
exp(no(1))-time one) can beat the Goemans-Williamson algorithm. So, in particular it should mean
that using SOS algorithm with degree no(1) will not yield improved performance over degree 2.
However, we don’t even know if degree 4 SOS doesn’t do better than degree 2. Indeed, the known
hard instances for degree 2, including the odd cycle and the Feige-Schechtman graph, can in fact
be solved via degree 4 SOS (for some other instances the best known bound is 16 or so, but we
have no evidence that degree 4 doesn’t work as well).

Lemma 2.7. Let n be odd. There is no degree-4 pseudo-distribution {x} over Rn consistent with
the constraints {x2

i = 1}i=1..n such that Ẽ
∑n

i=1(xi − xi+1)2 > 4(n− 1) (identifying xn+1 with x1).

The proof of this lemma follows from the following exercise
Exercise 2.10: (Squared Triangle Inequality) Let {x} be a degree-4 pseudo-distribution over

Rn consistent with the constraints {x2
i = 1}. Then for all i, j, k ∈ [n], Ẽ(xi − xk)2 ≤ Ẽ(xi − xj)2 +

Ẽ(xj − xk)2.
Note that if {x} is an actual distribution consistent with these constraints, then it means that

it is supported on {±1}n, and hence E(xi − xj)2 = 4 Pr[xi 6= xj] which immediately implies the
inequality. Therefore, the 3-variate polynomial (xi−xj)2 +(xj−xk)2−(xi−xk)2 is non-negative on
{±1}3 which immediately implies the result for degree-6 pseudo-distributions. (Can you see why?)
This is just as good for our purposes, but working out the degree 4 case should be a nice exercise.

We can now prove the lemma:

Proof. Using the equation (a+ b)2 = 2a2 + 2b2 − (a− b)2 we get that

Ẽ
n∑
i=1

(xi + xi+1)2 < 4n− 4(n− 1) = 4

By the triangle inequality applied to the variables xi, xi+2 and −xi+1, we get that

Ẽ(xi − xi+2)2 ≤ Ẽ(xi + xi+1)2 + (xi+1 + xi+2)2

which repeating (n− 1)/2 times we get that

Ẽ(xi − xi+1)2 ≤
∑

j∈(i+1,..,n,1,..,i−1)

Ẽ(xj + xj+1)2

If we sum this over all i’s, then on the RHS every term Ẽ(xj +xj+1)2 gets counted n− 1 times and
so we get ∑

i

Ẽ(xi − xi+1)2 ≤ (n− 1)
∑
j

Ẽ(xj + xj+1)2 < (n− 1)4

contradicting our assumptions.

2.4. SOS’ING PROOFS OF ISOPERIMETRIC INEQUALITIES 31

This results immediately implies that the degree 4 SOS algorithm can also certify that the
max-cut of the FS(ε, `, n) graph is 1−Ω(

√
ε) if n is large enough (can you see why?). Interestingly,

it can be shown that if we choose a significantly smaller n (though still exponential in `) so that
almost all short cycles (and in particular the odd ones) disapper, then as long as the average degree
remains large enough, the value of the maximum cut remains 1− Ω(

√
ε). However, the proof that

the degree 4 SOS algorithm certifies this breaks down. Nonetheless, it turns out that the degree-4
SOS algorithm still gives a value of 1 − Ω(

√
ε) even in this regime (see Barak, Hardt, Holenstein,

Steurer [BHHS11]).

2.4 SOS’ing proofs of isoperimetric inequalities

Moving beyond max cut, another important problem is the small set expansion problem. This
is the task, given some graph G = (V,E) and δ, of computing min|S|≤δ|V | φ(S). Once again, the
question is about approximating it, and the small set expansion conjecture posits that it is NP hard
to determine if this quantity is at most ε or at least 1−ε, where ε = 1/O(log(1/δ)). (The conjecture
was stated by Raghavendra and Steurer [RS10] in a slightly different form, and its equivalence to
this form was shown by Raghavendra, Steurer and Tulsiani [RST10].)

The Boolean cube (i.e., the graph on 2` vertices identified with {±1}` such that x ∼ y if∑
|xi − yi| = 2) is a canonical example of a small set expander. That is, even though the graph

is not a great expander, since for example 1 − 1/` fraction of the edges touching the set S =
{(+1, x) : x ∈ {±1}`−1} stay inside it, for smaller set a much larger fraction of the edges go out. In
fact, one can show that for every k, the sets S of measure 2−k that minimize φ(S) have the form
S = {(α, x) : x ∈ {±1}`−k} for some α ∈ {±1}k. (Note that these sets have 1− k/` of their edges
staying inside them.)

How do you prove such a thing (at least approximately)? The key here is again linear algebra.
Recall that for every set S of measure less than 1/2, 〈x, Lx〉/‖x‖2 = φ(S) where x is the {0, 1}
characteristic vector of S. Therefore, to prove that if |S| is small then φ(S) is large, it is enough
to show that sparse vectors are not close to the low eigenspace of the operator L. Specifically, we
have the following result:

Lemma 2.8. Let G = (V,E) be regular graph, λ ∈ (0, 1) and W be the span of eigenvectors of
L(G) corresponding to eigenvalue at most λ. If every w ∈W satisfies:

Eiw4
i ≤ C

(
Eiw2

i

)2
(2.1)

then for every set S of measure δ set,

φ(S) ≥ λ(1−
√
Cδ)

To understand the lemma, let us try to parse what (6.2) means in the case that w is the 0/1
characteristic vector of some set S of measure µ. In this case the LHS equals µ and the RHS equals
Cµ2, and so we get that µ ≥ 1/C. Thus in particular (6.2) implies that the space W does not
contain the characteristic vector of any set of measure < 1/C, and the conclusion of the Lemma
is that if S has measure � 1/C then it has expansion at least λ − o(1), which means that its
characteristic vector has almost all of its mass outside W .

Proof. Throughout this proof, it will be convenient for us to use the expectation norms and inner
product, and so we denote |||x|||p = (Ei |xi|p)1/p and 〈〈〈x, y〉〉〉 = Exiyi. Thus (6.2) translates to

32CHAPTER 2. MAX-CUT, SPARSEST CUT, SMALL SET EXPANSION AND SOMERELATIONS OF ISOPERIMETRYANDHYPERCONTRACTIVITY

|||w|||44 ≤ C|||w|||42 for every w ∈ W . Let S be the set and x its 0/1 characteristic vector. Note that
we still have

φ(S) = 〈〈〈x, Lx〉〉〉/|||x|||2 .

Write x = x′ + x′′ where x′ ∈W and x′′ ∈W⊥. Our main claim is

Claim: |||x′|||2 ≤ C1/4|||x|||4/3
Proof of Claim:

|||x′|||22 = 〈〈〈x′, x′〉〉〉 = 〈〈〈x′, x〉〉〉 ≤ |||x′|||4|||x|||4/3
where the second equality is because x′ is a projection of x, and the last inequality is an application
of Holder’s inequality. The proof then follows using |||x′|||4 ≤ C1/4|||x′|||2.

Given this, since |||x|||4/3 = δ3/4 we can use the eigenvector decomposition (v1, . . . , vn) and
(λ1, . . . , λn) of L to write

〈〈〈x, Lx〉〉〉 =
∑

λi〈〈〈x, vi〉〉〉2

bunching together all the vectors with eigenvalue smaller than λ (whose contribution to the sum is
non-negative), and all the vectors with eigenvalues larger than λ (who contribute at least λ|||x′′|||22)
we get

〈〈〈x, Lx〉〉〉 ≥ λ|||x′′|||22 = λ(|||x|||22 − |||x′|||22) ≥ λ(δ − C1/2δ3/2)

and thus (using |||x|||22 = δ) we get

φ(S) = 〈〈〈x,Lx〉〉〉
|||x|||22

≥ λ(1−
√
Cδ)

Let us now see how we apply this result to the Boolean cube. First, we need the following
characterization of the Boolean cube

Exercise 2.11: Let G be the Boolean cube on {±1}`. Prove that the eigenvectors of G are
{χS}S⊆[`] where for every x ∈ {±1}`, χS(x) =

∏
i∈S xi and the eigenvalue corresponding to χS is

|S|/`.

Thus, for every λ, the subspace spanned by eigenvectors of eigenvalue at most λ is the set of
f : {±1}` → R that are spanned by the functions χS with |S| ≤ λ`. Thus the following result
shows that sufficiently small sets in the hypercube expand a lot

Theorem 2.9 ((2, 4) hypercontractivity). Let f =
∑
fαχα with |α| ≤ d. Then

Ex∈{±1}` f(x)4 ≤ 9d
(
Ex∈{±1}` f(x)2

)2
(2.2)

Theorem 2.9 has a simple proof but underlies many results used in hardness of approximation,
social choice theory, and more (see Ryan’s book [O’D14]). In particular, as we mentioned, by
combining it with Lemma 6.2 it implies some isoperimetric results on the Boolean cube.

Proof. We prove the result by induction on d and `. (The case ` = 0 or d = 0 is trivial.) Separate
f to the parts that do and don’t depend on ` and write

f(x) = f0(x1, . . . , x`−1) + x`f1(x1, . . . , x`−1)

2.4. SOS’ING PROOFS OF ISOPERIMETRIC INEQUALITIES 33

note that the degree of f1 is at most d−1. Now let us expand E f(x)4 and note that the expectation
of odd powers of x` vanish (since it is independent from the other variables) and so we get that

E f4 = E f4
0 + f4

1 + 6f2
0 f

2
1 (2.3)

By Cauchy Schwarz we can bound the last term by 6
√(

E f4
0

) (
E f4

1

)
. By induction we can assume

E f4
b ≤ 9d

(
E f2

b

)2
for b = 0, 1 and so plugging this into (2.3) we get

E f4 ≤ 9d
(
E f2

0

)2
+ 9d−1

(
E f2

1

)2
+ 6 · 9d−1/2 E f2

0 E f2
1 ≤

9d
((

E f2
0

)2
+
(
E f2

1

)2
+ 2E f2

0 E f2
1

)
=

9d
(
E f2

0 + E f2
1

)2
but this equals 9d

(
E f2

)2
, since f = f0 + x`f1 and Ex`f0f1 = 0.

Remark: Max-cut, sparsest-cut and small-set expansion as finding non-
Gaussian vectors in subspaces

The sparsest-cut, max-cut, and small-set expansion can all be thought of as the problem of
finding

min
x
p(x)

where p : Rn → R is a quadratic polynomial (e.g., p(x) = 〈x, Lx〉 or p(x) = −〈x, Lx〉) and
subject to x satisfying certain constraints (e.g. x ∈ {0, 1}n (or sometimes {±1}n) in the
case of max-cut/sparsest cut, or x is the characteristic vector of a sparse set in the case of
small set expansion). By scaling appropriately, we can also assume x is restricted to have
unit norm.

Since a vector x of unit norm minimizes a quadratic form p(·) if and only if it resides in
the linear subspace correspondings to the small eigenvalues of p(·) (thought of as a linear
operator), the problem essentially reduces to finding a vector in (or close to) W that satisfies
these constraints. If W was a “generic” subspace of not too high a dimension, then all the
vectors w inside it would be rather “smooth” and in particular every w ∈W will satisfy that
the distribution X(w) which is obtained by sampling a random coordinate i and outputting
wi is close to the Gaussian distribution. So, in some sense all of these problems are about
finding non-Gaussian vectors in a subspace. Note that for every w there is some Gaussian
distribution that matches the first two moments of X(w). Thus being “non Gaussian”
inherently implies looking at higher moments. For example, one can verify that if w is a
sparse vector shifted and scaled to have EX(w) = 0 and EX(w)2 = 1 then EX(w)4 is
much larger than EN(0, 1)4 (indeed this is the underlying reasoning behind Lemma 6.2,
and as I mentioned, some kind of a reverse direction holds as well). So, one can hope that
degree > 2 SOS would help with that.

34CHAPTER 2. MAX-CUT, SPARSEST CUT, SMALL SET EXPANSION AND SOMERELATIONS OF ISOPERIMETRYANDHYPERCONTRACTIVITY

Making this into an SOS proof

Lemma 6.2 reduces the question of certifying whether a graph is a small set expander to certifying a
polynomial equation, and so to understand if the degree 4 SOS algorithm can certify the expansion
properties of the Boolean cube, we need to come up with an SOS proof for the (2, 4) hypercon-
tractivity theorem (Theorem 2.9). Eyeballing the proof, we see that it doesn’t use the probabilistic
method, and so by Marley’s Corollary it should have an SOS proof. However, as far as we know,
Marley didn’t publish his proof in a peer-reviewed journal, and so we’d better doublecheck the case.
(I should note that joking aside, it is definitely not a universal statement that all known interesting
low degree polynomial inequalities that have a non-probabilistic method proof are known to have
a low degree SOS proof, in fact Ryan O’Donnell has several interesting open questions along these
lines. However so far in my experience, though it took some work, we typically were always able to
find such proofs for the statements that arise in analyzing SOS algorithms (or some close-enough
approximation of them), and so the main hurdle was to actually phrase the statement as low degree
polynomial inequality in the first place.)

Indeed, this turns out to be the case as shown by the following lemma giving an SOS proof for
Theorem 2.9. For two polynomials p, q we write p � q if p = q −

∑m
i=1 r

2
i for some polynomials

r1, .., rm.

Lemma 2.10. Let d, ` ∈ N. For every x ∈ {±1}n, let Lx(·) be the linear function in the variables
{fα}|α|≤d such that

Lx(f) =
∑
α

(∏
i∈α

xi

)
fα

then

Ex∈{±1}` Lx(f)4 � 9d
(
Ex∈{±1}` Lx(f)2

)2
(2.4)

The notation in this lemma are a bit subtle, and so it’s worth taking the time and make sure we
parse it. First, note that the lemma immediately implies Theorem 2.9. Indeed, since Lx(f) = f(x),
plugging this in (2.5) yields (2.2). However, we use the second notation to emphasize that x is
not a variable of Lx, nor of the polynomials implicitly defined in (2.5). These are polynomials in
the coefficients of f . In particular, Lx is linear, no matter what the number d is, and both the
LHS and RHS of (2.2) are degree 4 polynomials. The lemma also implies that if {f} is a degree-4
pseudo-distribution then

Ẽf Ex∈{±1}` f(x)4 ≤ 9d Ẽf
(
Ex∈{±1}` f(x)2

)2

We now turn to prove the lemma. The proof is a close variant of the proof of Theorem 2.9 but
we have to be a bit more careful and make a stronger induction hypothesis. In particular, we will
prove the following stronger result

Lemma 2.11. Let d, e, ` ∈ N. For every x ∈ {±1}n, let Lx(·) be the linear function in the variables
{fα}|α|≤d such that

Lx(f) =
∑
α

(∏
i∈α

xi

)
fα

and let L′x(·) be the linear function in the variables {gα}|α|≤e such that

L′x(f) =
∑
α

(∏
i∈α

xi

)
gα

2.4. SOS’ING PROOFS OF ISOPERIMETRIC INEQUALITIES 35

then
Ex∈{±1}` Lx(f)2L′x(g)2 � 9(d+e)/2

(
Ex∈{±1}` Lx(f)2

)(
Ex∈{±1}` L

′
x(f)2

)
(2.5)

Proof. We prove the lemma by induction on `, d, e, again, if any of those is zero then the result is
trivial. Below we use the notation f(x) for Lx(f) and g(x) for L′x(g), but you should remember
that f(x) is a linear polynomial in the variables {fα} (rather than being a degree d polynomial in
x).

Let f0, f1, g0, g1 be such that f(x) = f0(x) + x`f1(x) and g(x) = g0(x) + x`g1(x). Note that
the coefficients of f0, f1, g0, g1 are a linear function of the coefficients of f, g (because f0(x) =
1
2f(x1, . . . , xn−1, 1)+ 1

2f(x1, . . . , xn−1,−1) and f1(x) = 1
2f(x1, . . . , xn−1, 1)− 1

2f(x1, . . . , xn−1,−1)).
Moreover, the monomial-size of f0, f1, g0, and g1 are at most d, d− 1, e, and e− 1, respectively.

Since Ex` = Ex3
` = 0, if we expand E f2g2 = E(f0 + x`f1)2(g0 + x`g1)2 then the terms where

x` appears in an odd power vanish, and we obtain

E f2g2 = E f2
0 g

2
0 + f2

1 g
2
1 + f2

0 g
2
1 + f2

1 g
2
0 + 4f0f1g0g1

By expanding the square expression 2E(f0f1 − g0g1)2, we get 4E f0f1g0g1 � 2E f2
0 g

2
1 + f2

1 g
2
0 and

thus
E f2g2 � E f2

0 g
2
0 + E f2

1 g
2
1 + 3E f2

0 g
2
1 + 3E f2

1 g
2
0 . (2.6)

Applying the induction hypothesis to all four terms on the right-hand side of 2.6 (using for the last
two terms that the monomial-size of f1 and g1 is at most d− 1 and e− 1),

E f2g2 � 9
d+e

2
(
E f2

0

) (
E g2

0

)
+ 9

d+e
2
(
E f2

1

) (
E g2

1

)
+ 3 · 9

d+e
2
−1/2

(
E f2

0

) (
E g2

1

)
+ 3 · 9

d+e
2
−1/2

(
E f2

1

) (
E g2

0

)
= 9

d+e
2
(
E f2

0 + E f2
1

) (
E g2

0 + E g2
1

)
.

Since E f2
0 + E f2

1 = E(f0 + x`f1)2 = E f2 (using Ex` = 0) and similarly E g2
0 + E g2

1 = E g2, we

derive the desired relation E f2g2 � 9
d+e

2

(
E f2

) (
E g2

)
.

36CHAPTER 2. MAX-CUT, SPARSEST CUT, SMALL SET EXPANSION AND SOMERELATIONS OF ISOPERIMETRYANDHYPERCONTRACTIVITY

Chapter 3

SOS Lower bounds: 3XOR/3SAT and
planted clique

These notes are an expanded version of the notes for my summer course scribed by Akash Kumar

In this lecture we will see some lower bounds (or more accurately, negative results) for the Sum
of Squares algorithm. Namely, we will see computational problems which the SOS algorithms fails
to solve with a small degree. Another way to say this is that we will see cases that demonstrate the
difference between pseudo-distributions and actual distributions. If we take the point of view that
pseudo-distributions capture the knowledge of a computationally-bounded observer, then these are
examples where being computationally bounded has very a significant effect on this knowledge. We
have jokingly referred to ”Marley’s Corollary” as roughly saying that as long as you don’t use the
probabilistic method then ”every little thing gonna be alright” and pseudo-distributions can be
counted on to be similar to actual distributions. Thus it’s not surprising that we will in fact use
the probabilistic method in constructing these examples.

3.1 Lower bounds for random 3SAT/3XOR

In the Max-3XOR problem, we are given a set of linear equations (mod 2) in n Boolean variables
x1, . . . , xn such that each equation only involves three variables (i..e., has the form xi⊕xj⊕xk = ai,j,k
), and we need to find the assignment x that satisfies the largest number of equations. (For simplicity
of notation, we will actually think of x a string in {±1}n, meaning that the equations have the
form xixjxk = ai,j,k for some ai,j,k ∈ {±1}.) Finding whether or not there exists an assignment
that satisfies all equations can of course be done via Gaussian elimination, but H̊astad proved in
1995 that for every ε > 0 it is NP-hard to distinguish between the case that there is an assignment
satisfying 1 − ε fraction of the equations, and the case that every assignment satisfies 1/2 + ε
fraction of the equations. (There is always an assignment satisfying 1/2 of the equations— can
you see why?.) In fact, since H̊astad’s reduction only had linear blowup from the underlying PCP
system (known as ”Label Cover”), and thanks to the work Moshkovitz and Raz we now know of
such PCP systems which themselves have a quasilinear blowup from 3SAT, if we assume that there
is no 2n

0.999
algorithm for 3SAT (an extremely reasonable assumption which is in fact weaker than

what’s known as the ”Exponential Time Hypothesis”) then the SOS algorithm would require degree
at least n0.999 to do so. However, it is always good to verify these predictions by proving them
unconditionally, which is what is achieved (in a very strong form) by the following theorem:

37

38 CHAPTER 3. SOS LOWER BOUNDS: 3XOR/3SAT AND PLANTED CLIQUE

Theorem 3.1 (Grigoriev, 1999). For every constant ε > 0 and large enough n, there exists an
instance ψ of Max-3XOR over n variables such that:

• Every assignment x ∈ {±1}n satisfies at most 1/2 + ε fraction of the equations of ψ.

• There exists a degree Ω(n) pseudo distribution {x} that is consistent with the constraints
{x2

i = 1} for all i ∈ [n] and the constraint {xixjxk = ai,j,k} for every i, j, k such that ψ
contains the equation ai,j,kxixjxk = 1.

Moreover, there is m = O(n) such that with constant positive probability, a random ψ with
m equations will satisfy the properties above. (I believe this constant probability can actually be
upgraded to 1− o(1) at the expense of a slight complication in the proof; Exercise 3.1: verify this,
see footnote for hint1)

Note that this theorem is stronger than what is predicted by the NP-hardness results, as it says
that SOS cannot even distinguish between the case that the equations are completely satisfiable
and the case that one can satisfy at most a 1/2 + ε fraction, which as we mentioned can in fact
be done in polynomial time via Gaussian elimination. So how come this powerful algorithm does
not solve this easy problem? One answer is that while the SOS algorithm may be optimal in some
domains, it does not mean it’s optimal for all problems.2 In particular, it does not seem able to
take advantage of algebraic structure such as the one present in linear equations. Another related
observation is that, unlike some other algorithms, the SOS algorithm (at least when applied to
natural simple systems of equations such as those arising from constraint satisfaction problems)
doesn’t seem to do ”half measures” in the sense that it is inherently robust to noise. That is,
because of its continuous nature, the SOS algorithm does not really distinguish between the case
that x satisfies all the equations (i.e.

∑
i,j,k ai,j,kxixjxk = m) and the case that it satisfies almost all

of them (i.e.
∑

i,j,k ai,j,kxixjxk ≥ (1− ε)m) . This is in stark contrast to algebraic algorithms such
as Gaussian elimination that are very brittle, and completely break down even in the presence of
very small amounts of noise. Therefore, if the SOS algorithm would have solved the ”1 vs. 1/2 + ε”
Max-3XOR problem, then it would also have been able to solve the ”1− ε vs. 1/2 + ε” variant of
the problem, but this latter variant is NP-hard.

Some bibliographical remarks: Theorem 3.1 was proven by Grigoriev in 2001, and later redis-
covered by Schoenebeck in 2008. Schoenebeck also observed that it immediately implies a lower
bound for 3SAT, since a ⊕ b ⊕ c = 1 implies that a ∨ b ∨ c = 1, and a random 3SAT instance
is unsatisfiable. Tusliani extended this further by first showing that the same ideas can be used
to show a lower bound for a very particular type of the ”Label Cover” problem, which can be
thought of as an ”SOS PCP theorem”. He then showed that SOS lower bounds are in general
closed under ”gadget reductions” and so managed to transform many of the NP-hardness results
obtained from the PCP theorem into matching unconditional SOS lower bounds. Siu On Chan
(2013) provided a very interesting result in the other direction, giving an actual PCP Theorem
that exactly matches the parameters of the ”SOS PCP Theorem”. An excellent question asked

1Hint: The reason that a random instance is not an expander with high probability is that there may be a few pairs of 3-variable equations

that have two common variables. The effect of this should be the same as adding a small number of equations of the form xi⊕xj = σ (or xixj = σ

in {±1} notation) to the instance, and one should be able to show that the pseudo-distribution we construct can be modified to satisfy these

constraints as well.
2Throughout this course, when saying that the SOS algorithm solves a problem X, I always assume that the

representation of X as polynomial equations is fixed to some canonical form. If we allowed arbitrary polynomial-
time computable representations then we could simulate any algorithm using the SOS algorithm as even linear
programming is P-complete.

3.1. LOWER BOUNDS FOR RANDOM 3SAT/3XOR 39

in class is whether there is an algorithm that combines both SOS and Gaussian elimination in a
natural way. I don’t know of an algorithm for this, but there is a proof system, which simply uses
the same rules of derivation {P ≥ 0, Q ≥ 0} |= {P + Q ≥ 0, PQ ≥ 0} as the SOS system but
tracks the actual degree as opposed to the syntactic degree, see this paper of Grigoriev, Hirsch, and
Pasechnik http://eccc.hpi-web.de/report/2001/103/. A proof system is still very interesting
since it can demonstrate that a problem lies in NP ∩ coNP and (as we discussed) there are very
few examples for problems in this class that are not also known to be in P . We know very few
lower bounds for this system, though the NP completeness results imply that there should be a
3XOR instance where one can satisfy at most, say, 0.51 fraction of the equations, but the best
upper bound proven by this system with degree � n would not be better than 0.99.

3.1.1 Proving Theorem 3.1

To prove Theorem 3.1 we need to (1) give a construction of some highly unsatisfiable 3XOR
instance ψ and (2) construct a degree O(n) pseudo-distribution {x} that pretends to satisfy all the
constraints of ψ . As mentioned, the construction of ψ is simple - we simply choose it as a random
3XOR instance with m = cn constraints for some constant c (depending on ε).3 Let us think of the
choice of ψ as choosing a bipartite graph on G on m+ n vertices with left-degree 3 and a random
a ∈ {±1}m such that the `th equation is that a`xixjxk = 1 where {i, j, k} are the neighbors of `.
The theorem follows from the following lemmas:

Lemma 3.2. For every G, with 1 − exp(−Ω(n)) probability over the choice of a ∈ {±1}cn it will
hold that every assignment x satisfies at most 1/2 + ε fraction of the equations where ε tends to
zero as c grows.

Lemma 3.3. There is some δ, p > 0 such that with probability at least p > 0 the graph G is
a (δn, 1.7)-expander, where we say that a bipartite graph G = (L,R,E) is a (s, α) expander if
|Γ(S)| ≥ α|S| for every S ⊆ L with |S| ≤ s, where Γ(S) denotes the set of neighbors of S.

Lemma 3.4. For every a ∈ {±1}m, if G is a (k, α) expander for α > 1.5 then there exists a
degree k/100 pseudo-distribution {x} consistent with the constraints Ẽxixjxk = a` for every ` and
{i, j, k} = Γ(`).

We defer the proofs of Lemmas 3.2 and 3.3. The proofs use, as promised, the probabilistic
method, but are not complicated and follow by the usual Chernoff+union bound argument. Despite
being simple, the fact that they use the probabilistic method is in some sense the reason that they
do not carry over to the SOS setting. This serves as a caution that we shouldn’t equate a proof
being ”SOS’able” with it being ”simple”— there can be highly complex proof in the SOS setting,
and every simple proof that is not ”SOS’able” with low degree. I believe that Lemma 3.3 actually
can be derandomized using the paper of Capalbo, Reingold, Vadhan, Wigderson. One way to
demonstrate that Marley’s corollary is not a universal rule is to do Exercise 3.2: Prove that
there is no SOS proof that the CRVW graph is a (k, α) expander for α > 1.5 . (I actually don’t
know if this exercise is true, and if it is I think it would actually be an interesting research result,
showing a ”robust” SOS lower bound with a deterministic construction.) Alekhnovich (2001) had
a fascinating conjecture that as long as G is a sufficiently good expander, the instance (G, a) with
a random a would be hard.

Note that despite having a very simple proof, I don’t know of any derandomization for Lemma 3.2.

3We will use the words equations, constraints and clauses interchangebly.

http://eccc.hpi-web.de/report/2001/103/

40 CHAPTER 3. SOS LOWER BOUNDS: 3XOR/3SAT AND PLANTED CLIQUE

3.1.2 Proof of Lemma 3.4

To prove Lemma 3.4 we need to show the existence of a degree Ω(n) pseudo-distribution {x} that
pretends to range over x ∈ {±1}n that satisfies the constraints of the system (G, a). Our philos-
ophy is that a pseudo-distribution captures the knowledge of computationally bounded observer.
Note that (actual) distributions are the standard way to model knowledge of a computationally
unbounded observers that only have partial information— this is known as Bayesian reasoning. For
example, suppose that Mickey is a computationally all-powerful observer. If Mickey was given no
information at all then we model its knowledge by the uniform distribution over {±1}n. Note that
this distribution satisfies that ExS := E

∏
i∈S xi = 0 for every non empty set S. (Note that since

the distribution is over x’s that satisfy x2
i = 1 then knowing E

∏
i∈S xi for every set S suffices to

deduce E p(x) for every polynomial p(·).)
If Mickey later learns that x7x13x22 = −1 and x22x44x60 = +1 then we model his knowledge by

the distribution that is uniform over the the strings that satisfy these conditions— namely ExS = 0
unless S is either empty or one of {7, 13, 22}, {22, 44, 60} and {7, 13, 44, 60}.

Now if Mickey was given all the equations, then, being computationally unbounded, then if the
equations come from Lemma 3.2 he would be to figure out that there exists no x that satisfies all the
equations (or even a 0.6 fraction of them), and hence that there simply exists no such distribution.
However, if these equations are given to the Donald that can only do ns-time computation, then
he might not be able to do that. Specifically, Donald could deduce from x7x13x22 = −1 and
x22x44x60 = +1 that x7x13x44x60 = −1 etc.. but not able to draw all possible logical inferences and
hence figure out that there is no solution x to these equations. Thus, just in the case of Mickey,
we design the pseudo-distribution to be as random as possible subject to being consistent with the
deductions Donald is able to make, in other words we follow Einstein’s maxim that

Pseudo-distributions should be as random as possible but not randomer

More concretely we will assume that Donald’s knowledge only applies to terms of the form∏
i∈S xi for |S| ≤ s, and that given subsets S, T such that |S|, |T | ≤ s, if U = S⊕T has size at most

s, then he can deduce that xU = xSxT , but these are all the deductions he can make. Specifically
we define the pseudo-distribution {x} by the following iterative process:

• Input to the process: graph G = ([m] ∪ [n], E) and string a ∈ {±1}m.

• For every ` ∈ [m], define ẼxΓ(`) = a`.

• Apply the following rule until we can’t apply it any further: for every subsets S, T of size
at most s such that ẼxS and ẼxT are defined, |S ⊕ T | ≤ s, define ẼxS⊕T = ẼxS ẼxT . (If
ẼxS⊗T was already defined before with a different value, the process fails and halts.)

• When done, for every nonempty |S| ≤ s such that ẼxS is undefined, define ẼxS = 0. For
every monomoial m(x) of degree at most s that contains square terms define Ẽm(x) = ẼxS
where S is the set of i’s such that xi appears with an odd degree in m(x).

We need to prove that {x} defined above is a valid pseudo-distribution. For starters, we need
to verify that it never halts:

Lemma 3.5. If the G is a (10s, 1.7) expander then the process above never halts.

Before proving the lemma, lets see why it implies that {x} is a valid pseudo-distribution for
degree at most s/2. First note (Exercise 3.3: check this) that by definition, we get that for every

3.1. LOWER BOUNDS FOR RANDOM 3SAT/3XOR 41

polynomial p of degree at most s − 3 and every S = Γ(`), Ẽ p(x)xS = a` Ẽ p(x). Thus we need
to prove that for every polynomial q of degree at most s/2, Ẽ q2 ≥ 0. Exercise 3.4: Prove that
it suffices to do so for the case that q is multilinear namely q(x) =

∑
|S|≤s/2 αSxS for some real

numbers {αS}|S|≤s/2.

For two subsets S, T of size at most s/2, we say that S ≡ T if ẼxS⊕T 6= 0. Note that this is
indeed an equivalence relation— it is symmetric, reflexive (since Ẽx∅ = Ẽ 1 = 1), and transitive,
since if S ≡ T and T ≡ U then ẼxS⊕U = Ẽx(S⊕T)⊕(T⊕U = ẼxS⊕T ẼxT⊕U . Separate the monomials
of q into the equivalence classes and so write q =

∑m
i=1 qi where all monomials in qi belong to a

particular equivalence class. Note that if S and T are not equivalent then ẼxSxT = ẼxS⊕T equals
zero, and hence

Ẽ q2 = Ẽ(
∑
i

qi)
2 =

∑
Ẽ q2

i

Thus it suffices to show that Ẽ q2 ≥ 0 where q(x) =
∑

S∈C αSxS where C is some fixed equivalence

class. Let S0 be a member of that class. Thus for every S, T ∈ C, ẼxS⊕S0 6= 0 and ẼxT⊕S0 6= 0
and so (by our rule) ẼxS⊕T = ẼxS⊕S0 ẼxT⊕S0 . Therefore,

Ẽ q2 =
∑
S,T∈C

αSαT ẼxSxT =
∑
S,T∈C

αSαT (ẼxS⊕S0)(ẼxT⊕S0) =
(∑

αS ẼxS⊕S0

)2
≥ 0

3.1.3 Proof of Lemma 3.5

[BOAZ: this proof is copy pasted from previous lecture notes and so uses somewhat
inconsistent notation. On a very high level, the proof goes as follows: for a set E of
equations, let Γ(E) denote ⊕`∈EΓ(`), i.e. Γ(E) is the set of variables that appear an odd
number of times in the equations in E. If we have a derivation U1, . . . , Ut of sets of size
at most d such that either Ui is the variables of an equation (i.e., Ui = Γ(`)) or the value
ẼUi is always derived from prior values ẼUj , ẼUk for j, k < i, then we can keep track
of the sets of equations Ei that correspond to every Ui (e.g., if Ui = Γ(`) then Ei = {`}
and in the other case Ei = Ej⊕Ek. Note that Ui = Γ(Ei) and the value derived to ẼUi
is equal to

∏
`∈Ei aΓ(`). We then use the expansion property to argue that for every i,

|Ei| ≤ 10s , and |Γ(E)| ≥ |Ei|/10 for all E with |E| ≤ 100s. But this implies that Ui
uniquely determines Ei, since if we had Ui = Uj but Ei 6= Ej then we would get that
∅ = Ui ⊕ Uj = Γ(Ei) ⊕ Γ(Ej) = Γ(Ei ⊕ Ej). But since |Γ(Ei ⊕ Ej)| ≥ |Ei ⊕ Ej |/10, if
Ei 6= Ej then the set Ei ⊕ Ej can’t be empty. Thus the value for a set U that can be
derived in some way is always uniquely defined as ⊕`∈ExΓ(`) no matter how we derived
it.]

Observe that if there is a derivation that gives different values to some monomial U of degree at
most d, then there is also another derivation that shows Ẽ

[
xφ
]

= −1. We will show that this leads

to a contradiction. Let the derivation of Ẽ
[
xφ
]

= −1 be described by a sequence of set U1, U2, · · ·Ut
with Ut = φ. Notice that each Ui in this derivation is either some constraint in E or a product of
some of the constraints from E . Let E1, E2 · · ·Em be the sets corresponding to the equations in E
and σ1, σ2, · · ·σm be the corresponding values. For every Ui that is derived, we see that there is
some Si ⊆ L for which Ui = ∪`inSiE`.

Now, we will see that the assumption of there being two different derivations for Ẽ
[
xφ
]

with
opposite values leads to the conclusion that the above algorithmic process must assign some value

42 CHAPTER 3. SOS LOWER BOUNDS: 3XOR/3SAT AND PLANTED CLIQUE

to Ẽ
[
xU
]

for some |U | > d which is not possible. This conflicts with the assumption that there are 2
different derivations for the same set with opposite values. The plan is roughly the following. First
we observe that every derived monomial with short derivation spans many variables (by expansion
property) (has large degree). The idea is to show that two derivations with opposite values means
that there is some monomial with degree greater than d that the algorithm defines.

Claim 3.6. For every S ⊆ L with |S| ≤ 100d, | ⊕`∈S E`| ≥ |S|/10.

Proof. Suppose not. Let T = ⊕`∈SE`. Observe that the monomial in T may not all of the variables
from Γ(S) (that is, those which appear in Γ(S) \ T) . So, these variable nodes must have at least
2 neighbors in S as they need to cancel out. This gives (by expansion property)

#edges leaving |S| ≥ # edges entering S from the “omitted” variables in Γ(S) \ T
=⇒ 3|S| ≥ 2(1.7|S| − |T |)
=⇒ |T | ≥ 0.2|S|

As observed already the above claim asserts that whatever you derive by XORing a small subset
of clauses on the left gives rise to a monomial with decent degree.

Corollary 3.7. Notice that this means that every set Si in the derivation must have size no larger
than 10d.

Proof. A quick proof. Suppose not – then the first such violating set Si = Sj ⊕Sk where Sj and Sk
both describe short derivations and Si is a bigger derivation with length in the interval (10d, 20d].
And by the above observation, this would mean ⊕`∈SiE` > d.

Thus, the existence of 2 sets with different values implies that there is a set S = St with size at
most 10d such that ⊕`∈SE` = φ contradicting the observation above.

For P : {±1}k → ±, we define a Max-P instance ψ to be a collection of equations of the
form P (ai1xi1 , . . . , aikxik) = a, and the goal is again to find an assignment x satisfying as many
of the equations as possible. We say that P is a nice subspace predicate if there is some subspace
V ⊆ GF (2)k such that P = 1V (using the identification GF (2)↔ {±1} using the map n↔ (−1)b)
and such that every u ∈ V ⊥ satisfies |u| ≥ 3.

As was noted by Tulsiani, Chan, the proof of Theorem 3.1 generalizes to the following statement:
Exercise 3.5: Prove the following theorem.

Theorem 3.8. For every nice subspace predicate P = 1V , constant ε > 0 and large enough n, there
exists an instance ψ of Max-P over n variables such that:

• Every assignment x ∈ {±1}n satisfies at most |V |/2k + ε fraction of the equations of ψ.

• There exists a degree Ω(n) pseudo distribution {x} that is consistent with the constraints
{x2

i = 1} for all i ∈ [n] and the constraint corresponding to every equation in ψ.

Moreover, there is m = O(n) such that with constant positive probability, a random ψ with m
equations will satisfy the properties above.

3.1. LOWER BOUNDS FOR RANDOM 3SAT/3XOR 43

3.1.4 Proof of Lemmas 3.3 and 3.2

[BOAZ — these two proofs are also at the moment copy-pasted from previous notes and use
inconsistent notation.]

Proof. We will prove the result for the graphs Gφ obtained from a random k-xor instance with n
variables and γn constraints for some large constant Γ. In fact, the same proof holds for a random
instance of any Max-K-CSP over any alphabet. Let us begin by trying to understand what is the
probability that a set fails to have large expansion. Let us say that in fact, there is a small set of
variables T ⊆ R that is the vertex boundary of some set S of size s = εn where ε is some constant
to be determined later. Let |T | ≤ cs = (k−1−δ)s denote the size of this small set of variables that
appear in this set S of the random k-xor instance (where δ ∈ (0, 1

2)). Observe that the probability
p that this indeed happens – that a set S of size εn happens to have small vertex boundary can be
upper bounded by

p ≤
(
n

cs

)
·
((cs

k

)
s

)
· s!
(
γn

s

)
·
(
n

k

)−s
Here,

•
(
n
cs

)
denotes which cs variables to use.

•
((csk)
s

)
denotes the number of ways cs variables can be put together to get s clauses each of

arity k.

• s!
(
γn
s

)
counts the choices for where to put such clauses in our ordered sequence of γn clauses.

• And the last term,
(
n
k

)−s
denotes the probability that the clauses were generated using the

described method.

Now, using Stirling’s which says a
b
b ≤ a

b ≤
ae
b
b and s! ≤ ss, we obtain by collecting terms we get

p ≤
(s
n

)2δ·s/2 (
e2k+1−δk1+δγ

)s
≤
(s
n

)δs
·
(
γ5
)s

=

(
sγ5/δ

n

)δs
We need to show that the probability that any set of at most s ≤ εn constraints contains less

than cs variables is o(1). To do this, consider the following.

εn∑
s=1

(
sγ5/δ

n

)δs
=

ln2 n∑
s=1

(
sγ5/δ

n

)δs
+

εn∑
s=ln2 n+1

(
sγ5/δ

n

)δs

≤ O
(
γ5

nδ
· ln2 n

)
+O

(
εγ5/δ

)δ ln2 n

Now, we are almost done. Observe that the first term is clearly o(1) and that the second term is
o(1) for ε = O(1

100γ5/δ). This gives us that indeed small sets of size εn fail to have a large boundary

with large probability which is what we wanted.

44 CHAPTER 3. SOS LOWER BOUNDS: 3XOR/3SAT AND PLANTED CLIQUE

3.2 SOS Lower bounds for planted clique

The planted clique problem is one of the most classical computational problems, whose roots come
from a 1976 question of Karp of whether we can find the largest clique in a random graph. In the
early 1990’s, Jerrum and Kucera suggested the easier planted model, whereby the goal is to find a
ω-clique that has been added to a random graph. Note that if ω � log n then this would be the
unique maximum ω-clique in the graph. (Exercise 3.6: prove that with probability at least 0.99
a random G(n, 1/2) graph has the maximum clique size of at most c log n for some constant c; how
small can you make c? .) The larger ω is, the easier this problem. Another variant which seems to
have equivalent difficulty is to distinguish between a random graph and a graph to which a random
ω-clique was added. One easy bound on ω for this problem arises from the following exercises:

Exercise 3.7: Let A be the adjacency matrix of a random G(n, 1/2) graph and B = 2A − J
where J is the all 1’s matrix. (1) Prove that for every t, ETr(Bt) ≤ 2O(t)nt/2. (2) Conclude that
with probability at least 0.99, ‖B‖ ≤ O(

√
n).

Exercise 3.8: Let A be the adjacency matrix of a n-vertex graph with average degree n/2 that
contains a ω clique and B = 2A− J . Prove that ‖B‖ ≥ Ω(ω).

Thus we can easily distinguish between a random G(n, 1/2) graph and an n vertex graph
containing a ω �

√
n clique, and in fact these ideas can be used to actually find the clique in

the latter case (Exercise 3.9: Show this; see footnote for hint4). Many people have thought of
improving this

√
n bound but with no success, often proving that certain methods won’t work. In

fact by now the difficulty of this question has been conjectured in several works that have connected
this problem to questions in machine learning, compressed sensing, computing equilibrium and
more.

The algorithm that works for ω ∼
√
n can be thought of as an instantiation of the degree 2 SOS

algorithm and thus we come again to the question of whether degree d > 2 SOS can do better than
degree 2. As in the case of the Unique Games, Small-Set Expansion, Max-Cut, Cheeger etc.., the
answer is that we don’t know. But, given that this is an average case problem (such as the random
3XOR problem discussed above), one could perhaps hope that we will be able to prove some SOS
lower bounds in this case. Indeed last year Meka and Wigderson claimed that for every constant
d there is some ε > 0 such that the degree d SOS algorithm cannot certify that a random graph
doesn’t contain an ε

√
n clique. However (as we will see) their proof was flawed. Nevertheless in a

very new result, Meka, Potechin and Wigderson were able to prove a weaker result. Namely that
the degree d SOS cannot certify that a random graph doesn’t contain an Ω̃(n1/d) clique. We will
see a (slight weakening of a) special case of their result, namely

Theorem 3.9. Let G = G(n, 1/2) be a random graph. With probability at least 0.9, there exists a
degree 4 pseudo-distribution {x} over Rn satisfying {x2

i = xi} for all i, {xixj = 0} for all i and j
that are not neighbors in G, and

Ẽ
∑

xi ≥ Ω(n1/8)

3.2.1 Proof of Theorem 3.9

Once again, to construct a pseudo distribution, we think of a computationally bounded observer
that is told that there is a planted clique in the graph, and needs to form beliefs about what
is the probability that some set S with |S| ≤ 4 is contained in the clique (or equivalently, what
should be the expectation ẼxS). Clearly if S is not itself a clique, then this probability is zero.

4Hint: Show that we can get a set S with large correlation with the clique by looking at the largest eigenvector of B, and then show that

we can use to actually find the clique by looking at the set of vertices that have very large degree into S.

3.2. SOS LOWER BOUNDS FOR PLANTED CLIQUE 45

Otherwise, since both clique and surrounding graph are random, we would expect the probability
to be the roughly the same for every clique. This motivates defining our pseudo-distribution: for

every set S of size at most 4, if S is not a clique then ẼxS = 0, and otherwise ẼxS = 2(|S|2)(ω/n)|S|

(where
(

1
2

)
= 0).5 Analogous to what we did for 3XOR, we use the constraints that x2

i = xi to
reduce every monomial m(x) to a multilinear monomial of the form xS . Note that we get that
Ẽ
∑
xi = n(ω/n) = ω.

It turns out that this simplistic pseudo-distribution is already sufficient to prove a weak lower
bound on the clique size

Lemma 3.10. If ω � n1/8 then the pseudo-distribution above is a valid degree 4 pseudo-distribution
satisfying the conditions of Theorem 3.9

On the other hand, we (and Meka-Wigderson) have violated Einstein’s maxim and made this
pseudo-distribution ”randomer than possible” if we want to reach the ω ∼

√
n bound.

Lemma 3.11. If ω � n1/3 then there exists a quadratic polynomial Q such that ẼQ2 < 0

3.2.2 Proof of Lemma 3.10

Let Ma,b,c,d = Ẽxaxbxcxd. We need to prove that the matrix M is positive semidefinite. Let us
focus our attention to the rows {a, b} of M where a 6= b and columns {c, d} where c 6= d (this turns
out to be the crux of the proof). Since the entire row corresponding to {a, b} will be zero if (a, b) is
not an edge ofG, we can think of M as an E×E matrix where E is the edge set of G. Recall that for
every a, b, c, d Ma,b,c,d depends solely on |{a, b, c, d}. Thus we can write M = M2 +M3 +M4 where
M s
a,b,c,d = Ma,b,c,d if |{a, b, c, d}| = s and equals zero otherwise. Let us ignore M3 for now (this is

not the main issue) and so focus on proving that M2 +M4 is positive semidefinite. Note that M2

simply contains all diagonal elements and each has magnitude Ẽxaxb = 2ω2/n2. Therefore, we can
scale by this number and reduce showing that M2 + M4 is psd to showing that I + M ′ is p.s.d
where I is the E × E identity, and M ′ is defined as follows:

M ′a,b,c,d =


0 |{a, b, c, d}| 6= 4

3ω2/n2(1− 1/16) {a, b, c, d} is 4-clique

−(3/16)ω2/n2 {a, b, c, d} is not a 4-clique

Note that M ′ is simply M4, scaled by n2/(2ω2) and subtracting from each entry {a, b, c, d}
with |{a, b, c, d}| a constant so that the expected entry of M4 is zero. The reason that this suffices
follows from the following exercise:

Exercise 3.10: Let E be the n2 × n2 expectation matrix of M . Namely, for every a, b, c, d,

Ea,b,c,d is the expected value of Ma,b,c,d which is 2−(s2)2(s2)(ω/n)s where s = |{a, b, c, d}|. Prove that
E is p.s.d and its smallest nonzero eigenvalue is Ω(ω2/n2).

This exercise is actually a special case follows from the theory of Johnson Association Schemes
that is used in proving more general bounds. In particular the following is true (and may be useful
for the previous exercise):

5This is because conditioned on S being a clique, the probability that it is contained in the random ω-clique

would be roughly
(
w
|S|

)
divided by the the number of |S|-clique in the graph which is

(
n
|S|

)
2−(|S|2); we get the above

probability using the approximation
(
n
k

)
∼
(
en
k

)k
.

46 CHAPTER 3. SOS LOWER BOUNDS: 3XOR/3SAT AND PLANTED CLIQUE

Exercise 3.11: Let ` ∈ N and J be a matrix indexed by all subsets S ⊆ [n] of size at most

s such that JS,T =
(|S∩T |

`

)
. Then J is psd. (If you get stuck, take a look at the Meka-Wigderson

paper.)
The Frobenius norm squared of M ′, namely

∑
a,b,c,d(M

′
a,b,c,d)

2 equals O(n4ω4/n4) = O(ω4).
Note that the Frobenius norm squared is the sum of the eigenvalues squared, and thus if M ′ was
”generic” or ”pseudorandom” in the sense that it would have Θ(n2) eigenvalues with roughly the
same magnitude λ, then λ will satisfy n2λ2 = O(ω4) or λ ≤ O(ω2/n). Thus in this case, as long as
ω �

√
n the matrix I +M ′ (and hence M) will be positive semidefinite. A priori you might hope

that, sicne M ′ arises from a random graph then it will in fact be sufficiently ”psuedorandom” to
satisfy this, but as we will see in Lemma 3.11, this turns out to be false. Nevertheless we are able
to prove the following claim:

Claim: w.h.p. Tr(M ′4) ≤ O(ω8/n)

The theorem follows from the claim since we get that ‖M ′‖ ≤ Tr(M ′4)1/4 ≤ ω2/n1/4. Hence if
ω2 � n1/4 (or ω8 � n) then I +M ′ will be psd.

Proof of Claim: By Markov we simply need to show that ETr(M ′4) ≤ O(ω8/n). (Note that
this is an actual expectation, taken over the random choice of the graph G; since the set E of edges
depends on this randomness, it might be more convenient to think of M ′ as an n2 × n2 matrix for
this argument.) The expectation of the trace is the sum over all 4-tuples of edges e1, e2, e3, e4 of

EM ′e1,e2M
′
e2,e3M

′
e3,e4M

′
e4,e1 (3.1)

Now if e1, e2, e3, e4 are all disjoint, then, conditioned on e1, e2, e3, e4 being edges, the events ”e1∪e2

is a 4-clique”, ”e2 ∪ e4 is a 4-clique”, etc.. are independent. Thus we get that (3.1) equals

EM ′e1,e2 EM
′
e2,e3 EM

′
e3,e4 EM

′
e4,e1

but EM ′e,f = 0 for every pair of edges e, f by the construction of M ′. Therefore, the contribution to
the trace must come from 4-tuples of edges that are not all disjoint. Since each such 4-tuple involves
at most 7 vertices, there are O(n7) such tuples, and since every entry as magnitude O(ω2/n2), the
expectation of the trace is at most

O(n7) ·O(ω2/n2)4 = O(ω8/n)

Exercise 3.12: Prove that in fact ETr(M ′4) ≤ O(ω8/n2), hence concluding that the pseudo-
distribution is psd as long as ω � n1/4. See footnote for hint6

3.2.3 Proof of Lemma 3.11

Intuitively, one may hope that the pseudo-distribution above remains valid even for a larger value
of ω, as long as ω �

√
n. However, Lemma 3.11 shows this is not the case. To understand the

reason, let’s see that there is a simple observation available to the computationally-bounded Donald
that would yield different results in this pseudo-distribution than it would have if it was truly a
distribution over planted cliques. Specifically, for a n-vertex graph G, let r1, . . . , rn ∈ Rn be the
vectors such that

ri(j) =


+1 (i, j) is an edge

0 i = j

−1 otherwise

6Hint:Show that in fact the only nonzero contribution to the trace come from 4-tuples of edges e1, e2, e3, e4 such that |e1∪e2∪e3∪e4| ≤ 6.

3.2. SOS LOWER BOUNDS FOR PLANTED CLIQUE 47

Let P (x) be the polynomial
∑
〈ri, x〉4. Note the following facts about P (x): (Exercise 3.13:

verify those)

1. For every fixed x ∈ Rn, if we choose the graph at random then EP (x) = O(n‖x‖4).

2. If x is the 0/1 characteristic vector of an ω-clique (and hence ‖x‖2 = ω) then P (x) ≥
ω(ω − 1)4 = Ω(ω5).

Hence when ω5 � nω2 (or ω � n1/3), P (x) will distinguish between a ”typical” vector x and
a vector x that is the characteristic vector of an ω-clique. We claim that in the distribution {x}
above, ẼP (x) actually behaves as if x was ”typical” and thus gives it too low a value:

Claim: With high probability ẼP (x) ≤ O(nω2).

Proof: Using Markov, it suffices to prove that EG ẼP (x) ≤ O(nω2) where the expectation is
taken over the random choices in making the graph and the pseudo-expectation is as defined above.
Lets open up the definition of P (x) and write

E ẼP (x) =
∑
i

∑
a,b,c,d∈[n]\{i}

E ri(a)ri(b)ri(c)ri(d) Ẽxaxbxcxd

(using the fact that ri(i) = 0 for all i). Fix some i ∈ [n], and now suppose that we fix the random
choices of all neighbors in the graph except the neighbors of i. This means that Ẽxaxbxcxd is
determined for every {a, b, c, d} ⊆ [n] \ {i} and the random {±1} variables ri(a), ri(b), ri(c), ri(d)
are independent of this choice. Thus we can write for every i and a, b, c, d ∈ [n] \ {i}, Therefore

E ri(a)ri(b)ri(c)ri(d) Ẽxaxbxcxd = Ẽxaxbxcxd E ri(a)ri(b)ri(c)ri(d)

Note that E ri(a)ri(b)ri(c)ri(d) = 0 unless a = b = c = d or |{a, b, c, d}| = 2. In the first case
Ẽxaxbxcxd = ω/n and in the second case it equals O(ω2/n2). Hence for every i∑

a,b,c,d∈[n]\{i}

E ri(a)ri(b)ri(c)ri(d) Ẽxaxbxcxd ≤ nω/n+O(n2ω2/n2) = O(ω2)

which summing over all i implies that

E ẼP (x) = O(nω2)

The above shows that {x} is already very fishy as a pseudo-distribution, since (in the ω � n1/3

range) it gives P (x) a value that is far too low to be consistent with being a distribution over
ω-cliques. But we still haven’t shown that it does in fact violate the constraints of being a valid
pseudo-distribution. We now show this

Lemma 3.12 (Lemma 3.11,restated). If ω � n1/3 then there exists a quadratic polynomial Q such
that ẼQ2 < 0

Proof. We let
Q(x) = (c(n/ω)x1 − n〈r1, x〉2)2

for some large enough constant c to be determined later. Now

ẼQ2 = c2n2

ω2 Ẽx2
1 + Ẽ〈r1, x〉4 − 2cn

ω Ẽ〈r1, x〉2x2
1 (3.2)

48 CHAPTER 3. SOS LOWER BOUNDS: 3XOR/3SAT AND PLANTED CLIQUE

Let us compute each term of (3.2). First, clearly

Ẽx2
1 = Ẽx1 = ω/n

and hence the first term equals c2n/ω. We just computed the second term above as O(ω2). To
compute the third term, note that

Ẽ〈r1, x〉2x2
1 =

∑
a,b∈[2..n]

r1(a)r1(b) Ẽxaxbx2
1

which simply counts the number of triangles in the graph of the form {1, a, b} (which is Ω(n2))
multiplied by Ω(ω3/n3). (Indeed, note that if {1, a, b} is a triangle then r1(a) = r1(b) = +1, and
otherwise Ẽxaxbx2

1 = Ẽxaxbx1 = 0.) Thus the third term is −Ω(c(n/ω)n2(ω3/n3) = −Ω(cω2). We
see that if we want this expression to be negative then we need the third term to dominate the
other two, and hence we need to satisfy c � 1 and cω2 � c2n/ω, or ω3 � cn. Thus if ω � n1/3

then we can find a constant c that would make ẼQ2 < 0.

3.3 Knapsack lower bound

One very nice SOS lower bound we did not show is the following theorem of Grigoriev

Theorem 3.13 (Grigoriev). For every n there is degree Ω(n) pseudo-distribution {x} satisfying
the constraints {x2

i = xi} and {
∑
xi = n/2}.

Note that if n is odd, then there cannot be an actual distribution satisfying these constraints.
The arxiv paper of Meka and Wigderson, despite having a fatal flaw, is still very much worth
reading, and in particular is a good source for understanding the proof of this result.

Chapter 4

SOS Upper Bounds: Planted sparse
vector and dictionary learning

Based on scribed (and greatly expanded) notes by Samuel Hopkins and Jerry Li

Part I: Finding Sparse Planted Vector

4.1 Introduction

In this lecture we will see how the SOS algorithm can be used to solve the following problem:
Suppose that V ⊆ Rn is a random k-dimensional linear subspace in which someone “planted” a
sparse vector v0. Sparse here means that v0 has few nonzero coordinates in the standard basis—
perhaps εn. The goal is to recover v0 given an arbitrary basis of V . We give a more formal
description below.

The problem itself is somewhat natural, and can be thought of as an average-case real (as
opposed to finite field) version of the “shortest codeword” or “lattice shortest vector” problem.
This also turns out to be related (at least in terms of techniques) to problems in unsupervised
learning such as dictionary learning / sparse coding.

There is a related problem, often called “compressed sensing” or “sparse recovery” in which we
are given an affine subspace A of the form v0 +V , where v0 is again sparse and V is an (essentially)
random linear subspace, and the goal is again to recover v0. Note that typically this problem is
described somewhat differently: we have an m× n matrix A, often chosen at random, and we get
the value y = Av0. This determines the k = n −m dimensional affine subspace v0 + Ker(A), and
we need to recover v0.

One difference between the problems is parameters (we will think of k � n, while in sparse
recovery typically k ∼ n− o(n)), but another more fundamental difference is that a linear subspace
always has the all-zeroes vector in it, and hence, in contrast to the affine case, v0 is not the sparsest
vector in the subspace (only the sparsest nonzero one).

This complicates matters, as the algorithm of choice for sparse recovery is L1 minimization:

49

50CHAPTER 4. SOS UPPER BOUNDS: PLANTED SPARSE VECTORANDDICTIONARY LEARNING

find v ∈ A that minimizes ‖v‖1 =
∑n

i=1 |vi|. This can be done by solving the linear program:

min
n∑
i=1

xi

subject to xi ≥ vi
xi ≥ −vi
v ∈ A

But of course if A were a linear subspace but not affine, then this would return the all-zero vector.
(Though see below on variants that do make sense for the planted vector problem.)

4.1.1 Formal description of problem

We assume that v1, . . . , vk ∈ Rn are chosen randomly as standard Gaussian vectors (i.e. with
i.i.d. entries drawn from N(0, 1)), and v0 is some arbitrary unit vector with at most εn nonzero
coordinates. We are given an arbitrary basis B for Span{v0, v1, . . . , vk}. The goal is to recover v0.

For this lecture, this means recovering a unit vector v such that 〈v, v0〉2 ≥ 0.99 (though see the
paper [BKS14] for recovery with arbitrary accuracy). For simplicity let’s also assume that v0 is
orthogonal to v1, . . . , vk. (This is not really needed but helps simplify some minor calculations.)

4.1.2 Ratios of Norms

Rather than trying to directly trying to find a sparse vector, we will define some smoother proxy
for sparsity, that is some polynomial P (·) so that P (v) is larger for sparse vectors than for small
ones. Then we will look for a vector v in the subspace that maximizes P (v) (subject to some
normalization) and hope that (a) we can efficiently do this and (b) that the answer is v0. This
makes the problem more amenable for the SOS algorithm and also makes for a more robust notion,
allowing for some noise in v0 (and lets us not worry about issues of numerical accuracy).

So, we want some function that will favor vectors that are ”spikier” as opposed to ”smoother”.
We use the observation that taking high powers amplifies ”spikes”. Specifically, we note that if
q > p a sparse/spiky vector v would have a larger ratio of ‖v‖q/‖v‖p than a dense/smooth one.
Indeed, compare the all 1’s vector ~1 with the vector 1S for a set S of size εn. ‖~1‖q/‖~1‖p = n1/q−1/p

while ‖1S‖q/‖1S‖p = (εn)1/q−1/p which means that if q > p, the latter ratio is larger than the
former by some power of 1/ε. Moreover, an application of Hölder’s inequality reveals that if v is
εn-sparse then its q vs p norm ratio can only be higher than this.

Claim 4.1. If v ∈ Rn has at most εn nonzero coordinates, then

(Ei
[
v(i)q

]
)1/q ≥ ε1/q−1/p(Ei

[
v(i)p

]
)1/p.

Proof. Let 1|v|>0 be the vector which is 1 if |v(i)| > 0 and 0 otherwise. Let w ∈ Rn be given by

w = 1|v|>0/n
1−q/p. Then by Hölder’s inequality,

(Ei
[
v(i)p

]
) =

∑
i

w(i)
v(i)p

nq/p

≤ (
∑
i

w(i)1/(1−p/q))1−p/q(
∑
i

v(i)q/n)p/q

= ε1−p/q(Ei
[
v(i)q

]
)p/q.

Rearranging gives the result.

4.1. INTRODUCTION 51

How good a proxy for sparsity is this? We know that vectors which are actually sparse “look
sparse” in the ratio-of-norms sense, but what about the other way around—could the ratio of norms
be fooled by vectors which are not actually sparse? The answer is yes. For example, if q = ∞
and p = 1, the vector which has a 1 in one coordinate and ε in the other coordinates looks like an
ε-sparse (or more accurately ε−1/n-sparse) vector as far as the∞ versus 1 norm ratio is concerned,
but in the strict `0-sense is actually maximally non-sparse.

However, as the gap between p and q shrinks, a random subspace becomes less and less likely
to contain these kind of “cheating vectors” that are not sparse but look sparse when comparing
`q versus `p norms. Alternatively phrased, the closer we can take p and q, the higher dimension
random subspace we can tolerate before the subspace becomes likely to contain a vector which
confuses the `q versus `p sparsity proxy. Unfortunately, there are very values q > p for which
we know how to compute maxv∈V ‖v‖q/‖v‖p (e.g. q = ∞, p ∈ {1, 2}; not sure if there are any
other examples, see also Bhaskara and Vijayaraghavan (SODA 2011) for a discussion of related
questions, though note that they are talking of a slightly different question, max‖v‖p=1 ‖Av‖q for a
linear operator A (which for p = 2 can encapsulate our question by taking A to be a generator or
projector operator to the subspace V , and also, somewhat confusingly, their roles for p and q are
switched, and so they mostly deal with the case q ≤ p which is not our focus.)

Demanet and Hand [HD13] and Spielman, Wang, and Wright [SWW13] use the `∞ versus `1
proxy for sparsity to attack this problem. This can be efficiently computable by running the n
linear programs

max vi subject to

xi ≥ vi
xi ≥ −vi∑
i

xi = 1

v ∈ Span{v0, v1, . . . , vk}

and picking the best optimum.
However, if k � 1, this will not detect a vector v that is 0.01-sparse.
Exercise 4.1: Prove that for every subspace V of dimension k, there exists a vector v ∈ V

with maxi vi = 1 and
∑
|vi| ≤

√
k/(10n)

Some works have suggested to use the `2 vs `1 proxy. Which actually works pretty well in the
sense that if V is a random subspace of dimension at most ηn, then there is no vector v ∈ V whose
`2 vs `1 ratio pretends to be a δ-sparse vector where δ is some function of η.

Exercise 4.2:

1. Prove that for every η < 1 there exists some δ = δ(η) such that if v1, . . . , vηn are random
Standard Gaussian vectors (each coordinate is distributed according to N(0, 1)) then with
probability at least 0.9 for every x ∈ Rεn with ‖x‖22 = 1

εn∑
i=1

|〈vi, x〉| ≥ δn

See footnote for hint1

1Hint: This uses concentration of measure. See the papers of Guruswami, Lee and Razoborov and Guruswami, Lee and Wigderson for

discussion of this result, its proof, and derandomization.

52CHAPTER 4. SOS UPPER BOUNDS: PLANTED SPARSE VECTORANDDICTIONARY LEARNING

2. Conclude that for every η < 1, there is some δ = δ(η) such that a random subspace (in our
model above) does not contain a δ-sparse vector.

However, the `2 vs `1 problem has one caveat - we don’t know how to compute it, even for
a random subspace. In fact, this problem seems quite related to the question of certifying the
restricted isometry property of a matrix— this is the goal of certifying the a random m× n matrix
A (for n > m) satisfies that ‖Ax‖2 ∈ (C, 1/C)‖x‖2 for every sparse vector x. In particular this
would be false if there was a sparse vector in the Kernel of A, which is a subspace of Rn of
dimension m− n. Known methods to certify this property require that the sparse vector x has at
most

√
m nonzero coordinates. See also this blog post of Tao http://terrytao.wordpress.com/

2007/07/02/open-question-deterministic-uup-matrices/ and a paper of Koiran and Ziyzuas
connecting this problem to the planted clique problem. (Although note that, unlike the planted
clique problem, even a quasipolynomial time algorithm for this problem would be very interesting.)

In the following, we will use `4 versus `2 as our proxy for sparsity. A priori this is the ”worst
of both worlds”. On one hand, though it is better than the `∞ vs `1 proxy, the `4/`2 ratio is a
worse proxy than the `2 vs `1 ratio, and to detect 1/100-sparse vectors we will need to require
the dimension k of the subspace to be at most ε

√
n for some ε > 0 (which is much better than

k = O(1) needed in the `∞/`1 case but k = Ω(n) achieved in the `2/`1 case). On the other hand,
we don’t know how to compute this ratio either. In fact, [BBH+12b] showed (via connections
with the quantum separability problem) that computing this ratio cannot be done in nO(logn) time
unless SAT has a subexponential time algorithm, and that even achieving weaker approximations
would break the Small-Set Expansion (and hence probably also the Unique Games) conjecture.
Nevertheless, we will show that we can in fact compute this ratio in the random case, using the
degree 4 SOS system. However, as mentioned above, this cannot detect 1/100-sparse vectors if the
subspace as dimension �

√
n:

Exercise 4.3: Prove that if V ⊆ Rn has dimension k >
√
n then there is a vector v ∈ V such

that E v4
i ≥ k2

10n

(
E v2

i

)2
.

4.2 Using SoS to Do Better

4.2.1 Description of the Algorithm

We need to phrase our problem as one of polynomial optimization. We have already mentioned
that we will optimize the ratio ‖v‖4/‖v‖2. To be more specific: on input a basis B for the subspace
V we have real variables v1, . . . , vn. Our program is

max‖v‖44 subject to

‖v‖22 = 1

v ∈ V

(Note that the condition v ∈ V can be expressed as n− k linear equations.)
We run the level-4 SoS algorithm on this program to obtain a pseudodistribution {v} with

attending pseudoexpectation operator Ẽ. We then run the Quadratic Sampling Lemma to obtain
a random vector w ∈ V that matches the second moments of {v}. The result will then follow from
the following result

Lemma 4.2 (Sparse vector recovery— main lemma). If the subspace V = Span{v1, . . . , vk} is
chosen at random and v0 is ε-sparse for ε ≤ k2/(100000n) then Ẽ ‖Pw‖22 ≤ 0.01 where P is the
projector to Span{v1, . . . , vk}.

http://terrytao.wordpress.com/2007/07/02/open-question-deterministic-uup-matrices/
http://terrytao.wordpress.com/2007/07/02/open-question-deterministic-uup-matrices/

4.2. USING SOS TO DO BETTER 53

This result means that if w ∈ V is a vector such that both ‖w‖2 and ‖Pw‖22 are close to their
expectations (which are 1 and at most 0.01 respectively) then, writing w = 〈w, v0〉v0 + w′ where
w′ is in the span of {v1, . . . , vk}, we see that ‖w′‖2 ≤ 0.01 and hence 〈w, v0〉2 ≥ 0.99. Somewhat
cumbersome but not too hard calculations spelled out below will show that we can get sufficiently
close concentration (especially since we can repeat the process and output the sparsest vector w
we can find).

Remark Note that the algorithm only looks at the first two moments of the distribution {v}.
So, why did we need {u} to be a degree 4 (as opposed to degree 2) pseudo distribution? This
is only for the proof, though note that the `4/`2 SOS program doesn’t even make for degree < 4
pseudo-distributions.

4.2.2 Proof of Main Lemma

The SoS algorithm gives us a pseudodistribution satisfying the constraints

E =
{
‖v‖44 = C4/n, ‖v‖22 = 1, v ∈ Span{v0, . . . , vk}

}
where C is some number so that C4/n is the value of the solution returned by the level-4 SoS
relaxation.

We first prove the main lemma for actual distributions and then demonstrate an instance of
“Marley’s Hypothesis” [Mar77]: if you proved it for real distributions and didn’t use anything too
fancy, then every little thing gonna be all right (when you try to prove it for pseudodistributions).

The main result we will take at the moment as a given is the following:

Lemma 4.3 (random subspaces don’t contain `4 versus `2 sparse vectors—actual distributions).
If k �

√
n, with high probability

‖Pv‖44 ≤ 10‖Pv‖42/n (4.1)

for every v.

We will show that Lemma 4.3 implies our Main Lemma for actual distributions. Namely,

Lemma 4.4 (an `4 versus `2 sparse vector must be correlated with v0—actual distributions). If
P satisfies (4.1) then for every unit vector w ∈ V with ‖w‖4 ≥ ‖v0‖4/100 = C/100n1/4, the square
correlation of w with v0 satisfies 〈w, v0〉2 ≥ 1−O(1/C).

(Note that this is indeed equivalent to the main lemma since ‖w‖22 = 〈w, v0〉2 + ‖Pw‖22.)

Proof of Lemma 4.4. Let w ∈ V be a unit vector. We can write w = αv0 + Pw. Hence, using the
triangle inequality for the `4-norm,

‖w‖4 ≤ α‖v0‖4 + ‖Pw‖4

which can be rearranged to

α ≥ 1− ‖Pw‖4
‖v0‖4

But since ‖v0‖4 = C/n1/4, and Lemma 4.3 ‖Pw‖4 ≤ 2/n1/4, the RHS is at least 1− 2/C.

54CHAPTER 4. SOS UPPER BOUNDS: PLANTED SPARSE VECTORANDDICTIONARY LEARNING

4.3 Pseudo-distribution version and proofs

We now state the pseudo-distribution versions of our lemmas and prove them:

Lemma 4.5 (random subspaces don’t contain `4 versus `2 sparse vectors—pseudodistributions).
With high probability

‖Pv‖44 � 10‖Pv‖42/n (4.2)

where we now think of ‖Pv‖44 and ‖Pv‖42 as polynomials in indeterminates v and with coefficients
determined by P , and � denoting that the polynomial 10‖Pv‖42 − ‖Pv‖44 is a sum of squares.

Lemma 4.6 (an `4 versus `2 sparse vector must be correlated with v0—pseudodistributions). If P
satisfies (4.2) then for every degree 4 pseudo-distribution {x} satisfying {‖x‖22 = 1, ‖x‖44 = ‖v0‖44 =
C4/n} it holds that Ẽ

[
〈x, v0〉2

]
≥ 1−O(1/C).

Now we test “Marley’s Hypothesis” by lifting the proof of Lemma 4.4 to a proof of Lemma 4.6,
using Lemma 4.5 rather than Lemma 4.3 to do the heavy lifting. We need to be able to mimic all
the steps we used when everything is wrapped in pseudoexpectations. The main interesting step
was a use of the triangle inequality.

Lemma 4.7 (Triangle Inequality for Pseudodistributions). Let {x, y} be a degree-4 pseudodistri-
bution. Then

Ẽ
[
‖x+ y‖44

]1/4 ≤ Ẽ
[
‖x‖44

]1/4
+ Ẽ

[
‖y‖44

]1/4
.

Exercise 4.4: Prove Lemma 4.7

We note that the following easier bound would be fine for us (and follows from past exercises):
if the distribution satisfies the constraint ‖x‖44 ≥ ‖y‖44 then

Ẽ
[
‖x+ y‖44

]
≤ Ẽ

[
‖x‖44

]
+ 15

(
Ẽ
[
‖x‖44

]1/4)3/4 (
Ẽ
[
‖y‖44

])1/4
.

Proof of Lemma 4.6 from Lemma 4.5. The proof is almost identical to the proof of Lemma 4.4.
Let P satisfy

‖Px‖44 �
10‖Px‖42

n

where we interpret both sides as polynomials in x. Let {x} be a degree-4 pseudodistribution
satisfying {‖x‖22 = 1, ‖x‖44 = ‖v0‖44 = C4/n}. Using the pseudodistribution triangle inequality,

Ẽ
[
‖x‖44

]1/4 ≤ Ẽ
[
‖〈x, v0〉v0‖44

]1/4
+ Ẽ

[
‖Px‖44

]
=

C

n1/4
Ẽ
[
〈x, v0〉4

]1/4
+ Ẽ

[
‖Px‖44

]1/4
.

Rearranging and using our assumptions on {x} ,

Ẽ
[
〈x, v0〉4

]1/4 ≥ n1/4

C
(Ẽ
[
‖x‖44

]1/4 − Ẽ
[
‖Px‖44

]1/4
) = 1− n1/4

C
Ẽ
[
‖Px‖44

]1/4
.

Now we use our assumption on P to get

Ẽ
[
‖Px‖44

]1/4 ≤ 2
Ẽ
[
‖Px‖42

]1/4
n1/4

.

4.4. PROOF OF LEMMA ?? 55

Moreover, note that ‖Px‖42 � ‖x‖42, since both are homogeneous degree-4 polynomials all of whose
monomials are squares and the coefficient of every monomial on the left-hand side is smaller than
the corresponding coefficient on the right. This gives

Ẽ
[
‖Px‖42

]
≤ Ẽ

[
‖x‖42

]
.

Putting it together, we get

Ẽ
[
〈x, v0〉4

]1/4 ≥ 1− 2

C
Ẽ
[
‖x‖42

]1/4
.

Since {x} satisfies Ẽ
[
‖x‖22

]
= 1, we have

Ẽ
[
‖x‖22

(
‖x‖22 − 1

)]
= 0

and therefore Ẽ
[
‖x‖42

]
= 1. Plugging this in to the above,

Ẽ
[
〈x, v0〉4

]1/4 ≥ 1− 2

C
.

The last step is to relate Ẽ
[
〈x, v0〉4

]
and Ẽ

[
〈x, v0〉2

]
. Again using that {x} satisfies Ẽ

[
‖x‖22

]
= 1,

we have
Ẽ
[
〈x, v0〉2‖x‖22

]
= Ẽ

[
〈x, v0〉2

]
.

Moreover, since 〈x, v0〉2 � ‖x‖22 we must have 〈x, v0〉4 � 〈x, v0〉2‖x‖22 (the difference of the two
sides in the former is a sum of squares; multiplying that SoS polynomial by the square polynomial
‖x, v0‖2 yields another SoS polynomial which is the difference between the two sides in the latter
case).

All together, we get

Ẽ
[
〈x, v0〉2

]
≥ Ẽ

[
〈x, v0〉4

]
≥
(

1− 2

C
Ẽ
[
‖x‖42

]1/4)4

≥ 1− 8

C

and we are done.

4.4 Proof of Lemma 4.5

True to form, we would like to start by proving Lemma 4.3 and then lift the proof to the SoS
setting. Lets start with a heuristic argument on why would Lemma 4.3 be true. Think of the case
that we fix a unit vector x ∈ Rk and pick v1, . . . , vk as random Gaussian vectors of unit norm in
Rn, i.e., each entry is distributed as N(0, 1/

√
n). Then, the vector w =

∑
xivi would have each

coordinate be a Gaussian random variable distributed as N(0, 1/
√
n) (since

∑
x2
i = 1). Now the

probability ‖w‖44 ≥ C4/n is the probability that
∑n

i=1 g
4
i ≥ nC4 where the gi’s are independent

standard Gaussians. The dominant term in this probability is the probability that one of those gi’s
is at least Cn1/4 which happens with exp(−C2√n) probability. So, if C2√n� k, we would be able
to do a union bound over a sufficiently fine net of Rk and rule this out.

This argument can be turned into a proof, but note that we have used a concentration and
union bound type of argument, i.e. the dreaded probabilistic method, and hence cannot appeal to
Marley’s Corollary for help. So, we will want to try to present a different argument, that still uses
concentration but somehow will work out fine.

56CHAPTER 4. SOS UPPER BOUNDS: PLANTED SPARSE VECTORANDDICTIONARY LEARNING

4.4.1 Intuition and Heuristic Argument

A formulation that will work just as well for the proof of the main theorem is: given an orthonormal
basis matrix B for Span{v1, . . . , vk},

‖Bv‖44 ≤ 10‖v‖42/n (4.3)

Now, the matrix B whose columns are v1/
√
n, . . . , vk/

√
n is almost such a matrix (since these

vectors are random, they are nearly orthogonal), and so let’s just assume it is the basis matrix. So,
we need to show that if B has i.i.d. N(0, 1/

√
n) coordinates and n� k2 then with high probability

(4.3) is satisfied.
Let w1, . . . , wn be the rows of B.

n‖Bv‖44 =

n∑
i=1

〈wi, v〉4 = 1
n

n∑
i=1

n2〈wi, v〉4

That means that we can think of the polynomial Q(v) = ‖Bv‖44n as the average of n random
polynomials each chosen as 〈g, v〉4, where g =

√
nw has i.i.d N(0, 1) entries. Since in expectation

〈g, v〉4 ≤ 5‖v‖42 (Exercise 4.5: verify this), we can see that if n is sufficiently large then Q(v) will
with high probability be very close to its expectation and so have Q(v) ≤ 10‖v‖42.

It turns out that “sufficiently large” in this case means as long as n� k2.
We now give some high level arguments on how to make this into a proper proof. We first recall

the following exercise:
Exercise 4.6: Let P,Q be two homogenous n-variate degree 4 polynomials, then P � Q

if and only if there exist matrices MP ,MQ such that for every x ∈ Rn, P (x) = 〈MP , x
⊗4〉 and

Q(x=〈MQ, x
⊗4〉 such that MP � MQ in the spectral sense. (i.e., where we say that a matrix A

satisfies 0 � A if w>Aw ≥ 0 for all w.)
As a corollary, such a polynomial P satisfies P � λ‖x‖42 if there exists such a matrix MP with

‖MP ‖ ≤ λ where ‖MP ‖ denotes the spectral norm. (Can you see why?)
This connection suggest using the Matrix Chernoff Bound and specifically the following theorem

Theorem 4.8 (Matrix Chernoff Bound, Ahlswede and Winter). Let X1, . . . , Xn be i.i.d. m ×m
matrix valued random variables with expectation M and with M − cI � Xi �M + cI, then

Pr[1
n

∑
Xi 6∈M ± εI] ≤ m exp(−ε2n/c2)

(One intuition for this bound is that it turns out that diagonal matrices are the hardest ones,
and if the distribution was on diagonal matrices, then we need to use the usual Chernoff bound m
times and so lose a factor of m in the probability bound.)

In our case, the distribution of Xi’s is the distribution of the matrix corresponding to the
polynomial 〈g, x〉4 whose largest eigenvalue is ‖g‖4 = k2, and so the RHS becomes k2 exp(−ε2n/k4)
and so if n� k4 log k this will suffice (I think this argument can be made tighter to replace k4 with
k2). It turns out that (at considerable pain) one can avoid the log k factor and get the condition
n� k2.

4.5 Full proof of Lemma 4.5

These next sections contain a great exposition of the full proof with the right, k = O(
√
n) bound,

as heroically written by Samuel Hopkings.

4.5. FULL PROOF OF LEMMA ?? 57

4.5.1 Lemma 4.5 Holds in Expectation

As in the heuristic argument, the first step in both proofs is to show that the SoS relation we need
holds in expectation. For convenience we now change notation and let x be a typical vector in
Span{v1, . . . , vk}. That is, for some indeterminates α1, . . . , αk, we have x =

∑
αivi. We want to

show

‖x‖44 �
10‖x‖42
n

. (4.4)

where both sides are now polynomials in α1, . . . , αk. We mechanically expand both sides to the
equivalent formulation

∑
s

∑
i,j,k,l

αiαjαkαlvi(s)vj(s)vk(s)vl(s) �
10

n

∑
s,t,i,j,k,l

αiαjαkαlvi(s)vj(s)vk(t)vl(t)

Our task in this section is to hit both sides with Ev1,...,vk

[
·
]

and show

Ev1,...,vk

∑
s

∑
i,j,k,l

αiαjαkαlvi(s)vj(s)vk(s)vl(s)

 � Ev1,...,vk

10

n

∑
s,t,i,j,k,l

αiαjαkαlvi(s)vj(s)vk(t)vl(t)

 .
(4.5)

We need to calculate the expected coefficient of every monomial αiαjαkαl on both the right-and
left-hand sides of (4.5). This is an unpleasant but not terribly difficult case analyis.

Notational Conventions We need to distinguish between ordered multisets of indices i, j, k, l,
which we will denote just like that, and sets of indices which do not have repeated elements (even
though in our notation some elements may be listed multiple times), which we denote {i, j, k, l}.
When we want to sum over all pairs i, j we write

∑
i,j , and if we don’t want to double-count, we

use
∑

i≤j .

Left-Hand Side of (4.5) For each {i, j, k, l} we calculate∑
π∈S4(i,j,k,l)

E
[∑
s

vπ(i)(s)vπ(j)j(s)vπ(k)(s)vπ(l)(s)
]

which is the coefficient of αiαjαkαl, where S4 is the symmetric group on the set {i, j, k, l}.
First note that each term in the sum is identical, so we may equivalently calculate

n|S4(i, j, k, l)|E
[
vi(1)vj(1)vk(1)vl(1)

]
.

If one of {i, j, k, l} is unique then this is 0. If the {i, j, k, l} has exactly two unique elements, then
E
[
vi(1)vj(1)vk(1)vl(1)

]
= E

[
γ2γ′2

]
= 1, where γ, γ′ ∼ N(0, 1), and |S4(i, j, k, l)| = 3. If {i, j, k, l}

has just one unique element, then E
[
vi(1)vj(1)vk(1)vl(1)

]
= E

[
γ4
]

= 3 and |S4(i, j, k, l)| = 1. In
sum, the left-hand side is equal to

3n
∑
i≤j

α2
iα

2
j . (4.6)

58CHAPTER 4. SOS UPPER BOUNDS: PLANTED SPARSE VECTORANDDICTIONARY LEARNING

Right-Hand Side of (4.5) For each i, j, k, l we calculate∑
π∈S4(i,j,k,l)

∑
s,t

E
[
vπ(i)(s)vπ(j)(s)vπ(k)(t)vπ(l)(t)

]
.

We split it into two sums:∑
π∈S4(i,j,k,l)

∑
s=t

E
[
vπ(i)(s)vπ(j)(s)vπ(k)(t)vπ(l)(t)

]
+

∑
π∈S4(i,j,k,l)

∑
s 6=t

E
[
vπ(i)(s)vπ(j)(s)vπ(k)(t)vπ(l)(t)

]
.

In the first, we have recovered exactly the left-hand side of (4.5). In the second:

• If {i, j, k, l} has some element appearing just once, then the corresponding terms are all 0, as
before.

• If {i, j, k, l} contains exactly two unique elements then there are four elements π of S4(i, j, k, l)
which will have π(i) = π(j) and π(k) = π(l) and n2 − n terms in the inner sum, so we get
4n2 − 4n

• If {i, j, k, l} has just one unique element, we have

E
[
vπ(i)(s)vπ(j)(s)vπ(k)(t)vπ(l)(t)

]
= E

[
γ2γ′2

]
= 1.

and so the corresponding sum over s 6= t contributes n2 − n.

All in all, the right-hand side is equal to

10

n

3n
∑
i≤j

α2
iα

2
j + (n2 − n)

∑
i<j

4α2
iα

2
j +

∑
i

α4
i

 . (4.7)

It’s now a straightforward exercise to check that (4.6) � (4.7).

4.5.2 First Proof of Lemma 4.5, k = O(n1/4)

We now know that (4.4) holds in expectation, by which we mean that some polynomial R(α) is a
sum of squares. Conceptually, what remains to do is show that R is close to its expectation with
high probability. What is the right sense of closeness? We will see in the next section that, to
achieve the optimum bound of k = O(n1/2), we need to interpret “close” to mean that some matrix
derived R’s coefficient matrix is close to its expectation in the spectral norm.

However, we can achieve k = O(n1/4) with a somewhat cruder argument. Our first observation
is that

αiαjαkαl � α2
iα

2
j + α2

kα
2
l (4.8)

−αiαjαkαl � α2
iα

2
j + α2

kα
2
l . (4.9)

At a high level, the idea is that so as long as the coefficients of the terms αiαjαkαl which are not
squares do not get too big (they are 0 in expectation) and the coefficients of the dominating terms
α2
iα

2
j and α2

kα
2
l do not get too small, we can use this relation to preserve SoS-ness.

Now we get a little more formal. Let

R(α) =
10

n

∑
s,t,i,j,k,l

αiαjαkαlvi(s)vj(s)vk(t)vl(t)−
∑
s

∑
i,j,k,l

αiαjαkαlvi(s)vj(s)vk(s)vl(s).

4.5. FULL PROOF OF LEMMA ?? 59

We will be a little fast-and-lose with the constants for the sake of readability. In particular, we
don’t lose too much if we ignore the permutations π and just treat each permutation individually.

We will charge to the coefficient of α2
iα

2
j the coefficients of αiαjαkαl for all indices k, l. As long

as for all i, j the coefficient of α2
iα

2
j stays positive when we subtract off the absolute values of the

coefficients we are charging to it, R is SoS by (4.8) and (4.9).
Unfortunately, even for this cruder version of the argument we need a concentration inequality

whose proof is outside scope of these notes. The following statement is a special case of Theorem
1.10 in [SS12], who refer the reader to [Jan97] for a proof.

Theorem 4.9. Consider a degree-q polynomial f(Y) = f(Y1, . . . , Ym) of independent centered
Gaussian random variables Y1, . . . , Ym. Then

Pr [|f(Y)− E [f(Y)] | ≥ λ] ≤ e2e
−
(

λ2

AV ar[f(Y)]

)1/q

where A is a universal constant.

We will apply Theorem 4.9 with the degree-4 polynomials which are the coefficients in R(α).
To apply the theorem we must estimate the variances of the coefficients. Let

fijkl =
10

n

∑
s,t

vi(s)vj(s)vk(t)vl(t)−
∑
s

vi(s)vj(s)vk(s)vl(s).

By independence considerations, V ar[fijkl] ≤ V ar[fiiii]. It is a somewhat involved and unenlight-
ening calculation to check that V ar[fiiii] = O(n). 2 We assume it here, and note that in the
preceding section we showed that the coefficients of α2

iα
2
j in R are at least 5n in expectation.

We are nearly there—the rest of the analysis is a standard combination of the concentration
inequality and a union bound, so we will be hand-wavy and ignore the log factors needed to make
things precise.

The probability that the coefficient of α2
iα

2
j is less than 4n isO(e−n

1/2
) by application of Theorem

4.9. On the other hand, the probability that any of the k2 coefficients (of αiαjαkαl) being charged
to α2

iα
2
j is greater than 3n/k2 in absolute value is, again by application of the theorem, at most

e−3n/k4
. As long as k4 < n, we can pick constants and polylog factors to complete the proof.

4.5.3 Second Proof of Lemma 4.5, k = O(n1/2)

The arguments in the following section first appear in section 7 of [BBH+12b], and are fleshed out
in [DS].

The first proof loses something in requiring a particular SoS decomposition of R. The following
more delicate argument avoids this by using a single application of a concentration inequality to
the entire polynomial at once rather than bounding each coefficient separately.

Matrix Concentration Setup Matrix concentration inequalities are the analogue of Cher-
noff/Bernstein/Azuma/Hoeffding/etc. bounds when the terms being summed are independent or
weakly-dependent random matrices rather than scalars. They bound the distance of the resulting
random matrix from its expectation in the spectral norm. For a readable treatment of “elementary”

2To check this, expand the variance as E
[
·2
]
− E

[
·
]2

and count how many terms in each resulting sum cancel
between the square-expectation and the expectation-squared. Terms always cancel unless indices match up, violating
independence.

60CHAPTER 4. SOS UPPER BOUNDS: PLANTED SPARSE VECTORANDDICTIONARY LEARNING

matrix concentration inequalities, see [Tro12] or [Tao12]. Most of these inequalities rely on variables
which are bounded; our variables instead have Gaussian tails. This could be dealt with by some
truncation business, but instead we will use a higher-tech result which simultaneously handles the
Gaussian-ness of the underlying distribution and saves a log factor over more elementary methods.

The following presentation follows [BBH+12b], with notation somewhat modified to fit these
notes. For background on the ψp norm (in particular the ψ2 case) see [Ver10], especially section
5.2.3 on sub-Gaussian random variables.

The ψp norm of a distribution {a} on Rk3 is the least C > 0 so that

max
w∈Rk,‖w‖2=1

E
[
e
|〈w,a〉|p

kp/2CP

]
≤ 2.

(We let it be∞ if no such C exists.) Observe that for p = 2 this is quantifying the “Gaussian-ness”
of the one-dimensional marginals of the distribution {a}. The scale factor of kp/2 is not in the usual
definition but we want to match the theorem statement in [ALPTJ11].

We also require a bounded-ness condition: that there is a constantK ≥ 1 so that for independent
samples a1, . . . , an ∼ {a},

Pr

[
max
i≤n
‖ai‖2 ≥ K(nk)1/4

]
≤ e−

√
k.

Now we can state the main theorem of [ALPTJ11, ALP+10], as stated in [BBH+12b] (modulo
a minor adjustment of scale factors).

Theorem 4.10. Let {a} be a distribution on Rk so that E
[
aaT

]
= I, the ψ1 norm of {a} is at most

ψ ≥ 0, and the boundedness condition holds for {a} with constant K. Let a1, . . . , an be independent

samples from {a}. Then for some universal constants c, C > 0, with probability at least 1−2e−c
√
k,

(1− ε)I � 1

n

n∑
i=1

aia
T
i � (1 + ε)I

where I is the identity matrix, � is the PSD ordering, and ε = C(ψ +K)2
√
k/n.

From Matrix Concentration to Lemma 4.5: Plan of Attack We recall the correspondence
between polynomials and coefficient matrices that makes the SoS algorithm tick in the first place. If
we can find matrices MA and MB for A,B polynomials so that xTMAx = A(x) and xTMBx = B(x),
and if MA �MB, then A � B.

We will use this method to show that two inequalities each hold with high probability:

1

3
E
[
‖x‖42

]
� ‖x‖42 (4.10)

‖x‖44 � 3E
[
‖x‖44

]
. (4.11)

Since we already know

E
[
‖x‖44

]
� 10

n
E
[
‖x‖42

]
this gives us Lemma 4.5 (modulo a minor adjustment of the constants).

3We have to use k and n here on purpose—when we apply the theorem, each sample will correspond to a dimension
of our ambient space and there will have dimension the same as the dimension of our subspace.

4.5. FULL PROOF OF LEMMA ?? 61

Warm Up: Concentration for ‖x‖22 We turn now to showing that ‖x‖22 is rarely too much
smaller than its expectation. We will be able to leverage this to show that (4.10) holds with high
probability. We expand ‖x‖22 as a polynomial in α1, . . . , αk:

‖x‖22 =
∑
s,i,j

αiαjvi(s)vj(s).

Let a1, . . . , an ∈ Rk be the rows of the matrix whose columns are v1, . . . , vk. Let {a} be the
distribution of the ai’s. Observe that we can rewrite the previous equation as

‖x‖22 =
∑
s,i,j

αiαjas(i)as(j)

which has coefficient matrix
∑

s asa
T
s . Furthermore, E

[
aaT

]
= I. Now we need to calculate the

ψ1 norm. The distribution {a} is rotationally invariant, so we may take w = e1 to be the first
standard basis vector, in which case we need to find C so that

E
[
e|a(1)|/k1/2C

]
≤ 2

Mathematica says that 2 is an upper bound.
The last thing to check before applying the matrix concentration theorem is the boundedness

condition. The event max ‖ai‖2 ≥ K(nk)1/4 is equivalent to the event max ‖ai‖22 ≥ K2(nk)1/2.
Since ‖ai‖22 is a degree-2 polynomial of independent Gaussians, we can use Theorem 4.9 to show
that K = 1 suffices if k ≈

√
n.4

Now we can apply the concentration theorem with k =
√
n to get that with probability at least

1− e−c
√
k,

(1− 9C2n−1/4)I � 1

n

n∑
i=1

aia
T
i � (1 + 9C2n−1/4)I.

As soon as n gets big enough, this yields

0.99E
[
‖x‖22

]
� ‖x‖22.

Concentration for ‖x‖42 We now make some observations:

1. If A,B are SoS polynomials with A � B, then A2 � B2. To see this, write B2 − A2 =
(B +A)(B −A) and note that the multiplicands in the latter are both SoS by hypothesis, so
their product is as well.

2. E
[
‖x‖42

]
and E

[
‖x‖22

]2
differ only by a constant factor. The proof is mechanical. In particular,

E
[
‖x‖42

]
� 3E

[
‖x‖2

]2
.

3. ‖x‖22 � E
[
‖x‖22

]
� 0.

Taken all together, we get 0.1E
[
‖x‖42

]
� ‖x‖42 which, modulo some adjustments to the constants,

is (4.10).

4Actually we could take K to be o(1) in this case. The analysis where we have to worry about these things is for
‖x‖44.

62CHAPTER 4. SOS UPPER BOUNDS: PLANTED SPARSE VECTORANDDICTIONARY LEARNING

Concentration for ‖x‖44 It remains only to dispatch (4.11). This we also do by appeal to our
matrix concentration theorem, but we will have to be somewhat more careful in using it, for a
couple reasons:

1. We will not initially end up with a distribution {a} with E
[
aaT

]
= I.

2. The calculations to show that the ψ1 and boundedness conditions hold will be somewhat more
arduous.

To handle the first of these, we will start in the same way as before by finding the distribution
whose empirical covariance matrix is the coefficient matrix of ‖x‖44, but then we will have to hit
these vectors with the pseudo-inverse of E

[
‖x‖44

]
to get a distribution which has true covariance

matrix I. Then we use the lemma below to get the result we want. To handle the second issue, we
shut up and calculate. Be prepared for some Taylor series.

Lemma 4.11. Let Σ be a symmetric real PSD matrix, Σ1/2 its square root, Σ−1 its pseudo-inverse,
and Σ−1/2 the square root of its pseudo-inverse. Then

• Σ−1/2ΣΣ−1/2 = I.

• Σ1/2Σ−1/2 = I.

Proof. The proofs of both facts are straightforward applications of the characterization of the
pseudoinverse and square roots of diagonal PSD matrices (respectively, take the inverses and square
roots of the diagonal entries) plus the fact that a symmetric real matrix can be diagonalized.

We recall that ‖x‖44 expands as

‖x‖44 =
∑
s

∑
i,j,k,l

αiαjαkαlvi(s)vj(s)vk(s)vl(s).

Once again, let the vectors a1, . . . , an be the rows of the matrix whose columns are the vi’s. Then
we can rewrite:

‖x‖44 =
∑
s

∑
i,j,k,l

αiαjαkαlas(i)as(j)as(k)as(l).

The coefficient matrix of ‖x‖44 therefore
∑

s(as ⊗ as)(as ⊗ as)T where ⊗ is the tensor product. Let
{a} again be the distribution of the as’s, and let Σ = E

[
(as⊗ as)(as⊗ as)T

]
be the true covariance

matrix of (as ⊗ as). Since it is a covariance matrix, Σ is symmetric and PSD, so the results of
Lemma 4.11 apply.

Consider now the distribution {b} given by Σ−1/2(a⊗ a). By Lemma 4.11, the true covariance
matrix satisfies E

[
bbT
]

= I. Let b1, . . . , bs be independent samples from {b}. If we could prove∑
s

bsb
T
s � 3I

with high probability, then by hitting both sides with Σ1/2 on right and left and again applying
Lemma 4.11 we would have (4.11). Hence, all that remains to do is calculate ψ1 norm and the
boundedness constant for {b} in order to apply the matrix concentration theorem.

We begin with the ψ1-norm calculation. We need an upper bound on C so that

max
w∈Rk2 ,‖w‖2=1

E
[
e
|〈w,b〉|
kC

]
≤ 2.

4.5. FULL PROOF OF LEMMA ?? 63

Making the substitution u = Σ−1/2w, we need to find C so that for all u with uTΣu ≤ 1,

E
[
e
|〈Σ1/2u,a⊗a〉|

kC

]
≤ 2.

The entires of Σ are all either zeroth, first, or second moments of a standard Gaussian, depending
on how many repeated indices are at a particular entry. In particular, Σiiii = 3 and Σijij = Σiijj =
. . . = 1, and all other entires are 0. (See our analysis of E

[
‖x‖44

]
.)

The condition uTΣu ≤ 1, if we interpret u as a k × k matrix M , implies that∑
ij

M2
ij +

∑
ij

MijMji +
∑
ij

MiiMjj ≤ 1.

(where we have dropped some 3’s to 1’s, which can only reduce the left-hand side). Because a⊗ a,
considered as a k × k matrix, is symmetric, we may assume that M is also symmetric (otherwise
take M ′ij = (Mij + Mji)/2 and note that the inner product with a ⊗ a is preserved). With the
symmetry assumption we get

2
∑
ij

M2
ij +

(∑
i

Mii

)2

≤ 1

which we wastefully use to get ∑
ij

M2
ij +

(∑
i

Mii

)2

≤ 1.

Since the trace of a matrix is the sum of its eigenvalues, we get(∑
i

λi

)2

+
∑
i

λ2
i ≤ 1

which gives
∑

i λi ≤ 1 and
∑

i λ
2
i ≤ 1. All this shows that it will now suffice to prove that there is

C = O(1) so that for every symmetric k × k matrix M with TrM ≤ 1 and TrM2 ≤ 1,

E
[
e
|aTMa|
kC

]
≤ 2.

By rotational invariance of a, we may actually assume that M is diagonal. Then

1

kC
|aTMa| = 1

kC
|
∑
i

λia
2
i | ≤

1

kC

(∣∣∣∣∣∑
i

λi

∣∣∣∣∣+

∣∣∣∣∣∑
i

λi(a
2
i − 1)

∣∣∣∣∣
)
≤ 1

kC
+

1

kC

∣∣∣∣∣∑
i

λi(a
2
i − 1)

∣∣∣∣∣
where the second-to-last step is the triangle inequality and the last step is since TrM ≤ 1.

Conditioned on |
∑

i λi(a
2
i −1)| ≤ 0, the expectation we’re bounding becomes at most e1/kC +1,

so clearly we can take C = O(1) in this case. So we may assume that at least half of the total
expectation comes from the case when |

∑
i λi(a

2
i − 1)| ≥ 0. By independence and the preceding

analysis, we get

E
[
e
|aTMa|
kC

]
≤ 2e1/kC

∏
i

E
[
eλi(a

2
i−1)/kC

]
. (4.12)

Now we Taylor expand:

E
[
eλi(a

2
i−1)/kC

]
=
∑
p

1

p!
E
[

1

(kC)p
λpi (a

2
i − 1)p

]
.

64CHAPTER 4. SOS UPPER BOUNDS: PLANTED SPARSE VECTORANDDICTIONARY LEARNING

We want to bound each term in the Taylor expansion with something involving λ2
i so we can use

the condition TrM2 ≤ 1. Recall that the moments E
[
a2p
i

]
grow like

∏
q odd, q≤p q ≈ p!2p. So as

long as 1/(kC) ≤ 1/16 or so, recalling that
∑

i λ
2
i ≤ 1 and therefore |λi| ≤ 1 for all i, we can

estimate
1

(kC)p
λpi a

2p
i ≤ p!(1/kC)2λ2

i 2
−p.

Plugging this into the Taylor expansion, using Jensen’s inequality on (a2
i − 1)p, and splitting off

the terms with p ≤ 2 gives

E
[
eλi(a

2
i−1)/kC

]
≤ 2 + (kC)−2λ2

i

∑
k≥2

2−k ≤ eO((kC)−2λ2
i).

Finally, plugging this back into (4.12) we get

E
[
e
|aTMa|
kC

]
≤ 2e1/kCeO((kC)−2)

∑
λ2
i ≤ 2

for all k and sufficiently small C. So the ψ1 norm of {b} is O(1).
The very last thing we need to do is check the boundedness condition for {b}. Note that it

will suffice to show that (a⊗ a) satisfies the boundedness condition rather than {b} if we can show
that the largest nonzero eigenvalue of Σ−1/2 is O(1), which would follow if we could show that the
smallest nonzero eigenvalue of Σ is Ω(1).

The proof of the boundedness condition for a⊗ a is similar to that for {a}.

4.6 Analyzing success probability, proof of the qaudratic sampling
lemma

We restate the QSL here:

Lemma 4.12 (Quadratic Sampling Lemma). If {x} is a degree d ≥ 2 pseudo distribution, then
there exists a Gaussian distribution {u} such that Ẽ

[
P (x)

]
= E

[
P (u)

]
for every polynomial P of

degree at most 2. This distribution can be efficiently computed from input {x}.

Proof. By shifting we can assume that Ẽ
[
xi
]

= 0 for all i. Since {x} is a degree 2 pseudo-

distribution, its second moment matrix M = Ẽ
[
x⊗2

]
= Ẽ

[
xx>

]
is psd. Hence, we can write

M = B>B where B is a d × n matrix with columns b1, . . . , bn and so Mi,j = 〈bi, bj〉. Choose a
random standard Gaussian vector g = (g1, . . . , gn) and let zi = 〈bi, g〉.

Then, for every i, j, we get that

E
[
zizj

]
= E

[
〈bi, g〉〈bj , g〉

]
=
∑
a,b

bi(a)gabi(b)gb =
∑

ai(a)bj(a) = 〈bi, bj〉 = Mi,j

using the fact that the Gaussians are independent and so E
[
gagb

]
equals 0 if a 6= b and equals 1

otherwise.

Proof of Main Theorem from Main Lemma and Quadratic Sampling Lemma. Let {u} be the Gaus-
sian distribution obtained from {x} which satisfies E . The Main Lemma says that Ẽx

[
‖Px‖22

]
≤

0.001 with high probability, and since ‖Px‖22 is a degree-2 polynomial, the Quadratic Sampling
Lemma then implies that Eu

[
‖Pu‖22

]
≤ 0.001. By the same argument, Eu

[
‖u‖22

]
= 1.

We can argue using standard techniques to transfer the expectation statements to probability
bounds (the proof comes at the end of the proof of the main theorem).

4.6. ANALYZING SUCCESS PROBABILITY, PROOF OF THEQAUDRATIC SAMPLING LEMMA 65

1. Pru
[
‖u‖22 ≤ 1

2

]
≤ 5

6

2. Pru
[
‖Pu‖22 ≥ 0.01

]
≤ 1/10.

Hence, with probability at least 1/15 the algorithm samples u with ‖u‖22 ≥ 1/2 and ‖Pu‖22 ≤ 0.01.
In this case, ‖Pu‖22 ≤ 0.02‖u‖22. We assumed v0 ⊥ v1, . . . vk, which means we can write

‖u‖22 = 〈u, v0〉2‖v0‖22 + ‖Pu‖22 = 〈u, v0〉2 + ‖Pu‖22.

Since ‖Pu‖22 makes up only a 0.02 fraction of this mass, 〈u, v0〉 must make up the rest, and we get
〈u, v0〉 ≥ 0.98‖u‖22. Scaling u to be unit, we recover a unit vector u/‖u‖ with very high correlation
with v0.

By the first part of the main lemma, to test whether it has succeeded, the algorithm simply
checks the `4-versus-`2 sparsity of the vector u. To succeed with probability 1 − 1/poly(n) it will
need to sample about log n times.

Proof of (1). We start with a standard second-moment concentration inequality, which we prove
here for completeness. Let X be a nonnegative random variable and let θ > 0. Then

E [X] ≤ θ + Pr [X ≥ θ]E [X | X ≥ θ]

E
[
X2
]
≥ Pr [X ≥ θ]E

[
X2
∣∣ X ≥ θ] Jensen

≥ Pr [X ≥ θ]E
[
X2
∣∣ X ≥ θ]2 .

Combining the equations by eliminating E
[
X
∣∣X ≥ 0

]
and rearranging gives

Pr [X ≥ θ] ≥ E [X − θ]2

E [X2]
.

We apply this to the random variable ‖u‖22 for some θ to be chosen later to get

Pr
[
‖u‖22 ≥ θ

]
≥

E
[
‖u‖22 − θ

]2
E
[
‖u‖42

] . =
(1− θ)
E
[
‖u‖42

] .
We need to upper-bound E

[
‖u‖42

]
. We expand

E
[
‖u‖42

]
=
∑
i,j

E
[
u(i)2u(j)2

] Cauchy-Schwarz
≤

∑
i,j

√
E [u(i)4]

√
E [u(j)4] =

(∑
i

√
E [u(i)4]

)2

.

For fixed i, let µi, σi be such that u(i) ∼ N(µi, σi). It is a Wikipedia-able fact that

E
[
u(i)2

]
= µ2

i + σ2
i

E
[
u(i)4

]
= µ4

i + 6µ2
iσ

2
i + 3σ4

i .

Hence,

E
[
u(i)4

]
= E

[
u(i)2

]2
+ 4µ2

iσ
2
i + 2σ4 ≤ 3E

[
u(i)2

]2
which yields (∑

i

√
E [u(i)4]

)2

≤ 3

(∑
i

E
[
u(i)2

])2

= 3.

So if we pick θ = 1
2 we get Pr

[
‖u‖22 ≥ 1

2

]
≥ 1

6 .

Proof of (2). This is straight Markov’s inequality.

66CHAPTER 4. SOS UPPER BOUNDS: PLANTED SPARSE VECTORANDDICTIONARY LEARNING

Part II: Dictionary Learning

4.7 Introduction

The dictionary learning / sparse coding problem is defined as follows: there is an unknown n×m
matrix A = (a1| · · · |am) (think of m = 10n). We are given access to many examples of the form

y = Ax+ e (4.13)

for some distribution {x} over sparse vectors and distribution {e} over noise vectors with low
magnitude.

Our goal is to learn the matrix A, which is called a dictionary.

The intuition behind this problem is that natural data elements are sparse when represented in
the “right” basis, in which every coordinate corresponds to some meaningful features. For example
while natural images are always dense in the pixel basis, they are sparse in other bases such as
wavelet bases, where coordinates corresponds to edges etc.. and for this reason these bases are
actually much better to work with for image recognition and manipulation. (And the coordinates
of such bases are sometimes in a non-linear way to get even more meaningful features that eventually
correspond to things such as being a picture of a cat or a picture of my grandmother etc. or at
least that’s the theory behind deep neural networks.) While we can simply guess some basis such
as the Fourier or Wavelet to work with, it is best to learn the right basis directly from the data.
Moreover, it seems that in many cases it is actually better to learn an overcomplete basis: a set of
m > n vectors a1, . . . , am ∈ Rn so that every example from our data is a sparse linear combination
the ak’s. (Sometimes just considering the case that the am’s are a union of two bases, such as
the standard and Fourier one, already gives rise to many of the representational advantages and
computational challenges.)

Olshausen and Field were the first to define this problem - they used a heuristic to learn such
a basis for some natural images, and argued that representing images via such an dictionary is
somewhat similar to what is done in the human visual cortex. Since then this problem has been
used in a great many applications in computational neuroscience, machine learning, computer vision
and image processing. Most of the time people use heuristics without rigorous analysis of running
time or correctness. There has been some rigorous work using a method known as ”Independent
Component Analysis”, but that method makes quite strong assumptions on the distribution {x}
(namely independence). Lately, starting with the Spielman-Wang-Wright paper mentioned earlier,
there was a different type of rigorously analyzed algorithms, but they all required the vector x to
be very sparse— less than

√
n nonzero coordinates. The SOS method allows recovery in the much

denser case where x has up to εn nonzero coordinates for some ε > 0.

Once again this problem has a similar flavor to the ”sparse recovery” problem. In the sparse
recovery problem, we know the dictionary A (which is also often assumed to have some nice prop-
erties such as being random or satisfying ”restricted isometry property”) and from a single value
y = Ax we need to recover x. In the dictionary learning problem we get many examples but,
crucially, we know neither A nor x, which makes it a more challenging problem.

4.7.1 Model

First, we will ignore the vector e in (4.13). Morally, the SOS algorithm is naturally robust to noise,
and thus these small perturbations change little in the analysis, so we will omit them for simplicity.
The simplified problem is already quite interesting.

4.7. INTRODUCTION 67

Figure 4.1: Using dictionary learning to remove overlaid text from images. The authors learned a

dictionary A from many natural images, and then removed the text from an image y by (roughly) first representing

y as
∑
xka

k and then zeroing out all the xi’s that are below some threshold. Photos taken from: J. Mairal, F. Bach,

J. Ponce, and G. Sapiro. Online Dictionary Learning for Sparse Coding. In ICML 2009 (See also Mairal, Julien,

Michael Elad, and Guillermo Sapiro. ”Sparse representation for color image restoration.” , IEEE Transactions on

Image Processing 17.1 (2008): 53-69 for a clearer description of the method as well as some nice images of how the

dictionary looks like that should be added to the scribe notes...)

To allow recovery of A, even in the statistical sense, we need to make some assumptions on
the distribution {x}. These assumptions should capture ”sparsity”. Most rigorous work assumed
a hard sparsity constraint, but we will assume a much softer one (as mentioned above). We also
make some additional assumptions that are still strictly weaker than those used by most other
works (and incomparable to the others). Nevertheless, trying to find the minimal assumptions
needed is a great open problem.

Second, we need to make some assumptions on the distribution {x} to allow recovery. It will
be convenient for us to assume that d is a power of 2. We also will make the following assumption:
for some large constant d, we normalize so that E

[
xdi
]

= 1 for every i, and then require that for
some parameter τ = o(1)

E
[
x
d/2
i x

d/2
j

]
≤ τ (4.14)

for every i 6= j. We will also make the additional condition that xi is somewhat symmetric around
zero, in the sense that for every non-square monomial xα of degree at most d (i.e.,

∑
αi ≤ d and

there is some i for which αi is odd)

E
[
xα
]

= 0 . (4.15)

Condition (4.14) is essentially minimal, and roughly corresponds to x having at most τn nonzero
(or significant) coordinates.

Example 4.13. For example, note that if the distribution {x} is obtain by setting τn random
coordinates to equal ±τ−(1/d) and the rest zero, then indeed E

[
xdi
]

= 1 for all i, and if i 6= j

E
[
x
d/2
i x

d/2
j

]
=
(
ττ−(1/2)

)2
= τ.

68CHAPTER 4. SOS UPPER BOUNDS: PLANTED SPARSE VECTORANDDICTIONARY LEARNING

By appealing to the Arithmetic-Mean-Geometric-Mean inequality, one can show that if assume
condition (4.14) holds with the RHS equalling τ4d (which tends to zero if τ does) then we get the
stronger condition

E
[
xα
]
≤ τ (4.16)

for every degree d monomial xα that is not of the form xdi . Thus, we call a distribution {x} satisfying
(4.16) and (4.15) (d, τ)-nice.

Condition (4.15) is morally stronger, and it is not clear that it is essential, but it is still fairly
natural. In particular for this problem it is without loss of generality to assume that E

[
xki
]

= 0 for
every odd k, and so this can be considered a mild generalization of this condition.

We will also assume that every column of A has unit norm, and the spectral norm σ of AA> is
at most O(1). These are fairly reasonable assumptions as well.

Example 4.14. For example, consider the case when A is the union of 10 orthonormal bases, so
that m = 10n. Then for any unit vector v ∈ Rn, we have that vTAAT v = ‖AT v‖2 = 10.

Another minor assumption we make is that E
[
x2d
i

]
≤ nO(1)— this is an extremely mild condition

and in some sense necessary for recovery, and so we will not speak much of it except in the one
place we use it.

Theorem 4.15 (Main Result (quasipoly version)). There are some constants d ∈ N, τ > 0 and an
quasipoly time algorithm R that given poly(n) samples from the distribution y = Ax outputs unit
vectors {ã1, . . . , ãm} that are 0.99 close to {a1, . . . , am} in the sense that for every i there is a j
such that 〈ak, ãj〉2 ≥ 0.99 and vice versa.

We should note that the paper has a version that runs in polynomial time while requiring
sparsity τ = n−δ for arbitrarily small δ > 0.

(See the paper for a version that runs in polynomial time while requiring sparsity τ = n−δ for
arbitrarily small δ > 0.)
Notes on constants:

• In the more general statement the constants d, τ depend on the accuracy (e.g., 0.99) and on
the top eigenvalue of AA>.

• We will think of d as chosen first and then τ > 0 being an extremely small constant depending
on d. So for the rest of the analysis we will think of d as some large constant and τ = o(1).

4.8 Outline of algorithm

The algorithm is very simple: given examples y1, . . . , yS do the following:

1. Construct the polynomial P̃ (u) = 1
S

∑S
i=1〈yi, u〉d

2. Run the SOS algorithm to obtain a degree k pseudo-distribution {u} satisfying the constraints
{‖u‖2 = 1} that maximizes Ẽu

[
P̃ (u)

]
. The parameter k = O(log n) would be specified later.

3. Pick t = O(log n) random (e.g. Gaussian) vectors w1, . . . , wt.

4. Compute the matrix M such that Mi,j = Ẽ
[∏t

`=1〈w`, u〉2uiuj
]
.

5. Output a random Gaussian vector v such that E
[
vivj

]
= Mi,j .

4.8. OUTLINE OF ALGORITHM 69

We will prove the following:

Lemma 4.16 (Main Lemma). Suppose the algorithm outputs v. With probability n−O(1), there
exists some i such that 〈v, ai〉2 ≥ 0.99‖v‖2.

The main lemma says that we can get one vector with inverse polynomial probability. We will
also show that we can verify when we are successful and so amplify this probability to as close to
1 as we wish. It is unclear how to use a black box reduction to get from this statement recovery of
all vectors, but it is possible to do so by a simple extension of the main ideas of this lemma, see the
paper for details. Intuitively, all we do at the next step is add a constraint to the SOS algorithm
which enforces that the next output we get is far away from the one we’ve found.

4.8.1 Proof Outline—Main Ideas

We first give some intuition as to what this algorithm is doing and give an overview of the proof.
The first lemma we will need is that P̃ behaves in an interesting way:

Lemma 4.17. Let P (u) = ‖ATu‖dd. For S ≥??? then with probability ≥???

P (u)− τ‖u‖dd � P̃ (u) � P (u) + τ‖u‖dd.

Recall that f � g simply means that g − f is a sum of squares.

We make a few straightforward but important observations.
First, notice by repeated usage of the AMGM inequality, if {u} satisfies Ẽu

[
‖u‖22

]
= 1 then it

also satisfies Ẽu
[
‖u‖dd

]
≤ 1, thus Lemma 4.17 implies that∣∣∣Ẽu[P (u)

]
− Ẽu

[
P̃ (u)

]∣∣∣ ≤ τ, (4.17)

so the inequality holds in pseudo-expectation as well.
Second, we see that if u is unit with P (u) ≥ 1 then it must hold that ‖v‖dd ≥ 1 − τ , but for

fixed ε, and for τ sufficiently small and d sufficiently large, this implies that there is some i such
that v2

k = 〈ak, u〉2 ≥ 1− ε. Indeed, otherwise

1− τ ≤ ‖v‖dd =
∑

vdk ≤ max
k

vd−2
k

∑
v2
k ≤ (1− ε)d ·O(1)

and the RHS would be smaller than 1/2 if d is a large enough constant. Importantly, this implies
that we have the following:

Corollary 4.18. There is an oracle so that given a vector u, returns Accept if there exists ak so
that 〈ak, u〉 ≥ 1−O(τ), and Reject otherwise.

Proof. Plug the goddamn thing into P̃ (u).

Finally, if {u} is an actual distribution over unit u’s with P (u) ≥ 1 then every vector in the
support would have 〈ak, u〉2 ≥ 1− τ for some k. We wish to show that this holds even if it is only
a pseudo-distribution. This is captured in the following lemma:

Lemma 4.19. Let {u} be the pseudo-distribution returned by step 2 of our algorithm. If t > c logm
is an even integer and c sufficiently large then there exists some k0 such that

Ẽu
[
〈u, ak0〉t

]
≥ (1− τ)O(t) . (4.18)

70CHAPTER 4. SOS UPPER BOUNDS: PLANTED SPARSE VECTORANDDICTIONARY LEARNING

At this point, if {u} were a real distribution, then we could just sample from it and we’d be
happy, since this lemma would also imply that with some nontrivial probability, 〈u, ak0〉2 ≥ 1−O(ε).
However, it’s a pseudo-distribution (boo). The normal thing to do here is just to match the first
two moments with a Gaussian, then sample form that. However, if we dropped Step 3-4 and simply
tried to define Mi,j = Ẽ

[
uiuj

]
then sample form a distribution matching these two moments, this

will not work:

Example 4.20. Let us assume that the psuedo-distribution {u} was simply the uniform distri-
bution over {±a1, . . . ,±am}. This does satisfy all of our conditions. The first moments of this
distribution are all zero, and the second moments are E

[
uiuj

]
= 0 if i 6= j and E

[
u2
i

]
= 2

∑
k a

2
ki,

so what we get is a random linear combination of the ak. This will not give us any information
about the ak’s (in fact can be shown that without loss of generality this would be simply a random
vector in Rn, if for instance ai = ei where ei is the ith standard basis vector).

However, the reweighing we do in step 3-4 has the effect that if we are lucky, it will isolate one
of the ak’s. To see why in the case of Example 4.20 note that the matrix M we compute in the
particular case above is simply:

M = 2
∑

fW (ak) · (ak)⊗2

where for W = (w1, . . . , wt), fW (ak) =
∏t
`=1〈w`, ak〉2 and for every vector z, z⊗2 is the matrix Z

such that Zi,j = zizj .
Intuitively, the idea is that with some inverse polynomial probability, the correlation of each

random Gaussian we pick with a1 will be twice as much as the correlation it has with every other
ak, and hence since we take O(log n) of these, the weighting will be heavily skewed to (a1)⊗2.

In this lucky case we will have that for every i, j Mi,j = fW (a1)a1(i)a1(j) ± o(fW (a1)/n).
Therefore, if we sample a random v such that E

[
vivj

]
= Mi,j then (using ‖a1‖ = 1), we have

E
[
‖v‖2

]
=
∑
i

Mi,i = fW (a1)± o(nfW (a1)/n)

and

E
[
〈v, a1〉2

]
=
∑

a1(i)a1(j)Mi,j

= fW (a1)

∑
i,j

(a1(i)a1(j))2 ± o(1/n)
∑
i,j

a1(i)a1(j)


= fW (a1)(1 + o(1/n)

(∑
a1(i))2

)
= fW (a1)(1± o(1))

Thus, if we scale v to a unit vector ṽ, we will get that 〈ṽ, a1〉2 ≥ 1− o(1).
In general, this behavior is captured in the following lemma:

Lemma 4.21. For any degree k pseudo-distribution {u} satisfying {‖u‖22 = 1} so that there exists
some c so that Ẽu

[
〈u, c〉t

]
≥ e−εk, the sampling procedure described in steps 3-5 outputs a c′ with

〈c, c′〉 ≥ 1−O(ε) with probability 2−k/poly(ε).

By what we’ve done above, these three lemmas together prove Lemma 4.16. Since by Corollary
4.18 we have an oracle to check the correctness of a candidate solution, by repeatedly doing this a
polynomial number of times, we conclude that with high probability, we will succeed in finding the
desired solution. Now all we have to do is prove a bunch of lemmas, which we do in the remaining
sections.

4.9. PROOF OF LEMMA ?? 71

4.9 Proof of Lemma 4.17

We restate Lemma 4.17 here for convenience.

Lemma 4.22. Let P (u) = ‖ATu‖dd. For S = poly(τ, d) then with arbitrarily high probability

P (u)− τ‖u‖dd � P̃ (u) � P (u) + 2τ‖u‖dd.

Proof. We first show that we can replace P̃ with its expectation. Recall that P̃ (u) = 1
S

∑S
i=1〈y, u〉d.

Let Q(u) = Ey
[
〈y, u〉

]d
. Associate to any degree d polynomial f(x) =

∑
|α|≤d cαx

α a matrix M(f)
whose rows and columns are indexed by monomials of degree at most d/2 (recall d is even), so that
for every monomial β1, β2 with |β1|, |β2| ≤ d/2,

Mβ1,β2 =
1

Tβ1+β2

cβ1+β2

where Tα = #{α1, α2 : α1 +α2 = α}. Then it is straightforward to prove that f is a sum of squares
if and only if this matrix M is PSD.

We know that M(P̃)→M(Q) in the Frobenius norm as we take more and more samples, since
all the monomials will converge, and moreover, we know that if we take poly(d, τ) samples, we will
have that with high probability, ‖M(P̃)−M(Q)‖F ≤ τ/2 and hence in the spectral norm as well,
which implies that the matrices τI ± (M(P̃) −M(Q)) are PSD, which by the above is equivalent
to the statement that ±(P̃ −Q) � τ‖u‖dd.

We now show that P (u) � Q(u) � P (u) + τ‖u‖2d. This combined with what we just proved
suffices to complete the proof of Lemma 4.17. Let us open up this expression for Q. Letting
v = A>u and recalling that y = Ax, we have

Q(u) = Ey
[
〈y, u〉d

]
= Ey

[
〈x,AT , u〉d

]
=
∑
|α|≤d

Ex
[
xαvα

]
noting that the non-square moments here vanish, and that the moments that have more than one
variables are at most τ (both by the niceness assumption we place on {x}), we can see that

‖v‖dd � Q(u) � ‖v‖dd + τ
∑
|β|≤d/2

v2β � ‖v‖dd + τd!(
∑
k

v2
k)
d/2 (4.19)

where the last inequality follows by repeated application of the AMGM inequality. Note that∑
k v

2
k = ‖A>u‖22 � O(‖u‖22) under our assumption that σ = O(1), where σ is the largest singular

value of A, so if we choose τ ≤ O(1
d!) ·O(1)d we obtained the desired result.

4.10 Proof of Lemma 4.19

We restate Lemma 4.19 here for convenience.

Lemma 4.23. Let {u} be the pseudo-distribution returned by step 2 of our algorithm. If t > c logm
is divisible by d− 2 and c sufficiently large then there exists some k0 such that

Ẽu
[
〈u, ak0〉t

]
≥ e−εt/d . (4.20)

where ε = O(τ + log σ + d log m
k).

72CHAPTER 4. SOS UPPER BOUNDS: PLANTED SPARSE VECTORANDDICTIONARY LEARNING

We note that if we assume Marley’s conjecture, we can prove something much stronger, which
is intuitively what we are trying to replicate with this lemma:

Proposition 4.24. If the {u} returned by our algorithm is a real distribution, then there exists a
k0 so that

Ẽ
[
〈u, a〉t

]
≥ (1− τ)Ω(t) ≥ e−τ ·Ω(t).

Proof. Since every vector in the support of {u} is close to some k, there exist k0 such that with
probability at least 1/m, 〈u, a〉2 ≥ 1− o(1). That means that

Ẽ
[
〈u, a〉t

]
≥ 1

m(1− τ)t ≥ (1− τ)t−logm ≥ 1− τ)Ω(t).

Proof of Lemma 4.19. First notice by Lemma 4.17 we know that there is some {u} satisfying ‖u‖22
with Ẽu

[
P̃ (u)

]
≥ 1 − τ ; take the real distribution which is identically a1, for instance. Thus, for

the pseudo-expectation that we get, this is satisfied as well, and we get that Ẽu
[
‖ATu‖dd

]
≥ 1− 2τ .

This implies by a straightforward averaging argument as above that there exists some k0 so
that

Ẽu
[
〈ak0 , u〉d

]
≥ 1

m
(1− 2τ).

To demonstrate this for larger t, we appeal to the following form of Hölder’s inequality:

(‖v‖dd)t/d−2 � (‖v‖22)t/(d−2) · ‖v‖tt
which holds whenever t is an integer multiple of d − 2. If we substitute in v = ATu, and since
moreover ‖ATu‖22 � σ‖u‖22 where σ = O(1) and we assume that our pseudo-expectation satisfies
{‖u‖22 = 1} we obtain by an additional application of Hölder’s inequality

σt/(d−2) Ẽu
[
‖ATu‖tt

]
≥ Ẽ

[
‖v‖dd

]t/(d−2) ≥ (1− 2τ)t/(d−2) ≥ e−2τt/(d−2),

so Ẽu
[
‖ATu‖tt

]
= e−Ω(t). We are playing fast and loose with constants a little bit, and the big-Oh

here hides some dependencies, but it is all morally correct. Then by the same averaging trick as
before, we get the desired result.

4.11 Proof of Lemma 4.21

We again restate the lemma we want to prove here for convenience.

Lemma 4.25. For any degree k pseudo-distribution {u} satisfying {‖u‖22 = 1} so that there exists
some c so that Ẽu

[
〈u, c〉t

]
≥ e−εk, the sampling procedure described in steps 3-5 outputs a c′ with

〈c, c′〉 ≥ 1−O(ε) with probability 2−k/poly(ε).

4.11.1 Motivation

Here is a crude argument as to why this should happen with good probability in the case described
in Example 4.20, which is roughly what we should expect is the hard case. In this case, for
every particular random random vector w, with probability 0.99 that maxi≥1〈w, ak〉2 ≤ logm
but with probability exp(−c log n) = n−O(1) we would have that 〈w, ak〉2 ≥ 2 logm, and these
events are essentially independent if the ak’s are sufficiently close to orthogonal. (In general we
can’t assume that, but it turns out that this doesn’t matter for our final argument.) Hence with
n−O(t) = n−O(logn) probability we would have that for every ` and k > 1, 〈w`, a1〉2 ≥ 2〈w`, ak〉2
meaning that for every k > 1, fW (a1) ≥ 2tfW (ak) = n2fW (ak) if we set t = 2 log n.

4.11. PROOF OF LEMMA ?? 73

4.11.2 Less Heuristic Analysis

First, we need to prove the following technical lemma which says that the sampling procedure is
well-defined, since the covariance matrices for Gaussians only make sense if they’re PSD. Recall
that given {u}, the matrix that we wish to use to produce our Gaussian is defined as Mij =
Ẽ
[∏t

`=1〈w`, u〉2uiuj
]
. For any choice of W = (w1, . . . , wt) let us define fW (u) =

∏t
`=1〈w`, u〉2.

Lemma 4.26. The matrix M is positive semi-definite.

Proof. For any x ∈ Rn, we have

xTMx =
∑
i,j

Mijxixj

=
∑
ij

Ẽ
[
fW (u)xiuiujxj

]
= Ẽ

[
fW (u)

∑
ij

xiuiujxj
]

= Ẽ
[
fW (u)〈x, u〉2

]
≥ 0

as fW is a square polynomial and so is 〈x, u〉2.

We want to prove that with decent (i.e., n−O(1)) probability over the choice of the vectors
W = (w1, . . . , wt), if we select v that matching the first two moments of

Ẽ
[
fW (u)u⊗2

]
(4.21)

then it will satisfy
〈v, a〉2 ≥ (1−O(ε))‖v‖2 . (4.22)

We will prove that (with some decent probability over the choice of W) condition (4.22) holds
in expectation. Since

E
[
〈v, a〉2

]
=
∑
ij

E
[
aiajvivj

]
=
∑
ij

aiaj Ẽ
[
fW (u)uiuj

]
= Ẽ

[
fW (u)〈u, a〉2

]
and

E
[
‖v‖2

]
=
∑
ij

Evivj
[
=
]
Ẽ
[
fW (u)

∑
i,j

uiuj
]

= Ẽ
[
fW (u)‖u‖2

]
as we choose {v} to match the second moments of {u}, this is equivalent to showing that

Ẽ
[
fW (u)〈u, a〉2

]
≥ 0.99 Ẽ

[
fW (u)‖u‖2

]
= 0.99 Ẽ

[
fW (u)

]
, (4.23)

where the final equality holds because {u} satisfies {‖u‖2 = 1}. One needs to add an additional
argument to show that this actually happens with decent probability, but it is not a very deep one,
and so we skip it here— as always, see the paper for details.

If we select a random standard Gaussian vector w then by the rotation invariance of the Gaussian
distribution, 〈w, c〉 is a standard Gaussian (i.e., distributed per N(0, 1)), and so E

[
〈w, c〉2

]
= 1 and

the probability that 〈w, c〉2 ≥ 11 equals some Wikipedia-computable constant p > 0.
Let A be this event and let C ≥ 10 be the the expectation of 〈w, c〉2 − 1 conditioned on A.
Note that by the rotation invariance of the Gaussian distribution, 〈w, b〉 is distributed like

N(0, ‖b‖) for every b ⊥ a even after conditioning on A.
For every vector unit u, we can write u = 〈u, c〉c + b where b ⊥ a has norm

√
1− 〈u, c〉2, and

so conditioning on A

Ew|A
[
〈u,w〉2

]
= 〈u, c〉2 Ew|A

[
〈c, w〉2 + 1− 〈u, c〉2

]
= C〈c, u〉2 + 1

74CHAPTER 4. SOS UPPER BOUNDS: PLANTED SPARSE VECTORANDDICTIONARY LEARNING

Since w1, . . . , wt are chosen independently, if we condition on A happening for every ` (which
would occur with probability pt = exp(−O(log n))) then, letting Q(u) = (C〈u, c〉2 + 1)t,

EW |A
[
Ẽu
[
fW (u)

]]
= Ẽu

[
Q(u)

]
by linearity, and

EW |A
[
Ẽu
[
fW (u)〈u, c〉2

]]
= Ẽu

[
Q(u)〈u, c〉2

]
So, we just need to prove that if {u} satisfies our conditions, then

Eu
[
Q(u)〈u, c〉2

]
≥ 0.99Eu

[
Q(u)

]
(4.24)

We will show that (4.24) follows from the assumption that Ẽu
[
〈u, c〉t

]
≥ e−εk. Indeed, write

Q(u) = Q′(u) + Q′′(u) by expanding the expression Q(u) = (C〈u, c〉2 + 1)t, and letting Q′(u)
contains all the terms where we take C〈u, c〉2 to a power larger than t/2 and letting Q′′(u) contain
the rest of the terms.

First, E
[
Q′′(u)

]
is negligible compared to E

[
Q(u)

]
, since the terms in Q′′(u) are each of the

form Cs〈u, c〉2s for some s ≤ d/2 and thus since Cs〈u, c〉2s � Cs‖u‖2s‖c‖2s � Cs‖u‖2s and {u}
satisfies {‖u‖2 = 1}, we have that in pseudo-expectation, each of the at most

(
t
t/2

)
terms in Q′′(u)

is bounded by (C + 1)t/2, while Q(u) contains the the much larger term Ct E
[
〈u, c〉2t

]
≥ 0.9992tCt.

Thus we can assume Q(u) = Q′(u), but then

Ẽ
[
Q′(u)〈u, a〉2

]
≥ (1−O(ε)) Ẽ

[
Q′(u)

]
since we can show this ratio holds for every term of Q′(u) since for every k ≥ t

Ẽ
[
〈u, a〉k+2

]
≥ Ẽ

[
〈u, a〉k

](k+2)/k
= Ẽ

[
〈u, a〉k

]
Ẽ
[
〈u, a〉k

]2/k ≥ (1−O(ε)) Ẽ
[
〈u, a〉k

]
where the first inequality uses Hölder’s inequality for psuedo-expectations and the last uses our
assumption (4.20).

This concludes the proof of the Main Lemma for actual distributions.

Chapter 5

Sparsest Cut and the ARV algorithm

At MIT this was a guest lecture given by Jonathan Kelner for which lecture notes are not available.
The following are notes from the SOS summer course scribed by Tal Wagner.

In this lecture we revisit the (Uniform) Sparsest Cut problem, a thoroughly studied optimization
problem introduced in Lecture 2. We present a breakthrough result of Arora, Rao and Vazirani
[?], that achieves an efficient O

(√
log n

)
-approximation algorithm. It is of interest to us since it

can be interpreted as an instantiation of the degree-4 SoS algorithm.

We will not give the full proof of [?], since it is very long and involved, but rather focus on
presenting the main ideas.

5.1 Problem Definition

For simplicity we define the problem over regular graphs, and remark that the results presented
here extend to general graphs as well.

Definition 5.1 (sparsity). Let G(V,E) be an r-regular graph on n vertices. For a subset of vertices
S ⊂ V such that S 6= ∅, V , denote S̄ = V \ S, and denote by E(S, S̄) the number of edges crossing
the cut (S, S̄).

The sparsity of the cut (S, S̄), denoted φ(S, S̄), is defined as

φ(S, S̄) =
nE(S, S̄)

r|S||S̄|
.

The sparsity of G, denoted φ(G), is defined as

φ(G) = min
S⊂V :S 6=∅,V

φ(S, S̄).

To get some intuition for this definition, observe that up to the multiplicative factor n/r (which
can be thought of as normalization), φ(S, S̄) is the ratio of the number of edges that actually cross
the cut to the number of edges that could have crossed it (had all the possible edges been present).

Definition 5.2. The Uniform Sparsest Cut problem is, given a d-regular graph G(V,E) over n
vertices, to find S ⊂ V such that φ(S, S̄) = φ(G).

75

76 CHAPTER 5. SPARSEST CUT AND THE ARV ALGORITHM

5.2 Main Theorem

The main result of this lecture is an O
(√

log n
)
-approximation for Uniform Sparsest Cut.

Theorem 5.3 (Arora-Rao-Vazirani [?]). There is a randomized polynomial time algorithm, that
given an r-regular graph G(V,E) on n vertices, finds with high probability S ⊂ V such that φ(S, S̄) =
O(
√

log n) · φ(G).

The best multiplicative approximation factor prior to [?] was O(log n) due to Leighton and Rao
[?]. The Cheeger-Alon-Milman inequality, discussed in Lecture 2, achieves a square-root approxi-
mation, i.e. finds S ⊂ V such that φ(S, S̄) = O(

√
φ(G)).1

On the other hand, while Uniform Sparsest Cut is known to be NP-hard [?], all currently known
inapproximability results rely on stronger hardness assumptions.

5.3 The ARV Algorithm

We will work under the simplifying assumption that φ(G) is attained by a bisection - that is, there
is S∗ ⊂ V with |S∗| = n/2 such that φ(G) = φ(S∗, S̄∗). Of course, this assumption is not required
for the analysis of [?].

We identify our vertex set V with [n] = {1, . . . , n}. Let x∗ ∈ {±1}n be the indicator vector of
S∗, i.e. for all i ∈ V , x∗i = 1 if i ∈ S∗ and x∗i = −1 otherwise. Observe that we have

E(S∗, S̄∗) =
1

4

∑
{i,j}∈E

(x∗i − x∗j)2.

Moreover since (S∗, S̄∗) is a bisection we have |S∗| = |S̄∗| = n
2 , and since G is r-regular we have

|E| = nr
2 . Plugging these into Definition 5.1, we may write

φ(G) =
1

2|E|
∑
{i,j}∈E

(x∗i − x∗j)2,

and now we can formulate our problem in the SoS framework.

5.3.1 The SoS Program

Our algorithm (that will be fully described in the next section) runs the SoS algorithm to get a
degree-4 pseudo-distribution {x} satisfying the constraints:

• x2
i = 1 ∀ i ∈ [n]; (5.1)

•
n∑
i=1

xi = 0; (5.2)

• 1

2|E|
∑
{i,j}∈E

(xi − xj)2 ≤ φ. (5.3)

The constraints in eq. (5.1) ensure that the pseudo-distribution is over vectors in {±1}n. The
constraint eq. (5.2) ensures that the pseudo-distribution is over bisections (same number of +1’s

1As explained in Lecture 2, the Cheeger-Alon-Milman inequality applies to a slight variation of Uniform Sparsest
Cut of which optimum cannot exceed 1, and hence a square-root approximation makes sense, i.e. φ(G) ≤

√
φ(G).

5.4. ANALYSIS 77

and −1’s). Eq. (5.3) is the minimization of our objective function: we can perform a binary search
in order to find the minimal φ for which these constraints are satisfiable (this is a standard reduction
of optimization to feasibility). Note that φ ≤ φ(G), since we have x∗ that attains φ(G).

Our goal is to show that we can obtain from {x} a subset S ⊂ V that meets our approximation
requirement. We make one more assumption, that our pseudo-distribution is “well spread”, in the
sense that

Ei,j∈[n]

[
Ẽ
[
(xi − xj)2

]]
≥ 1

10
. (5.4)

It turns out that in the complementary case, it is not difficult to obtain a constant-factor approx-
imation (and this was used prior to ARV). Hence this assumption focuses us on the challenging
case.

5.3.2 The Algorithm

To obtain an approximate solution from {x}, our approach is by reduction to a vertex separation
problem on graphs.

Definition 5.4. Let H be a graph over n vertices. We say H is separable if there are disjoint
subsets of vertices L,R, such that |L|, |R| ≥ Ω(n) and there are no edges crossing between them.

The key structural result of ARV is the following.

Lemma 5.5 (ARV main lemma). Let {x} be a pseudo-distribution obtained from the SoS program
in Section 5.3.1 on the input graph G(V,E).

Put ∆ = c/
√

log n for a sufficiently small constant c. Define the graph H(V,EH) on the same
vertex set as G, with {ij} ∈ EH iff Ẽ

[
(xi − xj)2

]
< ∆.

Then H is separable, and the subsets L,R can be found with high probability in randomized
polynomial time.

Using this lemma we can obtain a sparse cut using standard techniques.

Lemma 5.6. Given subsets L,R as guaranteed by Lemma 5.5, we can efficiently find S ⊂ V such
that φ(S, S̄) ≤ O(φ/∆) = O(

√
log n)φ.

Now we can fully state the algorithm.

ARV approximation algorithm for Uniform Sparsest Cut:

1. Solve the SoS program stated in Section 5.3.1.

2. Construct the graph H as described above.

3. Apply Lemma 5.5 to find disjoint subsets L,R ⊂ V as in Definition 5.4.

4. Use Lemma 5.6 to obtain from L,R a subset S ⊂ V such that φ(S, S̄) ≤ O(
√

log n)φ(G).

5.4 Analysis

We will perform the analysis under the assumption that {x} is an actual distribution, and later
verify that all arguments used hold remain intact when {x} is a pseudo-distribution (of degree 4,
in this case). This is fairly common when working with the SoS algorithm.

78 CHAPTER 5. SPARSEST CUT AND THE ARV ALGORITHM

5.4.1 Preliminaries

Suppose that {x} is an actual distribution over vectors in {±1}n. The entries of a vector drawn
from {x} are correlated random variables x1, . . . , xn taking values in {±1}. We visualize {x} as a
{±1}-matrix A{x} of size `× n, with columns corresponding to x1, . . . , xn and rows corresponding
to the points in the sample space of {x} (so ` is the size of the sample space). The xi’s can now be
thought of as (column) vectors in {±1}`.2 We stress that {x} is a distribution over vectors in {pm1}n
describing bisections in G (and corresponding to rows of A{x}), while its random coordinates xi’s

are interpreted as vectors in {±1}` (corresponding to columns of A{x}). The reader is alerted to
avoid confusion.

We go on to define a notion of distance between the xi’s. For t = 1, . . . , `, let pt denote the
probability to sample from {x} the value of the tth row in A{x}. For simplicity one may think of
p1, . . . , p` as the uniform distribution; it does not change the analysis.

Definition 5.7. Define d : [n]× [n]→ R≥0 by

d(i, j) =
∑̀
t=1

pt(xi(t)− xj(t))2 = E
[
(xi − xj)2

]
,

It straightforward to verify that d is a distance function, in the sense that it satisfies the following
properties:

1. d(i, i) = 0 for all i;

2. (Symmetry) d(i, j) = d(j, i) for all i, j;

3. (Triangle inequality) d(i, k) ≤ d(i, j) + d(j, k) for all i, j, k.

In fact, d is equivalent to both the Hamming distance and the ‖ · ‖1-distance.3

5.4.2 Why is ∆� 1/
√

log n Necessary?

Before turning to the main part of the analysis, let us show why our approach can only work up
to ∆ � 1/

√
log n and not greater values, which would have given a better approximation factor.

Note that we are showing this limitation even for actual distributions (rather than just pseudo-
distributions).

We rely on the following theorem, stated here without proof.

Theorem 5.8 (expansion of the boolean hypercube). Let c > 0 be a sufficiently large constant.
For L ⊂ {±1}`, denote

L̃ =
{
u ∈ {±1}` : ∃u ∈ L s.t. ‖v − u‖1 ≤ c

√
`
}
.

If |L| ≥ Ω(2`), then |L̃| ≥ (1− o(1))2`.

2We remark in the usual presentation of the ARV analysis, which is outside of the SoS framework, the vectors are
not assumed to have entries in {±1}.

3The equivalence is up to normalization and weighting by p1, . . . , p`, and up to a factor of 4 (for Hamming distance)
or 2 (for ‖ · ‖1-distance..

5.4. ANALYSIS 79

Put ` = log n, and let A be a {±1}-matrix of dimensions `× n, such that its n columns are all
the 2` = n possible {±1}-vectors of length `. (The order of the columns does not matter.) Consider
the distribution {x} defined by uniformly sampling a row from A. Note that for this distribution,
A is exactly the matrix A{x} defined in the previous section.

Since {x} is uniform over its support, it can be easily seen that

d(i, j) = E
[
(xi − xj)2

]
=
‖xi − xj‖1

2`
.

Recall that we have ∆ = c/
√

log n = c/
√
`. In the graph H defined in Lemma 5.5, a pair of vertices

i, j is adjacent if d(i, j) < ∆, or equivalently (by the above), if ‖xi − xj‖1 < 2∆` = 2c
√
`. If we

take c to be a large constant (rather than a small constant as in Lemma 5.5), then we can apply
Theorem 5.8. It tells us that for any choice of L such that |L| ≥ Ω(n), the subset R of vertices that
have no neighbors in L would have size no larger than o(n). This means that H is not separable,
and the conclusion of Lemma 5.5 does not hold.

5.4.3 Why is ∆� 1/
√

log n Sufficient? Proof of Lemma 5.5

We now turn to the core of the analysis, of showing that if ∆ = c/
√

log n then H is separable (with
constant probability, that can then be boosted).

Apply the Quadratic Sampling Lemma (see previous lecture for the formal statement and proof)
to obtain a Gaussian distribution {y} that matches the first two moments of {x}. This is a
distribution over vectors in Rn (with correlated entries), such that yi is associated with the vertex
i in H. Sample y ∼ {y} and define

L = {i : yi < −10} , R = {i : yi > 10}.

By the SoS program constraints, for each i we have E
[
yi
]

= E
[
xi
]
∈ [−1, 1] and E

[
y2
i

]
= E

[
x2
i

]
= 1.

Hence by standard properties of Gaussian random variables, we see that with high probability,
|L|, |R| ≥ Ω(n). If there are no edges crossing between L and R, then we are done. Otherwise,
we wish to remove a small subset of vertices from L and R in a way that eliminates all the edges
crossing between them, but retains their linear sizes. For convenience, we treat all edges crossing
between L and R as oriented edges from L to R.

To analyze this approach, let us derive a simple bound on the probability of an edge to cross
from L to R. Let {ij} be some edge in H. By definition this means that d(i, j) = E

[
(xi − xj)2

]
∆.

Moreover we know that E
[
yi − yj

]
= E

[
xi − xj

]
=∈ [−2, 2]. Hence yi − yj is a Gaussian random

variable with mean in [−2, 2] and variance bounded by ∆, and therefore,

Pr [|yi − yj | > 20] = exp(−1/∆). (5.5)

This means that the edge {ij} crosses from L to R with probability at most exp(−1/∆).
Now let us consider some examples of how we can avoid edges crossing from L to R.

• Suppose ∆ is as small as ∆ ≤ 1/3 log n. Then the probability in eq. (5.5) is roughly 1/n3,
which means, by a union bound over all edges in H (of which there are at most n2), that
with constant probability there are no edges crossing from L to R. In this case the proof is
finished.

• Suppose H has at most 2O(
√

logn) edges. Recalling our choice of ∆ as c/
√

log n for a sufficiently
small constant c, we see that we can apply the same union bound argument as above.

•

80 CHAPTER 5. SPARSEST CUT AND THE ARV ALGORITHM

5.4.4 From Vertex Separation to Sparse Cut: Proof of Lemma 5.6

We now prove Lemma 5.6. The proof is standard and is outside the core analysis of ARV (which
is Lemma 5.5); it is presented here for the sake of completeness.

Relying on the definition of d as a distance function between points in [n], we can define a
notion of distance between a point and a subset of points: For B ⊂ [n] and i ∈ [n], we let

d(B, i) = min
b∈B

d(b, i).

It is easy to verify that from the standard triangle inequality of d, we can obtain the following
triangle inequality for subsets: For B ⊂ [n] and i, j ∈ [n],

d(B, i) ≤ d(B, j) + d(j, i). (5.6)

To obtain our sparse cut, we sample τ ∈ (0,∆) uniformly at random (recall that ∆ was defined
in Lemma 5.5) and let

S = {i ∈ [n] : d(L, i) ≤ τ}.

Clearly we have L ⊂ S. Observe that in Lemma 5.5, the graph H was defined such that i, j are
neighbours in H iff d(i, j) < ∆. By hypothesis of Lemma 5.6 there are no edges crossing between
L and R, and therefore R ⊂ S̄. Since |L|, |R| ≥ Ω(n), we conclude that

|S| · |S̄| ≥ Ω(n2). (5.7)

We turn to counting the edges crossing the cut (S, S̄). Let {ij} be an edge in G and let χij be the 0-1
random variable indicating whether the edge crosses (S, S̄). Suppose w.l.o.g. that d(L, i) ≤ d(L, j).
The edge crosses (S, S̄) iff both τ ≥ d(L, i) and τ < d(L, j) occur, and hence

Eτ
[
χij
]

= Pr[τ ∈ [d(L, i), d(L, j))] =
d(L, j)− d(L, i)

∆
≤ d(i, j)

∆
,

where the final inequality is by eq. (5.6). Summing over all edges,

Eτ
[
E(S, S̄)

]
= Eτ

[∑
{i,j}∈E

χij
]

=
∑
{i,j}∈E

Eτ
[
χij
]
≤
∑
{i,j}∈E d(i, j)

∆
,

and now using Markov’s inequality we can find with high probability a threshold τ such that

E(S, S̄) ≤ O(1) ·
∑
{i,j}∈E d(i, j)

∆
. (5.8)

Finally, note that by eq. (5.3) we have∑
{i,j}∈E

d(i, j) =
∑
{i,j}∈E

E
[
(xi − xj)2

]
≤ 2|E|φ = 2nrφ.

Combining this with eq. (5.7) and eq. (5.8) we find that

φ(S, S̄) =
nE(S, S̄)

r|S||S̄|
≤ O(1) · φ

∆
,

as required.

5.5. TEMP GRAVEYARD 81

5.4.5 From Actual Distribution to Pseudo-Distribution

5.5 Temp Graveyard

5.5.1 Squared Triangle Inequality for {±1}

The reason we need a degree-4 SoS program, is for {x} to have the following property.

Lemma 5.9. Let {x} be a degree-4 pseudo-distribution satisfying the constraints {∀i, x2
i = 1}.

Then for all i, j, k,
Ẽ
[
(xi − xk)2

]
≤ Ẽ

[
(xi − xj)2

]
+ Ẽ

[
(xj − xk)2

]
. (5.9)

Proof. We first note that if {x} was an actual distribution over {±1}n then the lemma would be
easy, since the inequality (xi − xk)2 ≤ (xi − xj)2 + (xj − xk)2 would hold for every i, j, k (this is
trivial to verify by case analysis) and hence would clearly hold in expectation. However, in order
to prove the lemma for pseudo-expectation, we need to give an SOS proof.

By linearity of pseudo-expectation, eq. (5.9) is equivalent to

Ẽ
[
(xi − xj)2 + (xj − xk)2 − (xi − xk)2

]
≥ 0.

By rearranging, this becomes
Ẽ
[
(xj − xi)(xj − xk)

]
≥ 0.

Denote P (x) = (xj − xi)(xj − xk). We need to show that Ẽ
[
P (x)

]
≥ 0, so by definition, we need

to find a polynomial Q(x) such that P = Q2 (over {±1}).
We put Q = 1

2P . The fact that P = (1
2P)2 can be verified either by explicitly expanding Q2

and plugging x2
i = x2

j = x2
k = 1, or by just observing that P (x) ∈ {0, 4} over {±1}, which renders

P = (1
2P)2 immediate to see.

Note that our SoS proof Q2 of eq. (5.9) is a polynomial of degree 4, and this is why we need
{x} to be a pseudo-distribution of atleast this degree.

82 CHAPTER 5. SPARSEST CUT AND THE ARV ALGORITHM

Chapter 6

The SOS approach to refuting the
Unique Games Conjecture

Morally speaking, the Unique Games Conjecture (UGC) asserts that a simple algorithm— namely
the degree 2 SOS program— is the optimal efficient algorithm for a wide range of optimization
problems. Thus if the UGC is true one might expect that the SOS hierarchy is very often useless—
there is no point in going beyond the degree two case unless you go for a large degree that would
amount to the exponential-time brute force algorithm. We do not know whether the UGC as
stated is true, but we will see that this strong version of it is false— we have already seen examples
where we can get non-trivial improvements by the SOS algorithm with moderate degree, and as
we will see today, we can get such guarantees even for the Unique Games problem itself. Namely,
the SOS algorithm yields a sub-exponential (2n

ε
) time algorithm for the Unique Games problem.

While falling short of disproving the UGC, this algorithm does significantly outperform the trivial
brute-force algorithm.

The SOS hierarchy represents the most promising approach I know of towards refuting the UGC.
Progress towards this goal has been somewhat slow, with papers that show the algorithm works
for particular instances, or work for general instances but with parameters that are far from what’s
needed to refute the UGC. But it has also been steady, and an algorithm-optimistic (or complexity-
pessimistic) view towards it is that the problem might eventually succumb by the Grothendieck
“Rising Sea” method:

I can illustrate the second approach [to solving a problem] with the same image of a nut
to be opened. The first analogy that came to my mind is of immersing the nut in some
softening liquid, and why not simply water? From time to time you rub so the liquid
penetrates better, and otherwise you let time pass. The shell becomes more flexible
through weeks and months— when the time is ripe, hand pressure is enough, the shell
opens like a perfectly ripened avocado!

A different image came to me a few weeks ago. The unknown thing to be known
appeared to me as some stretch of earth or hard marl, resisting penetration. . . the sea
advances insensibly in silence, nothing seems to happen, nothing moves, the water is so
far off you hardly hear it. . . yet it finally surrounds the resistant substance.

Another, perhaps slightly less classy metaphor that comes to my mind is the Austin Powers
steamroller, though at this point it’s still unclear if the SOS steamroller will stop short of running
over the UGC...

83

http://www.landsburg.com/grothendieck/mclarty1.pdf
http://www.landsburg.com/grothendieck/mclarty1.pdf
http://youtu.be/l4UFQWKjy_I
http://youtu.be/l4UFQWKjy_I

84CHAPTER 6. THE SOS APPROACH TOREFUTING THE UNIQUE GAMES CONJECTURE

I should note that the SOS hierarchy also plays an important role in the most promising ap-
proach I know of to prove the conjecture. This is the work of Khot and Moshkovitz which Dana
discussed in our reading group and I will refer to briefly today. I do believe in the ”rising sea”
approach in the sense that, true or false, settling the UGC will eventually be only a minor part of
a much larger theory that will give us a broad understanding of the power of the SOS algorithm,
and of efficient algorithms in general, for many classes of optimization problems.

6.1 The Small Set Expansion Hypothesis

There is actually a family of problems related to the Unique Games Conjecture. All these problems
share the feature that the best known approximation algorithm for them is the degree 2 SOS and
that we have no proof one can’t do better. The three most prominent problems in this class are:

• SSE(ε): Distinguishing, given a d-regular graph G = (V,E) of n vertices, between the YES
case where there exists a set S of n/ log n vertices such that |E(S, S)| ≤ εd|S| and the NO
case where every set S of at most n/ log n vertices satisfies |E(S, S)| ≥ (1− ε)d|S|.

• UG(ε): Distinguishing, given a set of linear equations over n variables taking values in Zlogn

such that each equation only involves two variables, between the YES case where there exists
an assignment to the variables that satisfies a 1 − ε fraction of the equations, and the NO
case where every assignment satisfies at most ε fraction of them.1

• 2LIN(ε): Distinguishing, given a set of linear equations over n variables taking values in
Z2 such that each equation only involves two variables, between the YES case where there
exists an assignment to the variables that satisfies a 1− ε fraction of the equations, and the
NO case where every assignment satisfies a 1−

√
ε/10 fraction of them. (There are also two

extremely related problems to 2LIN(ε)— MAXCUT (ε) and SPARSESTCUT (ε) which
should arguably be added to this list as well.)

In all cases we think of ε as a small constant tending to zero (e.g., think ε = 0.01 or ε = 0.001).
We have the following relation between these problems

SSE(ε) � UG(ε) � 2LIN(ε)

by which we mean that there is a polynomial-time reduction from SSE(ε) to UG(ε′) (for some ε′

depending on ε and tending to 0 with ε) and from UG(ε) to 2LIN(ε′). Reductions in the other
directions are not known, but current knowledge suggests that all three problems are likely to be
computationally equivalent. In particular all known algorithmic and hardness results apply equally
well to the SSE(ε) and UG(ε). The best polynomial-time algorithm known for all three problems
is the degree 2 SOS algorithm. In particular for SSE this algorithm corresponds to a generalization
of Cheeger’s Inequality, while for 2LIN it corresponds to a (small) generalization of the Goemans-
Williamson Max-Cut algorithm. The version of 2LIN(ε) of distinguishing between value 1− ε vs.
1−1.01ε is known to be NP-hard (for some value of 1.01) and in fact this reduction has quasilinear
blowup and so under standard assumptions this problem cannot be solved in 2n

0.999
time.

The Unique Games Conjecture (UGC) asserts that for every ε > 0, UG(ε) is NP hard. The
Small Set Expansion Hypothesis (SSEH) asserts that for every ε > 0, SSE(ε) is NP hard. One
can also phrase a 2LIN hypothesis (2LINH) that for every ε > 0, 2LIN(ε) is NP-hard. Given

1For every c < 1/2, the version of the UG(ε) where we compare 1− ε vs 1− εc is known to be equivalent to UG(ε′)
(for ε′ related to ε) using Rao’s parallel repetition theorem.

6.2. 2 TO Q NORM AND SMALL SET EXPANSION 85

the discussion above, the SSEH implies the UGC and is very likely to be equivalent to it. Since
it also implies all consequences of the UGC (including the 2LINH), the SSEH is a natural anchor
for the problems in the ”Unique Games Sphere” and so a natural object of study towards refuting
the UGC. Conversely, the 2LINH is a natural object of study towards proving the UGC (which is
indeed the Khot-Moshkovitz approach).

Note: All these problems are typically stated with more parameters than ε, and we fixed the other
parameter to be log n in SSE and UG for simplicity. This version can be shown to be equivalent
to the more standard version by known reductions.

6.2 2 to q norm and small set expansion

The main current approach to the attacking the small-set expansion problem via SOS goes through
hyper-contractive norms. Specifically we will use the following result. Informally, we call a d-regular
graph G = (V,E) a small set expander if subsets S of size o(|V |) satisfy |E(S, S)| ≥ (1− o(1))d|S|.

Theorem 6.1 (Informal). For every even q > 2, a graph G is a small set expander if and only if
every vector w in G’s top eigenspace satisfies

Eiwqi ≤ O(Ew2
i)
q/2 (6.1)

Thus a sufficiently good approximation algorithm for (6.1) would yield an algorithm for the
small set expansion problem. This approach seems to be extremely ambitious in the sense that we
try to approximate the ratio of the q and 2 norms over an arbitrary subspace W , forgetting any
additional structure W may have had since it is the top eigenspace of some graph. However, this
makes the problem also cleaner and presumably, if there are hard instances for it, then it would be
easier to find them.

Keeping to a rough, informal level, the proof that O(1) levels of the SOS algorithm solve all
previously known hard instances rely on the fact that it can certify (6.1) for the subspace of low
degree polynomials over {±1}logn. With Kelner and Steurer, we showed that O(1) rounds of SOS
yield an dim(W)1/3 approximation (in some precise sense) of the 2 to 4 problem. If this result could
be improved to a constant or even polylog(n) (perhaps even no(1)), even at the expense of using
polylog(n) (or perhaps even no(1)) rounds this would refute the SSEH and likely can be extended
to refute the UGC as well.

We will now give an informal intuition behind the theorem, and sketch how it implies a sub-
exponential algorithm for small-set expansion (that can be extended to the Unique Games problem
as well), and then describe in full the dim(W)1/3 algorithm. (Depending on time, we may or may
not cover the full proof of Theorem 6.1.)

6.2.1 The relation between the 2 to 4 norm and small set expansion

We now give some intuition on the relation between the 2 to q norm and small set expansion.
For simplicity, we focus on the case q = 4 although it is not hard to see that the same intuition
holds for every even q > 2. In the second lecture we saw the following results that says that if
Ew4

i ≤ O(Ew2
i)

2 for every w in the top eigenspace of G then G is a small set expander:

Lemma 6.2. Let G = (V,E) be regular graph, λ ∈ (0, 1) and W be the span of eigenvectors of G’s
normalized adjacency matrix corresponding to eigenvalue at least 1− λ. If every w ∈W satisfies:

Eiw4
i ≤ C

(
Eiw2

i

)2
(6.2)

86CHAPTER 6. THE SOS APPROACH TOREFUTING THE UNIQUE GAMES CONJECTURE

then for every set S of measure δ set,

φ(S) ≥ λ(1−
√
Cδ)

The proof of the lemma (which we saw) is a fairly straightforward contrapositive argument—
if S is a set of o(1) measure that doesn’t expand, then the projection of 1S to the top eigenspace
will still have large 4 norm compared to its 2 norm.

The other direction— transforming a vector w in the top eigenspace with large 4 to 2 norm
ratio into a small set that doesn’t expand— is trickier. It is instructive to compare this with
Cheeger’s Inequality. The difficult direction of Cheeger’s Inequality transforms a vector w in the
top eigenspace (but orthogonal to the all 1’s vector) into a set of measure at most 1/2 that does
not expand. In fact, Cheeger doesn’t need the vector w to be an eigenvector at all. As long as

w>Gw ≥ (1− ε)‖w‖2 (6.3)

the transformation of Cheeger (which involves choosing a random threshold τ with probability
proportional to τ2 and taking the set of all coordinates of w that are larger than τ) will yield such
a set.

One could hope that if w satisfies Ew4
i � (Ew2

i)
2 then by using the same or a similar trans-

formation we can get a small set that doesn’t expand. However, this is a bit tricky— in particular
we cannot do so by only assuming (6.3), since it is trivial to modify every vector w to have high 4
norm without hurting (6.3) too much. For example if w satisfies Ew2

i = 1, we can add n0.3e1 to w.
This change will make the 4-norm of w huge, but will be negligible in the 2 norm and hence will
not hurt (6.3). Therefore, to make the proof go through we must use the fact that w is completely
contained in the top eigenspace, as opposed to merely satisfying (6.3).

Intuition for the actual proof. To get some intuition for the proof, lets assume that the graph
G is ”nice” in the following sense: for every vector w, if w is in the eigenspace of G corresponding
to eigenvalues larger than 1 − ε then the vector w�q, defined as w�qi = wqi , is in the eigenspace
corresponding to eigenvalues larger than 1− qε. For example, Cayley graphs over the Boolean cube
are ”nice”:

Exercise 6.1: Prove that if G is a Cayley graph over GF (2)` (i.e., G’s vertices are elements
of GF (2)` and x is connected to y if x ⊕ y ∈ S for some subset S ⊆ GF (2)`) then it is nice. See
footnote for hint2 Can you generalize this to other Cayley graphs?

Now this means that if there is a vector w in G’s top eigenspace satisfying Ew4
i � (Ew2

i)
2

then the vector v = w�2 is also in G’s top eigenspace (for a slightly looser definition of ”top”)
and satisfies E v2

i � (E |vi|)2. However it turns out that the Cheeger transformation does actually
produce a set of measure at most O(δ) if you apply it to a vector v satisfying δ E v2

i > (E |vi|)2.
Indeed, without loss of generality we can normalize so that

∑
|vi| = 1, and so we can think of

|vi| as a probability distirbution and this condition means that it has collision probability at least
1/(δn). Let S be the set of i’s such that |vi| > 1/(100δn). Note that |S| ≤ 100δn. Now one can
show that if we do the Cheeger transformation then with high probability we will output a subset
of S. (For a formal argument see the paper of Dimitriou and Impagliazzo (1998) or the appendix
of Arora,Barak Steurer (2010).)

The argument for ”non nice” graphs is substantially more complicated. Specifically, rather than
giving a simple transformation that takes any w satisfying the conditions into a set S that does not

2Hint:The eigenvectors for such a graph are always the functions {χα}α∈GF (2)`
where χα(x) = −1〈x,α〉. Note that χα � χβ = χα⊕β .

6.3. USING SOS FOR THE 2 TO 4 PROBLEM 87

expand, the argument needs to assume that w is (close to) the optimal vector in the subspace in
terms of the relation between its q and 2 norm. The full proof is enclosed below and we will cover
it in class based on time constraints.

Exercise 6.2: (Open) Find a simpler proof for Theorem 6.1

Theorem 6.1 immediately implies a sub-exponential time algorithm for small set expansion using
the following exercise (a version of which for q = 4 we’ve already seen in a previous lecture):

Exercise 6.3: Let q be any even constant and W be a subspace of Rn with dimension � n2/q.
Then there exists w ∈W such that (Ewqi)� (Ew2

i)
2. See footnote for hint3

This yields a sub-exponential algorithm since for SSE(ε) we can take consider the subspace
corresponding to eigenvalues larger than 1 − ε and so q to be roughly 1/ε. This means that
either G’s top eigenspace has dimension at most O(n2/q), in which case we can enumerate over
(a sufficiently fine net of) it in exp(O(n2ε)) time, or if the dimension of the subspace is higher
and then we know that it can’t be a small set expander by the combination of this exercise and
Theorem 6.1. This algorithm can be extended for the Unique Games problem as well (see Arora,
Barak and Steurer, 2010). Note that this means that if we take ε = 0.01, we would need to look at
graphs of size roughly 250 before this algorithm is slower than a quadratic time one (for ε = 0.001
this would be 2500). So, even if the SSEH/UGC are true, they do not seem to tell us very much
on inputs that actually fit in the world’s storage capacity. This is in contrast to problems such as
SAT where, despite progress in SAT solvers, its exponential behavior is in fact quite observable
even on relatively modest sized inputs of a few thousand variables or so (not to mention variants
of SAT arising from private-key cryptography, where we can see the exponential behaviour even
on inputs as small as a few dozen variables— e.g. we still don’t know of a much better than brute
force algorithm to break the 56-bit cipher DES.) That said, even if the SSEH hypothesis is false, it
would be still very interesting to know if a linear time algorithm exists for the SSE(ε) problem.

6.3 Using SOS for the 2 to 4 problem

In a previous lecture we saw that SOS can certify that the span of low degree polynomials over
the Bolean cube has bounded 4 to 2 norm ratio. We did not show how this implies that the SOS
algorithm solves the UG/SSE/Max-Cut problems on previously suggested candidate hard instances
(see our STOC 2012 paper for that), but in any case this work was only for specific instances. We
now describe an approach for general instances of the problem.

A variant of Theorem 6.1 shows that for any constants β > α and δ > 0, an algorithm for the
following problem is sufficient to solve SSE(ε) (with ε related to the parameters below— in the
application we will let W be the subspace corresponding to eigenvalues of G larger than 1−O(ε)):
given a subspace W ⊆ Rn, distinguish between the YES case when there is a set S with |S| ≤ n/β
such that the projection of 1S to W has norm (1− δ)‖1S‖ and the NO case where for every w ∈W
such that Ew4

i ≤ α(Ew2
i)

2. For simplicity lets consider the version with δ = 0. (This seems
potentially easier, but we don’t know of any better algorithm than the one for δ > 0.)

Therefore we consider the following problem: given a d-dimensional subspace W ⊆ Rn, distin-
guish between the YES case: there is a set S with |S| ≤ n/β such that 1S ∈ W and the NO case:
Ew4

i ≤ α(Ew2
i)

2 for every w ∈W . We identify the approximation factor of this problem with β/α.
Ideally we would like an algorithm solving the problem for O(1) approximation factor, but what we

3Hint:Given an orthonormal basis w1, . . . , wd for W , we want to find some signs σ1, . . . , σd ∈ {±1} so that some coordinate i of the vector

w =
∑
σiwi will satisfy |wi| ≥ Ω(d/

√
n) which would imply Ewqi ≥ d

q/nq/2+1, while of course ‖w‖2 = d and so Ew2
i = d/n.

88CHAPTER 6. THE SOS APPROACH TOREFUTING THE UNIQUE GAMES CONJECTURE

would show is an O(d1/3) approximation algorithm (taken from the work with Kelner and Steurer
which also handled the case of δ > 0).

Theorem 6.3. There is some constant c such that if β ≥ cd1/3α, then if there exists a degree 20
psuedo-distribution {w} over Rn satisfying the constraints w ∈ W , ‖w‖2 = 1, w2

i = wi for all i,
Eiw4

i ≥ β(Ew2
i)

2, then there exists some v ∈ W satisfying E v4
i ≥ α(E v2

i)
2. Moreover, we can

efficiently find such a v from the moments of {w}.

Proof. Let Π be the projector to W and let δi = Πei where ei is the ith standard basis vector.
The algorithm will use the combination of the following steps:

Random vector rounding: pick a random w ∈W .

Projection rounding: try all vectors of the form δi.

Conditioning: find i1, . . . , i4 and change {w} to the distribution where we re-weigh the probability
of every vector by a factor of w2

i1
· · ·w4

i4
= wi1 · · ·wi4 .

Quadratic sampling: sample a gaussian distribution {v} that matches the first two moments of
{w}.

We will show that if the first two methods fail, then after conditioning, quadratic sampling will
yield a good solution.

If there exists an i such that Ej(δij)4 ≥ α(Ej(δij)2)2 then we’re done, so we can assume that

Ej(δij)4 ≤ α(Ej(δij)2)2 for every i ∈ [n].

Note that wi = 〈w, ei〉 = 〈w, δi〉 for every w ∈W .
Note that since the w’s are characteristic vectors of sets of size n/β, Eiw4

i = 1/β. Thus, by
Cauchy-Schwarz

1
β = Ẽw Ei〈w, δi〉4 ≤

√
Ẽ〈w,w′〉4 Ei,j〈δi, δj〉4 (6.4)

(Exercise 6.4: verify this.)
Under our assumption for every i,

Ej〈δi, δj〉4 = Ej(δij)4 ≤ α
(
E(δij)

2
)2

Lets assume the RHS is the same up to a factor of α for every j (Exercise 6.5: show that otherwise
random vector rounding succeeds). Then we get that

Ei Ej〈δi, δj〉4 ≤ α2
(
Ei,j(δij)2

)2
but δij = 〈ej ,Πei〉 and so Ei,j(δij)2 is simply 1/n2 times the Frobenius norm squared of Π which is
d. Hence we get that

Ei Ej〈δi, δj〉4 ≤ α2d2/n4

Plugging this into (6.4), squaring and dividing both sides by α2d2/n4 we get that

Ẽ〈w,w′〉4 ≥ n4

α2β2d2

since d = β3/(c3α3) we get

Ẽ〈w,w′〉4 ≥ n4c6α4

β8

6.4. FORMAL STATEMENT AND PROOF OF THEOREM ?? 89

We now make the following claim, which crucially depends on the fact that w2
i = wi for all i:

Claim: There exists i1, . . . , i4 such that if we modify the distribution {w} by multiplying the
probability of every w with w2

i1
· · ·w2

i4
then

Ẽnew〈w,w′〉 ≥
(
Ẽold〈w,w′〉4

)1/4

Exercise 6.6: prove this claim
The claim implies that

Ẽ〈w,w′〉 ≥ ncα
β2

Now if we pick v to be a random vector matching the first two moments of {w}, then we claim
that Ei v4

i ≥ cα
β2 (Exercise 6.7: verify this.) but on the other hand E v2

i = Ew2
i = 1/β, hence

concluding the proof.

Theorem 6.3 and the Khot-Moshkovitz construction. The factor d1/3 seems rather arbitrary
and it is natural to ask whether by using more rounds we can improve it further, perhaps getting a
factor of dΩ(1/r) for degree-r SOS. This should be sufficient to refute the SSEH and quite possible
extended to refute the UGC and 2LINH as well.

In contrast, Khot and Moshkovitz gave a candidate integrality gap for the 2LIN problem.
Specifically for arbitrarily large constants c, r they construct an instance I of 2LIN (mod 2) for
which there is a degree-r pseudo-distribution consistent with satisfying 1 − ε fraction of I’s con-
straint, but they conjecture that in fact one cannot satisfy more than 1−cε fraction of I’s constraints.
Lets call this conjecture the Khot-Moshkovitz conjecture. Even if true, the Khot-Moshkovitz con-
jecture does not contradict the conjecture that r-rounds of SOS yield an nO(1/r) approximation
algorithm for the SSE,UG and 2LIN problems, since one would need to take r = Ω(log n) for the
latter algorithm to reach the range of parameters of the UGC and its ilk.

However, the Khot-Moshkovitz construction is only “step zero” in their plan to eventually
prove the UGC/SSEH and hence contradict the conjecture that r-SOS rounds yield an nO(1/r)

approximation for this problem. Specifically, to obtain a proof of the UGC, one would need to
improve the KM paper in the following aspects: Step 1 would be to prove the Khot-Moshkovitz
conjecture that no assignment can satisfy more than a 1 − cε fraction of the equations in their
instance. Step 2 would be to improve the gap from 1− ε vs 1−cε to 1− ε vs 1−Ω(

√
ε) and improve

the number of rounds from a constant to nΩ(1). Step 3 is to extend the result from 2LIN(ε) to
UG(ε) (and maybe also to SSE(ε)). Step 4 would be to to extend the result from a lower bound on
SOS to an NP-hardness proof. In my (personal and quite possibly wrong) opinion, the significance
of these hurdles is in the order listed. In particular, if the first and second step are completed
then this would be sufficient to rule out what seems to be the most natural scenario under the
assumption that the UGC is false— that SOS solves SSE(ε), UG(ε) and 2LIN(ε) in polynomial
or quasipolynomial time, and I believe that achieving Steps 3 and 4 in this case should not be that
much harder. Thus, despite the fact that Steps 3 and 4 seem more qualitative in nature than Step
2, I actually view Steps 1 and 2 as the most significant hurdles to overcome (or the more likely to
be false if the UGC is false).

6.4 Formal statement and proof of Theorem 6.1

In this section (which is more or less copied from (Barak, Brandao, Harrow, Kelner, Steurer, and
Zhou 2012) we show that a graph is a small-set expander if and only if the projector to the subspace

90CHAPTER 6. THE SOS APPROACH TOREFUTING THE UNIQUE GAMES CONJECTURE

of its adjacency matrix’s top eigenvalues has a bounded 2→ q norm for even q ≥ 4. While the “if”
part was known before, the “only if” part is novel. This characterization of small-set expanders is
of general interest, and also leads to a reduction from the SSE problem to the problem of obtaining
a good approximation for the 2→ q norms. For simplicity of notation, throughout this section we
use expectation norms — i.e. ‖w‖p = (Ei |wi|p)1/p.

Notation For a regular graph G = (V,E) and a subset S ⊆ V , we define the measure of S
to be µ(S) = |S|/|V | and we define G(S) to be the distribution obtained by picking a random
x ∈ S and then outputting a random neighbor y of x. We define the expansion of S, to be
ΦG(S) = Pry∈G(S)[y 6∈ S], where y is a random neighbor of x. For δ ∈ (0, 1), we define ΦG(δ) =
minS⊆V :µ(S)≤δ ΦG(S). We often drop the subscript G from ΦG when it is clear from context. We
identify G with its normalized adjacency (i.e., random walk) matrix. For every λ ∈ [−1, 1], we
denote by V≥λ(G) the subspace spanned by the eigenvectors of G with eigenvalue at least λ. The
projector into this subspace is denoted P≥λ(G). For a distribution D, we let cp(D) denote the
collision probability of D (the probability that two independent samples from D are identical).

Our main theorem of this section is the following:

Theorem 6.4. For every regular graph G, λ > 0 and even q,

1. (Norm bound implies expansion) For all δ > 0, ε > 0, ‖P≥λ(G)‖2→q ≤ ε/δ(q−2)/2q implies
that ΦG(δ) ≥ 1− λ− ε2.

2. (Expansion implies norm bound) There is a constant c such that for all δ > 0, ΦG(δ) >
1− λ2−cq implies ‖P≥λ(G)‖2→q ≤ 2/

√
δ.

One corollary of Theorem 6.4 is that a good approximation to the 2 → q norm implies an
approximation of Φδ(G).

Corollary 6.5. If there is a polynomial-time computable relaxation R yielding good approximation
for the 2→ q, then the Small-Set Expansion Hypothesis is false.

(Note: here I use the standard notion of the SSEH with δ being an arbitrary small constant as
opposed to equaling 1/ log n; I didn’t verify that the Raghvandra-Steurer-Tulsiani reduction can be
used for the setting of δ = 1/ log n as well.)

Proof. Using (Raghavendra, Steurer, Tulsiani), to refute the small-set expansion hypothesis it is
enough to come up with an efficient algorithm that given an input graph G and sufficiently small
δ > 0, can distinguish between the Yes case: ΦG(δ) < 0.1 and the No case ΦG(δ′) > 1− 2−c log(1/δ′)

for any δ′ ≥ δ and some constant c. In particular for all η > 0 and constant d, if δ is small enough
then in the No case ΦG(δ0.4) > 1− η. Using the first part of Theorem 6.4, in the Yes case we know
‖V1/2(G)‖2→q ≥ 1/(10δ1/4), while in the No case, we can choose η to be sufficiently small so that the
condition ΦG(δ0.2) ≥ 1−η implies (via the second part of Theorem 6.5) that ‖V1/2(G)‖2→q ≤ 2/δ0.1.
Thus an O(δ−0.15) approximation for the 2→ q norm will refute the SSEH.

The first part of Theorem 6.4 follows from previous work (e.g., see [?]). For completeness, we
include a proof in Appendix ??. The second part will follow from the following lemma:

Lemma 6.6. Set e = e(λ, q) := 2cq/λ, with a constant c ≤ 100. Then for every λ > 0 and
1 ≥ δ ≥ 0, if G is a graph that satisfies cp(G(S)) ≤ 1/(e|S|) for all S with µ(S) ≤ δ, then
‖f‖q ≤ 2‖f‖2/

√
δ for all f ∈ V≥λ(G).

6.4. FORMAL STATEMENT AND PROOF OF THEOREM ?? 91

Proving the second part of Theorem 6.4 from Lemma 6.6 We use the variant of the local
Cheeger bound obtained in [?, Theorem 2.1], stating that if ΦG(δ) ≥ 1−η then for every f ∈ L2(V)
satisfying ‖f‖21 ≤ δ‖f‖22, ‖Gf‖22 ≤ c

√
η‖f‖22. The proof follows by noting that for every set S, if f

is the characteristic function of S then ‖f‖1 = ‖f‖22 = µ(S), and cp(G(S)) = ‖Gf‖22/(µ(S)|S|).

Proof of Lemma 6.6. Fix λ > 0. We assume that the graph satisfies the condition of the Lemma
with e = 2cq/λ, for a constant c that we’ll set later. Let G = (V,E) be such a graph, and f be
function in V≥λ(G) with ‖f‖2 = 1 that maximizes ‖f‖q. We write f =

∑m
i=1 αiχi where χ1, . . . , χm

denote the eigenfunctions of G with values λ1, . . . , λm that are at least λ. Assume towards a
contradiction that ‖f‖q > 2/

√
δ. We’ll prove that g =

∑m
i=1(αi/λi)χi satisfies ‖g‖q ≥ 5‖f‖q/λ.

This is a contradiction since (using λi ∈ [λ, 1]) ‖g‖2 ≤ ‖f‖2/λ, and we assumed f is a function in
V≥λ(G) with a maximal ratio of ‖f‖q/‖f‖2.

Let U ⊆ V be the set of vertices such that |f(x)| ≥ 1/
√
δ for all x ∈ U . Using Markov and the

fact that Ex∈V [f(x)2] = 1, we know that µ(U) = |U |/|V | ≤ δ, meaning that under our assumptions
any subset S ⊆ U satisfies cp(G(S)) ≤ 1/(e|S|). On the other hand, because ‖f‖qq ≥ 2q/δq/2, we
know that U contributes at least half (in fact 1 − 2−q) of the term ‖f‖qq = Ex∈V f(x)q. That is,
if we define α to be µ(U)Ex∈U f(x)q then α ≥ ‖f‖qq/2. We’ll prove the lemma by showing that
‖g‖qq ≥ 10α/λ.

Let c be a sufficiently large constant (c = 100 will do). We define Ui to be the set {x ∈ U : f(x) ∈
[ci/
√
δ, ci+1/

√
δ)}, and let I be the maximal i such that Ui is non-empty. Thus, the sets U0, . . . , UI

form a partition of U (where some of these sets may be empty). We let αi be the contribution of
Ui to α. That is, αi = µi Ex∈Ui f(x)q, where µi = µ(Ui). Note that α = α0 + · · ·+ αI . We’ll show
that there are some indices i1, . . . , iJ such that:

(i) αi1 + · · ·+ αiJ ≥ α/(2c10).

(ii) For all j ∈ [J], there is a non-negative function gj : V → R such that Ex∈V gj(x)q ≥
eαij/(10c2)q/2.

(iii) For every x ∈ V , g1(x) + · · ·+ gJ(x) ≤ |g(x)|.

Showing these will complete the proof, since it is easy to see that for two non-negative functions
and even q, g′, g′′, E(g′(x) + g′′(x))q ≥ E g′(x)q + E g′′(x)q, and hence (ii) and (iii) imply that

‖g‖44 = E g(x)4 ≥ (e/(10c2)q/2)
∑
j

αij . (6.5)

Using (i) we conclude that for e ≥ (10c)q/λ, the right-hand side of (6.5) will be larger than 10α/λ.

We find the indices i1, . . . , iJ iteratively. We let I be initially the set {0..I} of all indices. For
j = 1, 2, ... we do the following as long as I is not empty:

1. Let ij be the largest index in I.

2. Remove from I every index i such that αi ≤ c10αij/2
i−ij .

We let J denote the step when we stop. Note that our indices i1, . . . , iJ are sorted in descending
order. For every step j, the total of the αi’s for all indices we removed is less than c10αij and hence
we satisfy (i). The crux of our argument will be to show (ii) and (iii). They will follow from the
following claim:

92CHAPTER 6. THE SOS APPROACH TOREFUTING THE UNIQUE GAMES CONJECTURE

Claim 6.7. Let S ⊆ V and β > 0 be such that |S| ≤ δ and |f(x)| ≥ β for all x ∈ S. Then there is
a set T of size at least e|S| such that Ex∈T g(x)2 ≥ β2/4.

The claim will follow from the following lemma:

Lemma 6.8. Let D be a distribution with cp(D) ≤ 1/N and g be some function. Then there is a
set T of size N such that Ex∈T g(x)2 ≥ (E g(D))2/4.

Proof. Identify the support of D with the set [M] for some M , we let pi denote the probability
that D outputs i, and sort the pi’s such that p1 ≥ p2 · · · pM . We let β′ denote E g(D); that is,
β′ =

∑M
i=1 pig(i). We separate to two cases. If

∑
i>N pig(i) ≥ β′/2, we define the distribution D′

as follows: we set Pr[D′ = i] to be pi for i > N , and we let all i ≤ N be equiprobable (that is be
output with probability (

∑N
i=1 pi)/N). Clearly, E |g(D′)| ≥

∑
i>N pig(i) ≥ β′/2, but on the other

hand, since the maximum probability of any element in D′ is at most 1/N , it can be expressed as
a convex combination of flat distributions over sets of size N , implying that one of these sets T
satisfies Ex∈T |g(x)| ≥ β′/2, and hence Ex∈T g(x)2 ≥ β′2/4.

The other case is that
∑N

i=1 pig(i) ≥ β′/2. In this case we use Cauchy-Schwarz and argue that

β′2/4 ≤

(
N∑
i=1

p2
i

)(
N∑
i=1

g(i)2

)
. (6.6)

But using our bound on the collision probability, the right-hand side of (6.6) is upper bounded by
1
N

∑N
i=1 g(i)2 = Ex∈[N] g(x)2.

Proof of Claim 6.7 from Lemma 6.8. By construction f = Gg, and hence we know that for every
x, f(x) = Ey∼x g(y). This means that if we let D be the distribution G(S) then

E |g(D)| = Ex∈S Ey∼x |g(y)| ≥ Ex∈S |Ey∼x g(y)| = Ex∈S |f(x)| ≥ β .

By the expansion property of G, cp(D) ≤ 1/(e|S|) and thus by Lemma 6.8 there is a set T of size
e|S| satisfying Ex∈T g(x)2 ≥ β2/4.

We will construct the functions g1, . . . , gJ by applying iteratively Claim 6.7. We do the following
for j = 1, . . . , J :

1. Let Tj be the set of size e|Uij | that is obtained by applying Claim 6.7 to the function f and

the set Uij . Note that Ex∈Tj g(x)2 ≥ β2
ij
/4, where we let βi = ci/

√
δ (and hence for every

x ∈ Ui, βi ≤ |f(x)| ≤ cβi).

2. Let g′j be the function on input x that outputs γ · |g(x)| if x ∈ Tj and 0 otherwise, where

γ ≤ 1 is a scaling factor that ensures that Ex∈Tj g′(x)2 equals exactly β2
ij
/4.

3. We define gj(x) = max{0, g′j(x)−
∑

k<j gk(x)}.

Note that the second step ensures that g′j(x) ≤ |g(x)|, while the third step ensures that g1(x) +
· · · + gj(x) ≤ g′j(x) for all j, and in particular g1(x) + · · · + gJ(x) ≤ |g(x)|. Hence the only thing
left to prove is the following:

Claim 6.9. Ex∈V gj(x)q ≥ eαij/(10c)q/2

6.4. FORMAL STATEMENT AND PROOF OF THEOREM ?? 93

Proof. Recall that for every i, αi = µi Ex∈Ui f(x)q, and hence (using f(x) ∈ [βi, cβi) for x ∈ Ui):

µiβ
q
i ≤ αi ≤ µic

qβqi . (6.7)

Now fix T = Tj . Since Ex∈V gj(x)q is at least (in fact equal) µ(T)Ex∈T gj(x)q and µ(T) =
eµ(Uij), we can use (6.7) and Ex∈T gj(x)q ≥ (Ex∈T gj(x)2)q/2, to reduce proving the claim to
showing the following:

Ex∈T gj(x)2 ≥ (cβij)
2/(10c2) = β2

ij/10 . (6.8)

We know that Ex∈T g′j(x)2 = β2
ij
/4. We claim that (6.8) will follow by showing that for every

k < j,
Ex∈T g′k(x)2 ≤ 100−i

′ · β2
ij/4 , (6.9)

where i′ = ik − ij . (Note that i′ > 0 since in our construction the indices i1, . . . , iJ are sorted in
descending order.)

Indeed, (6.9) means that if we let momentarily ‖gj‖ denote
√
Ex∈T gj(x)2 then

‖gj‖ ≥ ‖g′j‖ − ‖
∑

k<j gk‖ ≥ ‖g
′
j‖ −

∑
k<j

‖gk‖ ≥ ‖g′j‖(1−
∞∑
i′=1

10−i
′
) ≥ 0.8‖g′j‖ . (6.10)

The first inequality holds because we can write gj as g′j − hj , where hj = min{g′j ,
∑

k<j gk}. Then,
on the one hand, ‖gj‖ ≥ ‖g′j‖ − ‖hj‖, and on the other hand, ‖hj‖ ≤ ‖

∑
k<j gk‖ since g′j ≥ 0. The

second inequality holds because ‖gk‖ ≤ ‖g′k‖. By squaring (6.10) and plugging in the value of ‖g′j‖2
we get (6.8).

Proof of (6.9) By our construction, it must hold that

c10αik/2
i′ ≤ αij , (6.11)

since otherwise the index ij would have been removed from the I at the kth step. Since βik = βijc
i′ ,

we can plug (6.7) in (6.11) to get
µikc

10+4i′/2i
′ ≤ c4µij

or
µik ≤ µij (2/c)

4i′c−6 .

Since |Ti| = e|Ui| for all i, it follows that |Tk|/|T | ≤ (2/c)4i′c−6. On the other hand, we know
that Ex∈Tk g′k(x)2 = β2

ik
/4 = c2i′β2

ij
/4. Thus,

Ex∈T g′k(x)2 ≤ 24i′c2i′−4i′−6β2
ij/4 ≤ (24/c2)i

′
β2
ij/4 ,

and now we just choose c sufficiently large so that c2/24 > 100.

94CHAPTER 6. THE SOS APPROACH TOREFUTING THE UNIQUE GAMES CONJECTURE

Chapter 7

Linear programming extension
complexity

This was a guest lecture by Ankur Moitra for which notes are not available at this time.

95

96 CHAPTER 7. LINEAR PROGRAMMING EXTENSION COMPLEXITY

Chapter 8

Semidefinite programming extension
complexity

In this course we have alluded to an intuition that, at least in some domains, the SOS algorithm is
optimal, in the sense that no other efficient algorithm could beat it. There are several ways to try
to justify this intuition:

Ideally, we would want to simply prove this, under assumptions such as P 6= NP. There are
two main results along those lines:

• Siu-On Chan showed that for every ε > 0 and predicate P : Fkq → {0, 1} of the form 1V
where where V is an affine subspace of Fkq such that the uniform distribution on V is pairwise
independent, it is NP-hard to distinguish between the case that an CSP-P instance is 1 − ε
satisfiable and the case that it is |P−1(1)|/qk + ε satisfiable. Up to the ε, this exactly matches
the SOS lower bound of Tusliani (which itself is a natural extension of Grigoriev’s 3XOR
lower bound that we saw in class).

• Prasad Raghavendra showed that if the Unique Games Conjecture is true, then for every
ε > 0 and predicate P , beating the performance of the degree 2 SOS algorithm on Max-P by
ε > 0 is NP-hard. Thus, if the UGC is true, that would be very strong evidence for optimality
of SOS. Even if the UGC is false, but it is refuted by the SOS algorithm, one could hope
that there would be a ”modified Raghavendra theorem” showing that the SOS algorithm is
optimal. The ideal version would translate a degree d SOS lower bound into a reduction
that maps a (suitable variant of) label cover instance of n variables into an instance of the
target problem of size N = poly(n)2O(n/d), hence ruling out an No(d)-time algorithm under
the exponential time hypothesis.

However, given current knowledge in complexity, such proofs are always conditional on some
assumption. Even if we are not too concerned with taking P 6= NP, or even the ETH, as an axiom
(we cannot take such a blasé attitude towards the UGC), these assumptions are inherently limited
in the sense that they don’t apply (again, based on current knowledge) to average-case complexity.
Therefore, for several reasons it is also interesting to try to prove that some natural algorithms do
not beat the SOS algorithm in some interesting domains.

Perhaps the first question to ask is whether one can beat the SOS algorithm by simply using
stronger semidefinite programs. The degree d SOS algorithm can be thought of as obtaining a
tighter SDP by adding a set of very specific nd constraints to the original basic SDP, but perhaps it
is possible to add a different set of nd constraints that would give better performance. The formal

97

98 CHAPTER 8. SEMIDEFINITE PROGRAMMING EXTENSION COMPLEXITY

way to phrase this question is extension complexity. In this lecture we will discuss a very recent
result of Lee, Raghavendra and Steurer giving a “Raghavendra Theorem for Semidefinite extension
complexity”, by translating SOS lower bounds into semidefinite programming extension complexity
lower bounds. This can be thought of as the analog of the prior work of Chan,Lee,Raghavendra
and Steurer that showed a similar connection between Sherali-Adams lower bounds and linear
programming extension complexity lower bounds.

For example using this translation they use Grigoriev’s 3XOR lower bound to show the following
theorem:

Theorem 8.1. For every ε > 0 and subspace U of the functions from {±1}n to R of dimension less
than no(logn/ log logn), there is an instance I of 3XOR of value (i.e., maximum fraction of satisfied
constraints) at most 1/2 + ε , such that there is no U -proof that the value of I is less than 1 = ε.

The definition of a U prood that some function f : {±1}n → R satisfies f ≤ α is that there are
functions g1, . . . , gt ∈ U such that

f(x) = α−
t∑
i=1

gi(x)2

for every x ∈ {±1}n. Note that a degree-d SOS proof corresponds to a U -proof where U is the span
of all monomials of degree at most d, and hence U proofs are generalization of degree logn dim(U)-
SOS proofs.

It turns out that the notion of SDP rank plays here the same role that the notion of non-
negative rank plays for linear programming extension complexity. We say that a non-negative p× q
matrix M has psd-rank at most r if there exist r × r psd matrices {Ai}pi=1 and {Bj}qj=1 such that
Mi,j = Tr(AiBj). Exercise 8.1: Prove that M has non-negative rank at most r if and only if it
has a decomposition such as the one above where the Ai’s and Bj ’s are diagonal .

At the heart of their work is the following theorem:

Theorem 8.2. For d < m < n/2, f : {±1}m → [0,∞), let M = Mf
n be the

(
n
m

)
× 2n matrix such

that M(S, x) = f(xS) for every S ∈
(

[n]
m

)
and x ∈ {±1}n. If there is no degree d SOS proof that

f ≥ 0 then
rankpsd(M) ≥ nΩ(d)

The rest of this lecture will be devoted to outlining the proof of Theorem 8.2. To make things
concrete, we will consider the particular f : {±1}m → R that one obtains by taking the instance
of 3XOR I arising from Grigoriev’s 3XOR lower bond. That is, we let f(x) equal 0.7 minus the
fraction of I’s constraints that are satisfied by the assignment x. As we saw in class, for every x,
f(x) ≥ 0.1 but there is a degree (say) d = m/1000 pseudo-distribution D over {±1}m that satisfies
the constraint {f(x) = −0.3}.

There are several ways to represent such a pseudo-distribution. One representation (which is
the one we used in class) is to simply use the pseudo-expectation operator mapping a polynomial
P to Ẽx∼D P , but another one is to define for every x ∈ {±1}x, D(x) ∈ R to be a number such that

Ẽx∼D P = Ex∈{±1}n D(x)P (x) (8.1)

we shall follow the language of LRS and call this a “pseudo-density” operator. To move from the
previous representation to (8.1), we can simply define

D(x) =
∑
|α|≤d

(
Ẽx′∼D χα(x′)

)
χα(x)

99

where for α ⊆ [m], we define χα(x) =
∏
i∈α xi.

We suppose, toward a contradiction that rankpsd(Mf
n) = r for some r = no(1) demonstrated by

some decomposition {P (S)}
S∈([n]

m), {Q(x)}x∈{±1}n . We will consider the following quantity:

E
S∈([n]

m) Ex∈{±1}n D(xS)f(xS) (∗)

On one hand for every fixed S and fixing of xS , (*) equals to Ex′∈{±1}m D(x′)f(x′) = −0.3.

On the other hand, by the psd decomposition this equals

ES Ex∈{±1}n D(xS)Tr(P (S)Q(x)) = ES Ex′′∈{±1}S Ex′∈{±1}S D(x′)‖
√
P (S)

√
Q(x′, x′′)‖2F (8.2)

(where the square roots of P and Q are defined since these are p.s.d matrices.) Exercise 8.2:

Prove that for every psd matrices PQ, Tr(PQ) = ‖
√
PQ‖2F =

∑
i,j

√
PQ

2
i,j , where for a psd matrix

A =
∑
λiviv

>
i ,
√
A =

∑√
λiviv

>
i .

Note that for every fixed S, x′′, the function x′ 7→ ‖
√
P (S)

√
Q(x, x′′)‖2F is the sum of the

squares of the entries of these matrices, and so this function is some sum of squares g(x′). If by
some luck the degree of g was smaller than d < 2 we would get our contradiction and be done since
we know that

Ex′ D(x′)g(x′) = Ẽ g(x′) ≥ 0

for every SOS g of degree at most d/2.

The heart of the LRS proof is therefore in showing that this function g can in fact be sufficiently
well approximated by a low degree polynomial. They do so using two tools:

• Quantum learning — they use an instance of the following general principle that has turned
out to be useful again and again in computer science:

Simple tests can be fooled by (fairly) simple objects.

At a high level this phenomena underlies the whole theory of pseudorandomness, but we will
be focused on a particular set of manifestations of it, known as “Boosting”, “Impagliazzo’s
Hardcore Lemma”, ”Dense Model Theorem” and more. LRS use a quantum version of this
principle.

Their idea is that because in our case we test the function Q(x) against the degree m function
ES P (S)D(xS), we can approximate it with some function of the form h(x) = R2(x) where R
has degree at most Õ(m).

• Random restrictions — the above is still not sufficient since we need to reduce the degree
below m/1000. For this we use the other general tool

Simple functions become even simpler if we fix most of their inputs at random.

Specifically, using tools from Fourier analysis of Boolean functions, one can show that, once
we established the degree of h is not too large, if we choose a random S and fix the values of
x in S then we significantly reduce the degree of h further, and can assume that it is o(m)
(up to some an error of rω(1) in the norm which would be negligible in our setting), and hence
we can apply the result above.

100 CHAPTER 8. SEMIDEFINITE PROGRAMMING EXTENSION COMPLEXITY

8.1 Boosting, dense model, hardcore lemma, multiplicative weights,
computational entropy, and their quantum/matrix/semidefinite
cousins

There is a set of results that has been used across many areas in mathematics and computer science.
Here are some examples of these results. (This is not meant to be comprehensive review of the
related literature— these are the kind of ideas that seem to have been rediscovered again and again
by people in different communities and for different purposes.)

• Suppose that you are trying to learn some unknown function F : Ω→ {0, 1} and that for every
distribution D over Ω, you can find a function fD : Ω → {0, 1} that has 1/2 + ε agreement
with F , then you can boost this to 1− δ agreement by combining poly(1/ε, log(1/ε)) of these
functions.

An algorithm achieving such boosting was first put forward by Schapire in 1989, with some
later improvements by Freund culminating in their 1995 AdaBoost algorithm.

• Suppose that you know that some function F : Ω → {0, 1} is mildly hard in the sense that
every efficient algorithm A has at most 1− δ agreement with it. It turns out that there is a
not-too-small subset H ⊆ Ω (in fact, of measure 2δ) on which F is extremely hard in the sense
that every efficient algorithm has at most 1/2+ε (where the ε plays a part in the quantitative
losses between our two instantiations of the word “efficient”).

This theorem, which turns out to be extremely useful in the theory of pseudo-randomness,
is known as “Impagliazzo’s Hardcore Lemma”, proven by Russell Impagliazzo in 1995 (with
an important quantitative improvement by Holenstein in 2005. (The connection for Boosting
was noted by Klivans and Servedio in 2003; see also my paper with Hardt and Kale.)

• Suppose that S ⊆ Ω is pseudorandom in the sense that one cannot distinguish a uniform
element of S from a uniform element of Ω via efficient algorithm, and suppose that P ⊆ S
satisfies |P | ≥ δ|S|. Then you can find some M ⊆ Ω with |M | ≥ δ|Ω| such that one cannot
distinguish a uniform element of P from a uniform element of M .

This theorem is known as the dense model theorem, and was first shown by Green and Tao
in the context of their 2004 work establishing that the set of primes contains arbitrarily long
arithmetic progressions. A more general explicit version was later given by Tao and Zeigler.
Some simplified proofs were later found by Gowers and (independently) Reingold, Trevisan
and Vadhan. Roughly speaking, Green and Tao used in their theorem number theoretic
results showing that the set S of pseudo primes (integers having only few large divisors) are
pseudorandom. Since the set P of primes has constant density in S, the dense model theorem
shows that it is indistinguishable from a set M dense in the set of all integers, but such sets
contain large arithmetic progressions by Szemeredi’s Theorem.

All these results share some the following properties:

• They are counterintuitive when you (or at least I) first hear about them.

• They are incredible useful.

• They are proven via the multiplicative weights algorithm or von Neumann’s min-max theorem
(aka linear programming duality or Hahn-Banach theorem).

8.2. RANDOM RESTRICTIONS 101

• They are actually not that hard to prove once you have the nerve to guess that the result
might be true.

It turns out that they are all essentially equivalent. Let me sketch how you might prove the
Boosting result. You can think of this as a game between two players— Player I comes up with a
distribution D, and Player II responds with an algorithm fD that has 1/2 + ε agreement with f .
We know that by the min-max theorem that Player II could come up with a single distribution over
algorithms (or equivalently a probabilistic algorithm) A that would have such agreement with every
distribution, which means that it succeeds in solving F on any input with probability 1/2 + ε—
probability that can be boosted to 1 − δ via O(log 1/δ) repetitions. Now to converge to this
algorithm we can use a fairly simple process of back and forth between the distribution player and
the algorithm player. The distributions would be updated according to a multiplicate update rule,
and the final algorithm would be some weighted average of the algorithms obtained in each round.
So, if these intermediate algorithms are simple, then so will be the final one.

At a very high level, the approach they use is the following one— suppose that you have a
convex optimization problem max f(x) for some convex f and you know that there is a solution Q
that has a lot of entropy (in some well prescribed sense). It turns out that this means that there
should be a “simple” solution. The idea is that if you run the multiplicative update algorithm to
solve the convex program then it starts with the uniform solution that has maximal entropy and
at each step it roughly maintains the invariant of having a solution with some entropy H that
is (approximately) the best solution possible with at least this much entropy. Now, if there is a
solution Q with very high entropy it means that we would achieve a solution with value at least as
good as Q with a small number of steps of this algorithm, and that solution will be ”simple”. If
this discussion doesn’t make any sense, hopefully the more technical derivation below will be more
informative.

Further reading on the ”classical” versions. Luca Trevisan had several blog posts related to
this, see https://lucatrevisan.wordpress.com/2008/12/07/applications-of-low-complexity-approximations/
and also a survey in the 2011 theory of cryptography conference. Sitanshu Gakkhar’s Master’s thesis
http://summit.sfu.ca/item/12349, Russell Impagliazzo’s talk https://video.ias.edu/csdm/

densemodelthm and scribe notes https://www.math.ias.edu/files/russell_scribe.pdf, paper
of Trevisan, Tulsiani and Vadhan http://ttic.uchicago.edu/~madhurt/Papers/regularity-full.

pdf. These results can also be phrased in the language of computational entropy— intuitively a
set P as in the dense model theorem, has “pseudo-entropy” at least log |Ω| − log(1/δ). This was
first explored in my 2003 paper with Shaltiel and Wigderson (see also Dziembowski and Pietrzak
2008). (Note that our paper had a bug and proved a weaker result than originally claimed; see the
2011 paper of Benjamin Fuller and Leonid Reyzin for discussion.)

Semidefinite/quantum extensions People have looked at extension of these results to the quan-
tum setting. One can think of this as extending results from classical to quantum, from numbers
to matrices, or from linear programming to semidefinite programming. In any case one obtains
similar results, see the LRS paper. Note that (as we will see) LRS uses a very restricted special
case of this general principle focusing on a single test.

8.2 Random restrictions

The idea of random restriction is to take a function f : {±1}n → R and change it into the function

g : {±1}m → R obtain by picking an m-sized set S ⊆ [n] at random, and x′′ ∈ {±1}S , and then

https://lucatrevisan.wordpress.com/2008/12/07/applications-of-low-complexity-approximations/
http://summit.sfu.ca/item/12349
https://video.ias.edu/csdm/densemodelthm
https://video.ias.edu/csdm/densemodelthm
https://www.math.ias.edu/files/russell_scribe.pdf
http://ttic.uchicago.edu/~madhurt/Papers/regularity-full.pdf
http://ttic.uchicago.edu/~madhurt/Papers/regularity-full.pdf

102 CHAPTER 8. SEMIDEFINITE PROGRAMMING EXTENSION COMPLEXITY

define g(x′) = f(x′, x′′). The hope is that g is significantly simpler than f . This is not necessarily
always the case. For example, if f is simply the parity function x1 · · ·xn, then g is a parity as
well, but if f is “simpler” than the parity in some sense, then g could be significantly even simpler.
This idea has been used in Hastad’s switching lemma, where one can use random restriction to
show that if f has a small constant depth circuit, then g has a circuit of even smaller depth. In the
current context we need an even simpler statement about the Fourier degree. (See Ryan O’Donnel’s
book for a thorough treatment of random restrictions.) If you have a monomial

∏
i∈T xi, then after

restricting to a random set S you are left with the monomial,
∏
i∈S∩T xi which is expected to have

size about |S||T |/n which would be much smaller than both |S| and |T | if they are both much
smaller than n. Specifically, if we take a unit norm function f : {±1}n → R of degree at most
` = Õ(m), and restrict it to a random m sized set S, then the norm squared of the part of f that
has degree at least m/104 would be in expectation less than

(
`

m/104

)
(m/n)m/104

which for n � m

would be n−Ω(m). If the presumed PSD rank r satisfies r = no(m) then it turns out that this is
small enough to be treated as negligible.

8.3 Proof sketch

We want to obtain a contradiction to the statement

E
S∈([n]

m) Ex∈{±1}n D(xS)f(xS) = −0.3 (8.3)

under the assumption that f(xs) = Tr(P (S)Q(x)) where P (S) and Q(x) are r× r psd matrices for
r = mo(1).

We first phrase the LHS of (8.3) as
Tr(MQ)

where M is the block matrix with 2n r×r blocks with the xth block corresponding to ES D(xS)P (S),
and the Q is the block matrix 2n r × r blocks with the xth block corresponding to 2−nQ(x).

We will later show using a quantum learning type argument that there exists a matrixR = p(M),
for some polynomial p with degree Õ(1), such that Tr(R2) = Tr(Q) and

Tr(MR2) ≤ Tr(MQ) + 0.1 = −0.2 (8.4)

Let’s defer the proof of this for a moment and see what it yields. Since every element of M is a
polynomial in x of degree at most m, we can think of R as a matrix-valued Õ(m) degree polynomial
in x and rewrite (8.4) as

E
S∈([n]

m) Ex∈{±1}n D(xS)Tr(P (S)R2(x)) = E
S∈([n]

m) P (S)Ex′∈{±1}S D(x′)E
x′′∈{±1}S R

2(x′, x′′)

(8.5)
If we fix a “typical” value for S and x′′, then as mentioned above, we can argue using random

restrictions that the function R′(x′) = R(x′, x′′) equals L(x′) +H(x′) where L(x′) is a degree o(m)
polynomial and ‖H(x′)‖ ≤ r−ω(1). Since without loss of generality, using the fact that P (S) is an
r × r matrix, ‖P (S)‖ ≤ r2, the effect of H(x) will be negligible and we get that

Ex′∈{±1}S D(x′)Tr(P (S)L2(x′)) ≤ −0.2 + o(1) (8.6)

Now define g(x′) to be Tr(P (S)L2(x′)) = ‖
√
P (S)L(x′)‖2F . Since for a fixed S, every entry of

the matrix
√
P (S)L(x′) is a degree o(m) polynomial in x′, this quantity is a polynomial of degree

o(m) which is a sum of squares, and so we get

ẼD g(x′) = Ex′ D(x′)g(x′) ≤ −0.2 + o(1) < 0

8.3. PROOF SKETCH 103

contradicting the fact that D is a degree m/1000 pseudo distribution.

8.3.1 Quantum learning argument

We only need a rather restricted version of quantum learning (see the LRS paper for a much more
general statement). We want to prove the following:

Lemma 8.3. Let M,Q be s × s matrices such that Q is psd and Tr(Q) = 1, then there exists a
degree poly(log ‖Q‖s, 1/ε, ‖M‖) polynomial p such that

Tr(Mp(M)2)/Tr(p(M)2) ≤ Tr(MQ) + ε (8.7)

Proof. We will show that this holds where instead of using a polynomial we write a matrix expo-
nential p(M) = αe(θ/2)M for θ = poly(‖M‖, log ‖Q‖s, 1/ε), and the result would then follow from
a Taylor approximation. (Note that in our case ‖Q‖ = poly(r)/s; more generally LRS work with a
lower bound on the von Neumann entropy of Q which is simply the Shannon entropy of the eigen-
values. If Q has trace 1 and ‖Q‖ ≤ α/s then the von-Neumann entropy is at least log s− log(1/α)
using known relations between min-entropy and Shannon entropy.)

By making the transformation M 7→ I −M/‖M‖ we can change to the case that M is psd of
norm at most 1 and that our goal is to show that for θ = O(log ‖Q‖s, poly(1/ε))

Tr(MeθM) ≥ Tr(MQ)− ε (8.8)

What is the maximum value a matrix Q can achieve for Tr(MQ) subject to being psd, trace 1,
and having norm at most some value α/s? It’s not hard to see that this would be obtained by

having Q = (α/s)
∑s/α

i=1 viv
>
i where v1, v2, v3, . . . are the eigenvectors of M sorted in descending

order of the eigenvalues λ1, λ2, In this case Tr(MQ) will simply be the average of the s/α top
eigenvalues of M . Once again, one can see that the most extreme situation would be if all the top
s/α eigenvalues would be equal to 1 while the rest are zero, since that would maximize Tr(MQ)
under our conditions. Now, if we consider the matrix

eθM =
∑

eθλiviv
>
i

we can see that it gives weight 1 to the eigenvectors corresponding to zero, and weight eθ to the
eigenvectors corresponding to 1, since there are at most α times more of the former than the latter,
if θ � logα then almost of all of the weight will be on the top eigenvectors, and we get that the
matrix (after normalizing to trace 1) will give a value very close to Tr(MQ).

104 CHAPTER 8. SEMIDEFINITE PROGRAMMING EXTENSION COMPLEXITY

Chapter 9

Open problems

Here are some open problems regarding the Sum-of-Squares algorithm. In most cases I phrased the
problem as asking to show a particular statement, though of course showing the opposite statement
would be very interesting as well. These are not meant to be a complete or definitive list, but could
perhaps spark your imagination to think of those or other research problems of your own. The
broader themes these questions are meant to explore are:

• Can we understand in what cases do SOS programs of intermediate degree (larger than 2 but
much smaller than n) yield non-trivial guarantees?

• Can we give more evidence to, or perhaps refute, the intuition that the SOS algorithm is
optimal in some broad domains?

• Can we understand the performance of SOS in average-case setting, and whether there are
justifications to consider it optimal in this setting as well? This is of course interesting for
both machine learning and cryptography.

• Can we understand the role of noise in the performance of the SOS algorithm? Is noise a
way to distinguish between “combinatorial” and “algebraic” problems in the sense of http://
windowsontheory.org/2013/10/07/structure-vs-combinatorics-in-computational-complexity/?

Well posed problems

Problem 1: Show that for every constant C there is some δ > 0 and a quasipolynomial (npolylog(n))
time algorithm that on input a subspace V ⊆ Rn, can distinguish between the case that V contains
the characteristic vector of a set of measure at most δ, and the case that Ei v4

i ≤ C(Ei v2
i)

2 for
every v ∈ V . Extend this to a quasipolynomial time algorithm to solve the small-set expansion
problem (and hence refute the small set expansion hypothesis). Extend this to a quasipolynomial
time algorithm to solve the unique-games problem (and hence refute the unique games conjecture).
If you think this cannot be done then even showing that the d = log2 n (in fact, even d = 10)
SOS program does not solve the unique-games problem (or the 4/2 norms ratio problem as defined
above) would be very interesting.

Problem 2: Show that there is some constant d such that the degree-d SOS problem can distinguish
between a random graph and a graph in which a clique of size f(n) was planted for some f(n) =

105

http://windowsontheory.org/2013/10/07/structure-vs-combinatorics-in-computational-complexity/
http://windowsontheory.org/2013/10/07/structure-vs-combinatorics-in-computational-complexity/

106 CHAPTER 9. OPEN PROBLEMS

o(
√
n), or prove that this cannot be done. Even settling this question for d = 4 would be very

interesting.

Problem 3: Show that the SOS algorithm is optimal in some sense for ”pseudo-random” constraint
satisfaction problems, by showing that for every predicate P : {0, 1}k → {0, 1}, ε > 0 and pairwise
independent distribution µ over {0, 1}k, it is NP hard to distinguish, given an instance of MAX-P
(i.e., a set of constraints each of which corresponds to applying P to k literals of some Boolean
variables x1, . . . , xn), between the case that one can satisfy 1−ε fraction of the constraints, and the
case that one can satisfy at most Ex∼µ P (x) + ε fraction of them. (In a recent work with Chan and
Kothari, we show that small degree SOS programs cannot distinguish between these two cases.)

Problem 4: More generally, can we obtain a ”UGC free Raghavendra Theorem”? For example,
can we show (without relying on the UGC) that for every predicate P : {0, 1}k → {0, 1}, c > s
and ε > 0, if there is an n-variable instance of MAX-P whose value is at most s but on which the
Ω(n) degree SOS program outputs at least c, then distinguishing between the case that a CSP-P
instance as value at least c− ε and the case that it has value at most s+ ε is NP-hard?

Problem 5: Show that there is some η > 1/2 and δ < 1 such that for sufficiently small ε > 0,
the degree nδ SOS program for Max-Cut can distinguish, given a graph G, between the case that
G has a cut of value 1 − ε and the case that G has a cut of value 1 − εη. (Note that Kelner and
Parrilo have a conjectured approach to achieve this.) Can you do this with arbitrarily small δ > 0?

Problem 6: If you think the above cannot be done, even showing that the degree d = 10 (or
even better, d = log2 n) SOS program cannot achieve this, even for the more general Max-2-LIN
problem, would be quite interesting. As an intermediate step, prove or disprove Khot-Moshkovitz’s
question whether for an arbitrarily large constant c the Max-2-LIN instance they construct (where
the degree d SOS value is 1 − ε) has actual value at most 1 − cε. Some intermediate steps that
could be significantly easier are: the Khot-Moshkovitz construction is a reduction from a k-CSP
on N variables that first considers all n-sized subsets of the N original variables and then applies a
certain encoding to each one of those

(
N
n

)
“cloud”. Prove that if they used a single cloud then the

reduction would be “sound” in the sense that there would be no integral solution of value larger
than 1− cε.1 Another statement that can show the challenge in proving the soundness of the KM
construction: Recall that the KM boundary test takes a function f : Rn → {±1} and checks if
f(x) = f(y) where x and y have standard Gaussian coordinates that are each 1− α correlated for
some α � 1/n. Their intended solution f(x) = (−1)b〈a,x〉c for a ∈ {±1}n will fail the test with
probability O(

√
αn). Prove that there is a function f that passes the test with c

√
αn for some c but

such that for every constant d and function g of the form g(x) = (−1)bp(x)c where p a polynomial
of degree at most d, |E p(x)f(x)| = o(1/n).

Problem 7: Show that there are some constant η < 1/2 and d, such that the degree d-SOS
program yields an O(logη n) approximation to the Sparsest Cut problem. If you think this can’t
be done, even showing that the d = 8 algorithm doesn’t beat O(

√
log n) would be very interesting.

Problem 8: Give a polynomial-time algorithm that for some sufficiently small ε > 0, can (ap-
proximately) recover a planted εn-sparse vector v0 inside a random subspace V ⊆ Rn of dimension

1This should be significantly easier to prove than the soundness of the Khot-Moshkovitz construction since it
completely does away with their consistency test; still to my knowledge it is not proven in their paper. The reduction
will not be “complete” in this case, since it will have more than exponential blowup and will not preserve SOS
solutions; but I still view this as an interesting step. Also if this step is completed, perhaps one can think of other
ways than the “cloud” approach of KM to reduce the blowup of this reduction to 2δN for some small δ > 0; perhaps
a “biased” version of their code could work as well.

107

` = n0.6. That is, we choose v1, . . . , v` as random Gaussian vectors, and the algorithm gets an
arbitrary basis for the span of {v0, v1, . . . , v`}. Can you extend this to larger dimensions? Can you
give a quasipolynomial time algorithm that works when V has dimension Ω(n)? Can you give a
quasipolynomial time algorithm for certifying the Restricted Isometry Property (RIP) of a random
matrix?

Problem 9: Improve the dictionary learning algorithm of [Barak-Kelner-Steurer] (in the setting
of constant sparsity) from quasipolynomial to polynomial time.

Problem 10: (Suggested by Prasad Raghavendra.) Can SDP relaxations simulate local search?
While sum of squares SDP relaxations yield the best known approximations for CSPs, the same
is not known for bounded degree CSPs. For instance, MAXCUT on bounded degree graphs can
be approximated better than the Goemans-Willamson constant 0.878.. via a combination of SDP
rounding and local search. Here local search refers to improving the value of the solution by locally
modifying the values. Show that for every constant ∆, there is some ε > 0, d ∈ N such that d
rounds of SOS yield an 0.878.. + ε approximation for MAXCUT on graphs of maximum degree
∆. Another problem to consider is maximum matching in 3-uniform hypergraphs. This can be
approximated to a 3/4 factor using only local search (no LP/SDP relaxations), and some natural
relaxations have a 1/2 integrality gap for it. Show that for every ε > 0, O(1) rounds of SOS give a
3/4− ε approximation for this problem, or rule this out via an integrality gap.

Problem 11: (Suggested by Ryan O’Donnell) Let G be the n vertex graph on {0, 1 . . . , n − 1}
where we connect every two vertices i, j such that their distance (mod n) is at most ∆ for some
constant ∆. The set S of n/2 vertices with east expansion is an arc. Can we prove this with an
SOS proof of constant (independent of ∆) degree? For every δ > 0 there is a c such that if we let
G be the graph with n = 2` vertices corresponding to {0, 1}` where we connect vertices x, y if their
Hamming distance is at most c

√
n, then for every subsets A,B of {0, 1}` satisfying |A|, |B| ≥ δn,

there is an edge between A and B. Can we prove this with an SOS proof of constant degree?

Fuzzier problems

The following problems are not as well-defined, but this does not mean they are less important.

Problem 12: Find more problems in the area of unsupervised learning where one can obtain an
efficient algorithm by giving a proof of identifiability using low degree SOS.

Problem 13: The notion of pseudo-distributions gives rise to a computational analog of Bayesian
reasoning about the knowledge of a computationally-bounded observer. Can we give any interesting
applications of this? Perhaps in economics? Or cryptography?

SOS, Cryptography, and NP∩coNP. It sometimes seems as if in the context of combinatorial
optimization it holds that “NP ∩ coNP = P”, or in other words that all proof systems are
automatizable. Can the SOS algorithm give any justification to this intuition? In contrast note
that we do not believe that this assertion is actually true in general. Indeed, many of our candidates
for public key encryption (though not all— see discussion in [Applebaum,Barak, Wigderson]) fall
inside NP ∩ coNP (or AM ∩ coAM). Can SOS shed any light on this phenonmenon? A major
issue in cryptography is (to quote Adi Shamir) the lack of diversity in the “gene pool” of problems
that can be used as a basis for public key encryption. If quantum computers are built, then
essentially the only well-tested candidates are based on a single problem— Regev’s “Learning With
Errors” (LWE) assumption (closely related to various problems on integer lattices). Some concrete
questions along these lines are:

108 CHAPTER 9. OPEN PROBLEMS

Problem 14: Find some evidence to the conjecture of Barak-Kindler-Steurer (or other similar
conjectures) that the SOS algorithm might be optimal even in an average case setting. Can you
find applications for this conjecture in cryptography?

Problem 15: Can we use a conjectured optimality of SOS to give public key encryption schemes?
Perhaps to justify the security of LWE? One barrier for the latter could be that breaking LWE and
related lattice problems is in fact in NP ∩ coNP or AM ∩ coAM.

Problem 16: Understand the role of noise in the performance of the SOS algorithm. The algorithm
seems to be inherently noise robust, and it also seems that this is related to both its power and
its weakness– as is demonstrated by cases such as solving linear equations where it cannot get
close to the performance of the Gaussian elimination algorithm, but the latter is also extremely
sensitive to noise. Can we get any formal justifications to this intuition? What is the right way to
define noise robustness in general? If we believe that the SOS algorithm is optimal (even in some
average case setting) for noisy problems, can we get any quantitative predictions to the amount
of noise needed for this to hold? This may be related to the question above of getting public key
cryptography from assuming the optimality of SOS in the average case (see Barak-Kindler-Steurer
and Applebaum-Barak-Wigderson).

Problem 17: Related to this: is there a sense in which SOS is an optimal noise-robust algorithm or
proof system? Are there natural stronger proof systems that are still automatizable (maybe corre-
sponding to other convex programs such as hyperbolic programming, or maybe using a completely
different paradigm)? Are there natural noise-robust algorithms for combinatorial optimizations
that are not captured by the SOS framework? Are there natural stronger proof systems than SOS
(even non automatizable ones) that are noise-robust and are stronger than SOS for natural com-
binatorial optimization problems? Can we understand better the role of the feasible interpolation
property in this context?

Problem 18: I have suggested that the main reason that a ”robust” proof does not translate into
an SOS proof is by use of the probabilistic method, but this is by no means a universal law and
getting better intuition as to what types of arguments do and don’t translate into low degree SOS
proofs is an important research direction. Ryan O’Donnell’s problems above present one challenge
to this viewpoint. Another approach is to try to use techniques from derandomization such as use
of additive combinatorics or the Zig-Zag product to obtain ”hard to SOS” proofs. In particular,
is there an SOS proof that the graph constructed by Capalbo, Reingold, Vadhan and Wigderson
(STOC 2002) is a ”lossless expander” (expansion larger than degree/2)? Are there SOS proofs
for the pseudorandom properties of the condensers we construct in the work with Impagliazzo
and Wigderson (FOCS 2004, SICOMP 2006) or other constructions using additive combinatorics?
I would suspect the answer might be ”no”. (Indeed, this may be related to the planted clique
question, as these tools were used to construct the best known Ramsey graphs.)

Bibliography

[ABS10] S. Arora, B. Barak, and D. Steurer. Subexponential algorithms for unique games and
related problems. In Foundations of Computer Science (FOCS), 2010 51st Annual
IEEE Symposium on, pages 563–572. IEEE, 2010.

[ACMM05] A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev. o(
√

log n) approxi-
mation algorithms for min uncut, min 2cnf deletion, and directed cut problems. In
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing,
pages 573–581. ACM, 2005.

[ALP+10] R. Adamczak, A. E. Litvak, A. Pajor, N. Tomczak-Jaegermann, et al. Quantitative es-
timates of the convergence of the empirical covariance matrix in log-concave ensembles.
J. Amer. Math. Soc, 23(2):535–561, 2010.

[ALPTJ11] R. Adamczak, A. E. Litvak, A. Pajor, and N. Tomczak-Jaegermann. Sharp bounds on
the rate of convergence of the empirical covariance matrix. Comptes Rendus Mathe-
matique, 349(3):195–200, 2011.

[ARV09] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and graph
partitioning. Journal of the ACM (JACM), 56(2):5, 2009.

[BBH+12a] B. Barak, F. G. Brandao, A. W. Harrow, J. Kelner, D. Steurer, and Y. Zhou. Hy-
percontractivity, sum-of-squares proofs, and their applications. In Proceedings of the
forty-fourth annual ACM symposium on Theory of computing, pages 307–326. ACM,
2012.

[BBH+12b] B. Barak, F. G. Brandao, A. W. Harrow, J. Kelner, D. Steurer, and Y. Zhou.
Hypercontractivity, sum-of-squares proofs, and their applications. In Proceedings
of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12,
pages 307–326. ACM, New York, NY, USA, 2012. ISBN 978-1-4503-1245-5. doi:
10.1145/2213977.2214006.

[BHHS11] B. Barak, M. Hardt, T. Holenstein, and D. Steurer. Subsampling mathematical re-
laxations and average-case complexity. In Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 512–531. SIAM, 2011.

[BKS14] B. Barak, J. A. Kelner, and D. Steurer. Rounding sum-of-squares relaxations. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC
’14, pages 31–40. ACM, New York, NY, USA, 2014. ISBN 978-1-4503-2710-7. doi:
10.1145/2591796.2591886.

109

110 BIBLIOGRAPHY

[BRS11] B. Barak, P. Raghavendra, and D. Steurer. Rounding semidefinite programming hi-
erarchies via global correlation. In Foundations of Computer Science (FOCS), 2011
IEEE 52nd Annual Symposium on, pages 472–481. IEEE, 2011.

[CLRS13] S. O. Chan, J. R. Lee, P. Raghavendra, and D. Steurer. Approximate constraint
satisfaction requires large lp relaxations. In Foundations of Computer Science (FOCS),
2013 IEEE 54th Annual Symposium on, pages 350–359. IEEE, 2013.

[DS] D. Dadush and D. Steurer. personal communication.

[FS02] U. Feige and G. Schechtman. On the optimality of the random hyperplane rounding
technique for max cut. Random Structures & Algorithms, 20(3):403–440, 2002.

[GS11] V. Guruswami and A. K. Sinop. Lasserre hierarchy, higher eigenvalues, and approx-
imation schemes for graph partitioning and quadratic integer programming with psd
objectives. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual
Symposium on, pages 482–491. IEEE, 2011.

[GW95] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of the
ACM (JACM), 42(6):1115–1145, 1995.

[HD13] P. Hand and L. Demanet. Recovering the Sparsest Element in a Subspace. ArXiv
e-prints, October 2013.

[Jan97] S. Janson. Gaussian hilbert spaces, volume 129. Cambridge university press, 1997.

[LR99] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. Journal of the ACM (JACM), 46(6):787–832,
1999.

[Mar77] B. Marley. Three little birds. In Exodus. 1977.

[O’D14] R. O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[RS10] P. Raghavendra and D. Steurer. Graph expansion and the unique games conjecture.
In Proceedings of the 42nd ACM symposium on Theory of computing, pages 755–764.
ACM, 2010.

[RST10] P. Raghavendra, D. Steurer, and M. Tulsiani. Reductions between expansion problems.
arXiv preprint arXiv:1011.2586, 2010.

[SS12] W. Schudy and M. Sviridenko. Concentration and moment inequalities for polynomials
of independent random variables. In Proceedings of the Twenty-third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’12, pages 437–446. SIAM, 2012.

[SWW13] D. A. Spielman, H. Wang, and J. Wright. Exact recovery of sparsely-used dictionar-
ies. In Proceedings of the Twenty-Third international joint conference on Artificial
Intelligence, pages 3087–3090. AAAI Press, 2013.

[Tao12] T. Tao. Topics in random matrix theory, volume 132 of graduate studies in mathe-
matics. American Mathematical Society, 25:76, 2012.

BIBLIOGRAPHY 111

[Tro12] J. A. Tropp. User-friendly tools for random matrices: An introduction. Technical
report, DTIC Document, 2012.

[Ver10] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010.

[WS11] D. P. Williamson and D. B. Shmoys. The design of approximation algorithms. Cam-
bridge University Press, 2011.

	Introduction
	Introduction
	Polynomial optimization
	The SOS algorithm
	Several views of the SOS algorithm
	SOS Algorithm: convex optimization view
	Intuition— the Boolean cube

	Sum of Square Proofs
	Discussion

	Max-Cut, Sparsest Cut, Small Set Expansion and some relations of Isoperimetry and Hypercontractivity
	The Goemans Williamson Algorithm
	Can we do better with degree 2 SOS?
	Can we do better with higher degree?
	SOS'ing proofs of isoperimetric inequalities

	SOS Lower bounds: 3XOR/3SAT and planted clique
	Lower bounds for random 3SAT/3XOR
	Proving Theorem 3.1
	Proof of Lemma 3.4
	Proof of Lemma 3.5
	Proof of Lemmas 3.3 and 3.2

	SOS Lower bounds for planted clique
	Proof of Theorem 3.9
	Proof of Lemma 3.10
	Proof of Lemma 3.11

	Knapsack lower bound

	SOS Upper Bounds: Planted sparse vector and dictionary learning
	Introduction
	Formal description of problem
	Ratios of Norms

	Using SoS to Do Better
	Description of the Algorithm
	Proof of Main Lemma

	Pseudo-distribution version and proofs
	Proof of Lemma 4.5
	Intuition and Heuristic Argument

	Full proof of Lemma 4.5
	Lemma 4.5 Holds in Expectation
	First Proof of Lemma 4.5, k = O(n1/4)
	Second Proof of Lemma 4.5, k = O(n1/2)

	Analyzing success probability, proof of the qaudratic sampling lemma
	Introduction
	Model

	Outline of algorithm
	Proof Outline—Main Ideas

	Proof of Lemma 4.17
	Proof of Lemma 4.19
	Proof of Lemma 4.21
	Motivation
	Less Heuristic Analysis

	Sparsest Cut and the ARV algorithm
	Problem Definition
	Main Theorem
	The ARV Algorithm
	The SoS Program
	The Algorithm

	Analysis
	Preliminaries
	Why is 1/logn Necessary?
	Why is 1/logn Sufficient? Proof of Lemma 5.5
	From Vertex Separation to Sparse Cut: Proof of Lemma 5.6
	From Actual Distribution to Pseudo-Distribution

	Temp Graveyard
	Squared Triangle Inequality for {1}

	The SOS approach to refuting the Unique Games Conjecture
	The Small Set Expansion Hypothesis
	2 to q norm and small set expansion
	The relation between the 2 to 4 norm and small set expansion

	Using SOS for the 2 to 4 problem
	Formal statement and proof of Theorem 6.1

	Linear programming extension complexity
	Semidefinite programming extension complexity
	Boosting, dense model, hardcore lemma, multiplicative weights, computational entropy, and their quantum/matrix/semidefinite cousins
	Random restrictions
	Proof sketch
	Quantum learning argument

	Open problems

