Algorithms, Incentives, and Multidimensional Preferences

Nima Haghpanah (MIT)

January 15, 2016
Algorithms and Incentives

Past: Algorithms as black box

![Diagram](image)

Now: Algorithm as Platform

![Diagram](image)

Examples:
- Routing Protocols
- Crowdsourcing
- Electronic Commerce, Sharing Economy

Design requirement: Consider user incentives
Algorithms and Incentives

Past: Algorithms as black box

Now: Algorithm as Platform

Input → Algorithm → Output

Examples:
- Routing Protocols
- Crowdsourcing
- Electronic Commerce, Sharing Economy
Algorithms and Incentives

Past: Algorithms as black box

Now: Algorithm as Platform

Examples:
- Routing Protocols
- Crowdsourcing
- Electronic Commerce, Sharing Economy

Design requirement:
Consider user incentives
Revenue Maximizing Mechanisms

ISP service:
- High quality vs. low quality

Chen et al., 2015: computationally hard

Theorem (Haghpanah, Hartline, 2015)
- If types with high v_H are less sensitive
 - Only offering high quality optimal

$v_L = \frac{3}{4}$
Revenue Maximizing Mechanisms

ISP service:
- High quality vs. low quality

How should the services, and lotteries over them, be priced?
Revenue Maximizing Mechanisms

ISP service:
- High quality vs. low quality

How should the services, and lotteries over them, be priced?
- Distribution $f: (v_H, v_L) \sim f$
- **Goal:** maximize expected revenue

Chen et. al, 2015: computationally hard

Theorem (Haghpanah, Hartline, 2015)
If types with high v_H are less sensitive
⇒ Only offering high quality optimal

$v_H / 4$
Revenue Maximizing Mechanisms

ISP service:
- High quality vs. low quality

How should the services, and lotteries over them, be priced?
- Distribution f: $(v_H, v_L) \sim f$
- Goal: maximize expected revenue

Chen et. al, 2015: computationally hard
Revenue Maximizing Mechanisms

ISP service:
- High quality vs. low quality

How should the services, and lotteries over them, be priced?
- Distribution \(f: (v_H, v_L) \sim f \)
- **Goal**: maximize expected revenue

Chen et al., 2015: computationally hard

Theorem (Haghpanah, Hartline, 2015)

If types with high \(v_H \) are less sensitive \(\Rightarrow \) Only offering high quality optimal
Technique

Reduce the **average-case** problem to a **point-wise** problem

Lemma (Haghpanah, Hartline, 2015)

There exists a virtual value function ϕ such that

1. Revenue of any mechanism $= \mathbb{E}_v [x(v) \cdot \phi(v)]$

2. Selling only high quality maximizes $x(v) \cdot \phi(v)$ pointwise.

Idea: for any covering of space γ, there exists ϕ_{γ} such that

$\text{Revenue of any mechanism } = \mathbb{E}_v [x(v) \cdot \phi_{\gamma}(v)]$

Challenge: find γ such that ϕ_{γ} satisfies second property.

(1, 0) (0, 0) allocation covering γ (paths) virtual value ϕ_{γ} virtual value ϕ_{γ}
Technique

Reduce the **average-case** problem to a **point-wise** problem

Lemma (Haghpanah, Hartline, 2015)

There exists a virtual value function ϕ such that

1. Revenue of any mechanism $= E_v[x(v) \cdot \phi(v)]$
2. Selling only high quality maximizes $x(v) \cdot \phi(v)$ pointwise.
Technique

Reduce the *average-case* problem to a *point-wise* problem

Lemma (Haghpanah, Hartline, 2015)

There exists a virtual value function ϕ such that

1. Revenue of any mechanism $= E_v[x(v) \cdot \phi(v)]$
2. Selling only high quality maximizes $x(v) \cdot \phi(v)$ pointwise.

Idea: for any covering of space γ, there exists ϕ^γ such that

- Revenue of any mechanism $= E_v[x(v) \cdot \phi^\gamma(v)]$
Technique

Reduce the **average-case** problem to a **point-wise** problem

Lemma (Haghpanah, Hartline, 2015)

There exists a **virtual value function** \(\phi \) such that

1. **Revenue of any mechanism** = \(E_v[x(v) \cdot \phi(v)] \)
2. **Selling only high quality maximizes** \(x(v) \cdot \phi(v) \) **pointwise.**

Idea: for any covering of space \(\gamma \), there exists \(\phi^\gamma \) such that
 - Revenue of any mechanism = \(E_v[x(v) \cdot \phi^\gamma(v)] \)

Challenge:
 - Find \(\gamma \) such that \(\phi^\gamma \) satisfies second property

\[\begin{array}{c}
\text{allocation} \\
(0, 0) \quad (1, 0) \\
\hline
\text{virtual value } \phi^\gamma \\
\hline
\text{covering } \gamma \text{ (paths)}
\end{array} \]