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Chapter 1

The Magical Mystery Tour

Notes taken by Ran Gilad-Bachrach

Summary:

Since the introduction ofExpander Graphsduring the 1970’s they turn to be a significant tool both in
theory and practice. They have been used in solving problems in communication and construction of error
correcting codes as well as a tool for proving results in number theory and computational complexity. In
this course we will exploreExpander Graphs,both the properties and the use of such graphs will be
studied.

The goal of this lecture is to sample the wide range of applications for expander graphs. This should serve
as a motivation for the rest of the course.

1.1 Some Problems

To begin our tour we will look at three questions from three very different domains. Note that in these problems the
connection to graph theory, and especially to expander graphs is not clear.

1.1.1 Hardness results for linear transformation

Maybe the most important open problem in mathematics these days is the famousP = NP (or P 6= NP ) problem.
Although it has been studied for decades now, almost no significant progress has been made. One of the reasons lies
in the fact that we have very few problems that are known to be hard. During the 1970’th, Leslie Valiant [Val76]
addressed this problem. He defined the following simple problem:

Problem 1. Let F be a finite field. LetA be a linear transformation overF , i.e. A is ann � n matrix. We would
like to build a circuit which computes the transformationx 7! Ax. Each gate of this circuit computes addition or
multiplication. How many gates do we need in this network?

Assume for instance that the transformationA represent the Fourier Transform. Cooley and Tukey [CW65] pre-
sented the Fast Fourier Transform (FFT) which computes the transformation usingO(n logn) gates. However there
is no matching lower bound so it might be possible to do the computation using onlyO(n) gates. The implications of
a Very Fast Fourier Transform, i.e anO(n) algorithm for computing the transform are hard to over estimate.

By counting the number of circuits and comparing to the number of linear transformations it could be verified that
the average size of such circuit isO

�
n2= logn

�
gates, however we don’t know of any transformation which needs

more thenO(n) gates.
Valiant [Val76] tried to present transformations for which the number of gates needed is greater thenO(n). He

suggested that super regular transformation have this property:

Definition 1.1 (Super Regular Matrix). A matrix A is Super Regularif any rectangular sub-matrix ofA has full
rank.

7



8 CHAPTER 1. THE MAGICAL MYSTERY TOUR

Figure 1.1: Leslie G. Valiant

The main observation of Valiant was that if we look at the graph layout of a circuit which computes a super regular
matrix then this graph is aSuper Concentrator:

Definition 1.2 (Super Concentrator). A graphG is aSuper Concentratorif it hasn input vertexes denoted byI and
n output vertexes denoted byO such that for everyk and everyS � I andT � O of sizek (i.e. jSj = jT j = k) there
existsk paths inG fromS to T which are vertexes disjoint.

Valiant conjectured that anySuper Concentratorgraph must have� n edges and hence any circuit which computes
a super regular matrix must have� n gates. However, Valiant himself disproved the conjecture and presented super
concentrators withO(n) edges, and as you might have guessed this is where expanders come into the picture.

For the moment we will skip to a totally different problem.

1.1.2 Error Correcting Codes

One of the most fundamental problems in communication is noise. Assume that Alice has a message ofk bits which
she would like to deliver to Bob over some communication channel. The problem is that the channel might interfere
in the way and thus the message that Bob receives might be different then the one that Alice sent.

During the 1940’s Clude Elwood Shannon has developed the theory of communication which is called Information
Theory. In his innovative paper “A Mathematical Theory of Communication” [Sha48] the problem of communication
over noisy channel is one of the problems he addressed. Let us first define the problem1:

Problem 2 (communication over noisy channel).Alice and Bob can communicate over a noisy channel that might
change a proportionp of the bits sent through it. How can Alice send Bob a message ofk bits?

Shannon presented an answer to the above given question. He suggested building a dictionary (or code)C �
f0; 1gn such thatjCj = 2k. Everyk-bits message is encoded by a code word inC and transmitted. Bob receivesn
bits and finds the closest code word inC in terms of hamming distance and determines thek-bits associated with it. If
the minimal distance between two words inC is greater then2pn it is guaranteed that thek-bits that Bob will find is
exactly the bits Alice encoded.

Therefore the problem of communicating over noisy channel is reduced to the problem of finding a good dictionary
(code). A good dictionary is one that is both big (i.e.jCj is big) and at the same time the length of the words inC is
small. This is seen from the next definition:

1The problem as described here is a simplification of the original problem presented by Shannon.
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Figure 1.2: Clude Shannon.

Definition 1.3 (the rate and distance of a dictionary).LetC � f0; 1gn be a dictionary. Therate of the dictionary
is defined as

R =
log jCj
n

while thedistanceof the code is

Æ =
minc1 6=c22C dH(c1; c2)

n

wheredH is the hamming distance.

As we saw before the distance of a dictionary governs it’s ability to overcome noisy channels while the rate counts
the efficiency of the code. At this point we can refine the problem just state:

Problem 3 (refined communication problem). Is it possible to design a series of dictionariesfCkg1k=1 such that
jCkj = 2k , the distance of each dictionary is greater thanÆ0 > 0 and the rate of each code is greater thanR0 > 0.

We will see that a solution to this problem can be found using expander graphs. However, we will now present yet
another problem.

1.1.3 De-randomizing Algorithms

Rabin [Rab80] presented in 1980 an algorithm for checking primality. Given an integerx of k bits and a set ofk
random bitsr the algorithm computes a functionf(x; r) such that ifx is primalf(x; r) = 1, on the other hand ifx is
not primalf(x; r) = 1 with probability smaller then1=4. Applying this algorithm over and over again can reduce the
error to be arbitrary small. However this process involves the use of more and more random bits.

The primality test is a special case of a Random Polynomial algorithm (RP). LetL � f0; 1gk be a language. An
algorithm which decides onx 2 f0; 1gk weather it is inL or not is Random Polynomial, if it runs in polynomial time
and using poly(k) random bits and gives an answer which is always one ifx 2 L and has probability smaller than1=4
to give1 if x =2 L.

Problem 4 (Saving Random Bits).Assume that thatL � f0; 1gk has a random polynomial algorithm. How many
random bits are needed in order to give an answer with probability of mistake smaller then1=d?
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Figure 1.3: Michael Rabin

1.2 Magical Graphs

In the previous section we presented three problems which seems to be unrelated. We will now present a new object
called Magical Graph which will enable us to find a solution for all these problems.

Definition 1.4 (Magical Graph). LetG be a two sided graph withn vertexes on each side. LetL be the vertexes on
the left side andR the vertexes on the right. Assume that any vertex inL hasd neighbors inR. We say thatG is (d; n)
magical graph if it has the following two properties

1. For anyS � L such thatjSj � n
3d =) j�(S)j � jSj d4

2. For anyS � L such thatn3d < jSj � n
2 =) j�(S)j � jSj+ n

3d

where�(S) is the set of neighbors ofS in G.

We will now turn to explore some properties of magical graphs.

Lemma 1.5. For eachd � 8 and sufficiently largen there exists a(d; n) magical graph.

Proof. Construct a random graph as follows: for each vertexv 2 L choose randomlyd vertexes inR and connect
them withv. We claim that with high probability the graph generated by this process is a magical graph.

LetS � L be such thats = jSj � n
3d . LetT � R be such thatt = jT j < jSj d4 .

Let XS;T be an indicator random variable for the event that all the edges fromS go to T . It is clear that ifP
XS;T = 0 then the first property in the definition of magical graphs hold.

The probability of the eventXS;T is
�
t
n

�sd
and therefore using a union bound

Pr

24X
S;T

XS;T > 0

35 �
X
S;T

Pr [XS;T = 1]

=
X
S;T

�
t

n

�sd

� n2
�

n
n
3d

��
n
n
12

��
1

12

�n=3
�= n22nH(

1
3d )+nH( 1

12 )+
n
3
log 1

12

� n22�n=8
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Whenn is sufficiently largen22�n=8 is smaller then 0.25 and therefore the probability that requirement 1 in the
definition of magical graph will holds is greater than0:75.

We use the same technique to bound the probability that requirement 2 in the definition of magic graph hold. For
everyS � L such thatn3d < jSj � n

2 andT � R such thatjT j < jSj+ n
3d let YS;T be an indicator random variable

for the event that all the edges fromS go toT . As in the previous case, if
P
YS;T = 0 then the second property in the

definition of magical graphs hold.

The probability of the eventYS;T is
�
t
n

�sd
and therefore using a union bound

Pr

24X
S;T

YS;T > 0

35 �
X
S;T

Pr [YS;T = 1]

=
X
S;T

�
t

n

�sd

� n2
�
n
n
2

��
n
n
2

�� n
2 + n

3d

n

�n
2
d

�= n222nH(
1
2 )+

nd
2
log( 12+

1
3d )

� n22n(2�
d
3 )

For n sufficiently largen22n(2�
d
3 ) � 0:25 and hence the second property of magical graph holds with probability

0:75 at least.
Finally if we chose a sufficiently largen we get that the two requirements of magical graphs hold with probability

greater than0:5. Therefore not only that there exist an(n; d) magic graph but there are many of those.

Before introducing the solutions to the above mentioned problems, we will present a small variation on magical
graphs. We will deleten4d2 vertexes fromR, i.e. the right side of the graph such that the main properties of the graph
will remain:

Lemma 1.6. LetG be a magical graph then there existsB � R such thatjBj � n
4d2 and for each vertexv 2 L there

is at most one neighbor inB.

Proof. We will present an algorithm which constructs the setB. We begin by holding the two sets of vertexesL0 = L
andR0 = R and we resetB to be the empty set.

At each iteration we choosev 2 Ri with degree at most2d. We addv to B and then constructLi+1 such that
Li+1 = Li n � (v) andRi+1 = Ri n � (� (v)), i.e. we delete all the neighbors ofv fromLi and delete all the second-
degree neighbors ofv fromRi. We keep the process running as long as there is a vertexv 2 Ri with degree at most
2d.

From the way we constructed the setB it is clear that anyu 2 L has at most one neighbor inB. We would like to
count how many iterations can we do with the above algorithm, this will give us a lower bound on the size ofB.

At each step we have thatjLij � n � 2di since the vertexv which we add toB has degree at most2d. Also we
have thatjRij � n � d(n � jLij) since each vertex inL has degreed. Since the number of vertexes in the graph
induced onLi [ Ri is at mostd jLij, the average degree of the vertexes inRi is at most

d jLij
jRij �

d jLij
n� d(n� jLij)

and hence as long asjLij �
�
1� 1

2d�1
�
n the average degree of the vertexes inRi is at most2d and therefore there

exist a vertex with degree at most2d.

SincejLij � n � 2di we have that as long asi � n
4d2 that jLij �

�
1� 1

2d�1
�
n as required. Therefore we can

build a setB of size at n4d2 .
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We will call modified magical grapha magical graph that a set of sizen4d2 of vertexes were deleted from the right
side as described in lemma 1.6.

Since magical graphs exists as we saw in lemma 1.5 and can be modified as we saw in lemma 1.6 we now turn to
use this construction to solve the problems presented in the first section of this lecture.

1.2.1 A Super Concentrator withO(n) edges

As we saw in section 1.1.1 Valiant’s conjecture was that a super concentrator must have many edges. This sounds
reasonable from the definition of super concentrators (see definition 1.2). However we will see that using magical
graphs it is possible to build such graphs with onlyO(n) edges.

LetG be a modified magical graph such that there aren vertexes on the left side ofG but onlyn � n
4d2 vertexes

on the right side as we saw in lemma 1.6.
By the construction ofG we have that for eachS � L such thatjSj � n

2 hasj�(S)j � jSj. Hence by Hall’s
theorem [Die97, Theorem 2.1.2] for anyjSj � n

2 in L there is a perfect matching fromS to �(S). We will use these
facts to build a super concentrator.

The construction can be presented recursively. Letn0 be the minimal size of modified magical graph. If we are
required to build a super concentrator with less thenn0 vertexes we just return the full two sided graph. The full two
sided graph is a concentrator withn20 edges (we will use notationS(n) for the number of edges).

Assume we would like to build a super concentrator withn > n0 vertexes. LetG be a modified magical graph
with n vertexes on the left side andn � n

4d2 vertexes on the right. LetC be a super concentrator withn � n
4d2 input

and output edges. Such a concentrator exists according to our induction assumption.
UsingG andC we will construct a new concentrator withn inputs and outputs. The inputs of the new concentrator

will be the left side ofG. We connect the right hand side ofG to the inputs ofC. We will place another copy ofG
on the outputs ofC, this is illustrated in figure 1.4(a). Finally we add direct edges between the two copies ofG, each
vertex on the left side ofG we placed in the input is connected to the matching vertex on the left side ofG we placed
in the output as illustrated in figure 1.4(b).

We would like to show that the graph constructed is indeed concentrator and count the number of edges in this
graph. LetS be a set of vertexes from the input of the new graph andT be vertexes on the output such thatjSj =
jT j = k. If k � n=2 then due to the properties of the modified magical graphG we know thatj� (S)j � jSj and
j� (T )j � jT j. Using Halls marriage theorem it is possible to construct a perfect matching betweenS and�(S) and
on the other side betweenT and�(T ). SinceC is a super concentrator, the matches ofS in �(S) and ofT in �(T )
can be connected byk disjoint paths and henceS andT can be connected by disjoint paths.

If the two setsS andT are big, i.e.jSj = jT j = k > n=2 then there must exists at leastk� n=2 vertexes inS that
are matched to vertexes inT by direct edges. These edges form paths and hence we can exclude these vertexes from
S and their matches fromT . After doing so we are left with groups of sizen=2 at most which we already know how
to treat.

After we proved that the graph we constructed is a super concentrator we turn to count the number of edges. Let
S(n) be the number of edges in the graph withn inputs. From the construction we know thatS(n) = jCj+2 jGj. We
also know thatjGj = nd andjCj = S

�
n
�
1� 1

4d2

��
. Hence we obtain a recursive formula forS (n):

1. forn > n0 we have thatS (n) � 2nd+ S
�
n
�
1� 1

4d2

��
.

2. forn � n0 we have thatS (n) � n2.

Solving this recursive formula we get
S (n) � cn

such thatc = n0 + 8d3.
Therefore, using magical graphs it is possible to construct super concentrators withO(n) edges.

1.2.2 Error Correcting Codes

We now turn to present a solution to Shannon’s problem of correcting errors over communication channels. Again let
G be a modified magical graph, i.e. a magical graph such that it’s right side consist of less thenn(1� 1

d2 ) vertexes.
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Figure 1.4: A construction of Super Concentrators using Magical Graphs

L R R L

G GC
(a) first stage

L R R L

G GC
(b) second stage

Let S � L be such thatjSj � n
3d then there existsv 2 S andu 2 R such thatv is the only neighbor ofu in the

groupS, i.e. u 2 �(S) n �(S n fvg). This follows sincej�(S)j � ( 3d4 � 1) jSj > d
2 jSj. To prove the existence ofu

andv, consider the setE of edges betweenS and� (S). Thend jSj � jEj � 2 j�(S)j and soj�(S)j � d
2 jSj which is

a contradiction.
We use this construction to build a codeC � f0; 1gn of size2k such that the hamming distance between any two

distinct code words is at leastn3d so the code has distance13d and the rate iskn = 1
3d .

Let G be a modified magical graph. We will view the graphG as a function fromf0; 1gn to f0; 1gn(1� 1

d2
) by

assigning a parity function to each vertex in the right side, i.e.G (x)u = �v2�(u)xv .

C = fx 2 f0; 1gn jG(x) = 0g
I.e. a wordx is in the codeC if the parity assigned to each vertex on the right side is zero. Figure 1.5 demonstrates
the code.

C is a linear sub space off0; 1gn defined byn(1 � 1
4d2 ) linear equations and hencejCj � 2n=4d

2

. SinceC is a
linear code (i.e. a linear sub-space) the minimal distance between two code words inC is the minimal weight of a
non-zero code word inC. Let x 2 f0; 1gn. We can look atx as an indicating function of vertexes inL. LetS be the
set of vertexes to whichx assigns the value 1. IfjSj < n

3d then there exists a unique neighbor, i.e there existsu 2 R
andv 2 S such thatv is the only neighbor ofu in S. Hence the parity function associated withu will assign the value
1 to x and hencex =2 C. Therefore the minimal distance between two code words inC is at leastn=3d.

Therefore we presented a way to construct “good” dictionaries (codes) using magical graphs.

1.2.3 De-randomizing Random Algorithms

The last problem we presented was that of random algorithms. Let LANG be a language such that there exists an
algorithm such that when it receivesx of sizek and a stringr of k random bits, it calculates a functionf(x; r) such
that if x 2 LANG thenf(x; r) = 1 but if x =2 LANG thenf(x; r) = 1 with probability at most1=12 over the choice
of r.

LetG be a magical graph overn = 2k vertexes. By the definition of such graphs we know that for everyS � L
such thatjSj � n

3d we have thatj�(S)j � n
12 . Now assume thatx =2 LANG. Let B be the “bad” set i.e.B =n

r 2 f0; 1gk j f(x; r) = 1
o

. We know thatjBj � n
12 .

For each string ofk random bits we assign a vertex inL. The graphG then direct us tod string ofk bits which are
associated to vertexes inR, we will call these stringsr1; : : : ; rd. Our algorithm will apply the functionf(x; �) with
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Figure 1.5: A construction of an error correcting code

r1; : : : ; rd. If all the values we receive were1 then we will predict thatx 2 LANG. If f(x; rj) = 0 for somej then
we know for sure thatx =2 LANG.

Our algorithm will fail only if x =2 LANG andr1; : : : ; rd 2 B, i.e.�(r) � B. LetS � L be the set of vertexes for
which all their neighbors are inB, soS = fv 2 L j�(v) � B g. SincejBj � n

12 we have thatjSj � n
3d and therefore

our algorithm will fail with probability 1
3d at most, using onlyk random bits.

1.3 Conclusions

In the first section of this lecture we presented three problems of different nature. All these problem had no direct
connection to graph theory. However we saw that by constructing magical graphs we could find a solution to these
problems. During our discussion we explored some of the features of magical graphs.

What other magic can these graphs do? what properties do they have. Can we construct these graphs efficiently?
All these questions are the topic of this course. We will explore both the theory and applications of magical graphs.

And one last word, the magical graphs we used in this lecture are a special case of the exciting family ofExpanders.



Chapter 2

Graph Expansion & Eigenvalues

Notes taken by Danny Harnik

Summary: After defining families of expander graphs and giving some examples of such families, we
discuss some algebraic properties of graphs. Mainly, we discuss the connection between the expansion
property of a graph to the eigenvalues of the graph’s adjacency matrix. We also see an application of
expander graphs for error amplification with a small amount of random bits.

2.1 Definitions

We begin with some notes and notations:

� Throughout this lecture (and course) we discussd-regular graphs (graphs in which all vertices have the same
degreed). denote a graph byG = (V;E) andjV j = n. We allow self loops and multiple edges in the graph.

� Unlike the previous lecture, we discuss general graphs and not only bipartite graphs.

� ForS; T � V denote the set of all edges betweenS andT byE(S; T ) = f(u; v)ju 2 S; v 2 T; (u; v) 2 Eg.
Definition 2.1.

1. TheEdge Boundaryof a setS, denoted@S, is @S = E(S; S). This is actually the set of outgoing edges from
S.

2. TheExpansion Parameterof G, denotedh(G), is defined as:

h(G) = min
fSjjSj�n

2
g
j@Sj
jSj

We note that there are other notions of expansion that can be studied. The most popular is counting the number of
neighboring vertices of any small setS, rather than the number of outgoing edges.

Definition 2.2. Family Of Expander Graphs
A family of Expander graphsfGig wherei 2 N is a collection of graphs with the following properties:

� The graphGi is ad-regular graph of sizeni (d is the same constant for the whole family).fnig is a monotone
growing series that doesn’t grow too fast (e.g.ni+1 � n2i ).

� For all i, h(Gi) � � > 0.

When discussing a family of expander graphs one should also consider the time required to construct such a graph.
There are two natural versions for the requirement on the constructibility of graphs:

15
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Definition 2.3.

1. A family of expander graphs is calledMildly Explicit if there is a Polynomial-Time algorithm that given1i

createsGi.

2. A family of expander graphs is calledVery Explicit if there is a Polynomial-Time algorithm that given(i; v; k)
(wherei 2 N; v 2 V andk 2 f1; � � � ; dg) computes thekth neighbor of vertexv in the graphGi.

The second definition is useful for very large graphs, where one cannot construct the whole graph, but rather works
locally on a small part of the graph.

2.2 Examples of Expander Graphs

1. This family of graphsGm lies on a grid:Vm = Zm � Zm.
The degree isd = 4 and the edges are described as follows:
Vertex(x; y) has edges to(x+ y; y); (x� y; y); (x; y + x) and(x; x� y) (all operations are done modulom).
Margulis (73) showed that this is an expander family.
Gaber & Galil (80) showed that this is an�-expander family ( for a specific� ).

2. This family has graphs of sizep (for all primep). HereVp = Zp andd = 3. Each vertexx is connected to its
neighbors and its inverse (i.e.x+ 1; x� 1 andx�1).
This was shown to be an�-expander family by Lubotsky, Philips and Sarnak (88).

2.3 The Spectrum of a Graph

TheAdjacency Matrix of a graphG, denotedA(G), is ann � n matrix that for each(u; v) contains the number of
edges inG between vertexu and vertexv. Since the graph isd-regular, the sum of each row and column inA(G) is d.

By definition the matrixA(G) is symmetric and therefore has an orthonormal basev0; � � � ; vn�1, with eigenvalues
�0; �1; � � � ; �n�1 such that for alli we haveAvi = �ivi. Without loss of generality we assume the eigenvalues are
sorted in descending order�0 � �1 � � � � � �n�1. The eigenvalues ofA(G) are called theSpectrumof the graphG.

The spectrum of a graph contains a lot of information regarding the graph. Here are some examples of observations
that demonstrate this connection between the spectrum of ad-regular graph and its properties:

� �0 = d

� The graph is connected iff�0 > �1

� The graph is bipartite iff�0 = ��n�1
In the rest of the lecture we will discuss the connection between the expansion of a graph and its spectrum. In particular,
the graphs second eigenvalue is related to the expansion parameter of the graph.

Theorem 2.4.
d� �1

2
� h(G) �

p
2d(d� �1)

This Theorem is due to Cheeger & Buser in the continuous case, and to Tamner, Alon & Milman in the discrete
case.

The theorem actually proves thatd � �1, also known as theSpectral Gap, can give a good estimate on the
expansion of a graph. Moreover, the graph is an expander (h(G) > �) if and only if the spectral gap is bounded
(d � �1 > �0). We do not prove this theorem at this stage (will be proved later in the course). Instead we show a
Lemma that allows us to find connections between the expansion property and the second eigenvalue.
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2.4 The Expander Mixing Lemma and Applications

Denote� = max(j�1j; j�n�1j).
Since the eigenvalues are already sorted, this means that� is larger than the absolute value of all eigenvalues (except
�0 = d).

Lemma 2.5. Expander Mixing Lemmafor all S; T � V :

jjE(S; T )j � djSjjT j
n

j � �
p
jSjjT j

This lemma can be viewed as relating the second eigenvalue to the question of how "random" the graph is. The
left hand side compares the expected number of edges betweenS andT in a random graph (djSjjT jn ) and the actual
number of edges between the two sets (jE(S; T )j). This difference is small when� is small. So a small� (or large
spectral graph) means a graph with allot of "randomness".

Proof. Denote by�S and�T the characteristic vectors ofS andT (�S is a vector with ones for allv 2 S and zeros in
all other places). Let�S = �i�ivi and�T = �j�jvj be their representation as linear combinations of the orthonormal
basev0; � � � ; vn�1, wherev0 = 1=

p
n. We have:

jE(S; T )j = �SA�T

= (�i�ivi)A(�j�jvj)

and since thevi’s are eigenvectors and orthonormal:

jE(S; T )j = (�i�ivi)(�j�jAvj)

= (�i�ivi)(�j�j�jvj)

= �i�i�i�i

Since�0 = h�S ; 1p
n
i = jSjp

n
and�0 =

jT jp
n

:

jE(S; T )j = �0
jSjjT j
n

+�n�1i=1 �i�i�i

= d
jSjjT j
n

+�n�1i=1 �i�i�i

Due to the triangle inequality and the definition of�:

jjE(S; T )j � d
jSjjT j
n

j = j�n�1i=1 �i�i�ij
� �n�1i=1 j�i�i�ij
� ��n�1i=1 j�i�ij

And by the Cauchy-Schwartz inequality:

jjE(S; T )j � d
jSjjT j
n

j � �k�k2k�k2
= �k�Sk2k�T k2
= �

p
jSjjT j

Following is an example of an application of the lemma above:
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2.4.1 Deterministic Error Amplification for BPP

In this example we are given a function inBPP . This means a functionf : f0; 1gn ! f0; 1g and a probabilistic
polynomial time algorithmA that approximatesf in the sense that for randomr 2 f0; 1gm we have:

Prr[A(x; r) 6= f(x)] � 1

4

Our goal is to reduce the probability of error. This can be achieved by simply repeatingA with different random
coinsr, and taking a majority vote. Usingt calls toA one can reduce the error toc�t for some constantc. However
this requires a large number of coin tosses (t �m in this case). The question is: can we make the error smaller with a
small number of random coins?

We introduce an algorithmB that uses justm random coins:B uses ad-regular expander graphG2m (of size
N = 2m). The algorithm chooses a random vertexv 2 G2m and takes a majority vote on the output ofA on each of
the neighbors ofv (denote by�(v) the set of the neighbors ofv in G2m ).

B(x; v) =Majorityu2�(v)A(x; u)

Claim 2.6.

Prv [B(x; v) 6= f(x)] � 4(
�

d
)2

Proof. Let S be the set of vertices that algorithmB makes errors on, andT be the set of vertices that algorithmA
makes errors on (S = fvjB(x; v) 6= f(x)g andT = fujA(x; u) 6= f(x)g). By definition, everyv 2 S has at leastd2
neighbors inT . So: jE(S; T )j � jSjd2 On the other hand, due to the Expander Mixing Lemma and sincejT j � N

4 :

jE(S; T )j � djSjjT j
N

+ �
p
jSjjT j

� djSj
4

+ �

r
jSjN

4

Combined together we get:

djSj
4

� �

r
jSjN

4

And finally:

Pr[B(x; v) 6= f(x)] =
jSj
N

� 4(
�

d
)2

The above claim shows that error amplification can be done, but gives a rather poor amplification rate. There are a
few ways to improve this:

� One can take instead ofG2m , with adjacency matrixA, the graph with matrixAk. In this new graph (containing
an edge for any path of lengthk in the original graph) we have degreedk, but also second eigenvalue�k giving
a reduced error of(�d )

2k.

� It is worth noting that in a good expander we can achieve� � 1p
d

giving an error of about1d . So to get an error

smaller than a given� one should use graphs of degree1
� .

� We will see in the next lecture constructions with better amplification using random walks on expander graphs.
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2.5 How Big Can the Spectral Gap be?

We conclude with the question of how small can� be.
As an example we can check the most connected graph - The Clique.

Then-cliqueKn is the graph were every vertex is connected to all its neighbors and has degreed = n � 1. The
spectrum of the Clique can be easily calculated by viewing the Clique’s matrix asJ � I wereJ is the all ones matrix
andI is the identity matrix. The spectrum ofKn is [n� 1;�1;�1; � � � ;�1]. hence� = 1.

But this is ford � n and we are interested in the behavior of� whend is much smaller (usually a constant). This
case is discussed in the following Theorem due to Alon-Boppana:

Theorem 2.7. for everyd-regular graph:
� � 2

p
d� 1� on(1)

We will not prove this theorem here, but instead show a weaker statement:

Claim 2.8. for everyd-regular graph:
� �

p
d(1� on(1))

Proof.
note: In this discussion we don’t allow multiple edges (the Adjacency matrix contains only zeros and ones).

Given ad-regular graphG with adjacency matrixA, we look at the trace ofA2 (trace is the sum of the values in
the diagonal) . On one hand, since the matrix is symmetric, and the sum of each row/column isd we have(A2)ii = d
for all i:

Trace(A2) = n � d:
On the other hand:

Trace(A2) =
X
i

�2i

� d2 + (n� 1)�2

together we get

�2 � d
n� d

n� 1

and:
� �

p
d(1� on(1))
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Chapter 3

Random Walks on Expander Graphs

Notes taken by Boaz Barak and Udi Wieder

Summary: In this lecture we consider random walks on expander graphs. We will see that thet vertices
on a lengtht random walk on a expander graph “look like” (in some respects)t random independently
chosen vertices. This occurs even though sampling a lengtht walk on a (constant-degree) expander
requires a significantly smaller number of random bits than samplingt random vertices. We will use these
properties for two applications. The first application is a randomness-efficient error reduction procedure
for randomized algorithms. The second application is proving a strong hardness-of-approximation result
for the maximum clique problem.

3.1 Preliminaries

(n; d; �) graphs. For a graphG onn vertices we denote by�0(G); : : : ; �n�1(G) the eigenvalues of the adjacency
matrix ofG, where�0(G) � �1(G) � : : : � �n�1(G) (recall that all the eigenvalues are real numbers sinceG is
undirected and so the adjacency matrix is symmetric). We say that a graphG onn vertices is an(n; d)-graph if it is
d-regular. In this case�0(G) = d. For a number� < 1, we say thatG is an(n; d; �)-graph if G is an(n; d)-graph
andmax(j�1(G)j; j�n�1(G)j) � �d.

Vectors and norms. For two vectors~u;~v 2 Rn , we define thedot productof ~u and~v, denotedh~u;~vi to be
Pn

i=1 ~ui~vi.
For a vector~u 2 Rn we define thel1, l2 andl1 norms of~u as:

k~uk
1

def
=

nX
i=1

j~uij

k~uk
2

def
=
p
h~u; ~ui =

 
nX
i=1

~u2i

!1=2

k~uk1 def
= max

1�i�n
j~uij

Probability vectors. We say that a vector~p 2 Rn is a probability vectorif for every 1 � i � n, ~pi � 0 andPn
i=1 ~pi = 1. We denote by~u the probability vector that corresponds to the uniform distribution. That is,~u =

1
n (1; : : : ; 1).

3.2 A random walk on an expander is rapidly mixing.

In this section we show that a random walk on the vertices of an expander mixes rapidly towards the stationary
distribution. LetG be an(n; d; �) expander, and letA be it’s adjacency matrix.

21
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Definition 3.1. A random walk over the vertices ofG is a stochastic process defining a series of vertices(X0; X1; : : :)
in whichX0 is a vertex ofG chosen by some initial distribution andXi+1 is chosen uniformly at random from the
neighbors ofXi.

A random walk is in fact a Markov chain where the set of states of the chain is the set of vertices of the graph.

Definition 3.2. Thenormalized adjacency matrixof G is defined to be1dA and is denoted bŷA.

The following facts are easy to verify:

1. Â is double stochastic; i.e. every column and every row sums up to1.

2. Denote bŷ�0; : : : ; �̂n the eigenvalues of̂A, then�̂0 = 1 andmaxfj�̂1j; j�̂njg = �.

Â can be viewed as the transition matrix of the Markov chain defined by the random walk over the vertices ofG.
In other words letX be a random vertex inG with probability vector~p. LetY be a uniformly chosen neighbor ofX .
We claim that the probability vector ofY is given byÂ~p. To see this write the Bayesian equation:

Pr[Y = i] =
X
j

Pr[Y = ijX = j] � Pr[X = j]

=
X
j

Âijpj

= (Â~p)i

A similar argument shows that̂At is the transition matrix of the Markov chain defined by random walks of lengtht;
i.e. (Ât)ij is the probability a random walk starting ati reachedj in exactlyt steps.
ClearlyÂ~u = ~u therefore the following theorem holds:

Theorem 3.3. The stationary distribution of the random walk onG is the uniform distribution.

The main result of this section is the following:

Theorem 3.4. kÂt~p� ~uk
1
� p

n � �t for any distribution vector~p.

In other words theorem 3.4 states that it doesn’t matter what the initial distribution of the random walk is (it might
be concentrated in one vertex), if� < 1 we need to take only a logarithmic number of steps to get a distribution which
is close to the uniform up to a polynomial factor.

Proof. SinceÂ is symmetric, it has an orthonormal base( ~̂v0; ~̂v1; : : : ; ~̂vn).
Decompose~p into the sum of the uniform distribution~u and an error vector~� = ~p�~u. The sum of the coordinates

of ~p is 1, and the same is true for~u therefore we have that the sum of the coordinates of~� is 0. This means that
h~u;~�i = 0. In other words~� is spanned by( ~̂v1; : : : ; ~̂vn). So we have:

Â~p� ~u = Â(~u+ ~�)� ~u

= Â~u+ Â~�� ~u

= ~u+ Â~�� ~u

= Â~�

Therefore we have:

kÂ~p� ~uk
2
=kÂ~� k

2

��k~� k
2

��k~p k
2

where in the first inequality we used the fact that~� is spanned by an orthonormal set of vectors for which the largest
eigenvalue is�. We deduce that

kÂt~p� ~uk
2
� �t

and therefore that
kÂt~p� ~uk

1
� p

n � �t
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3.3 A random walk on an expander yields a sequence of “good samples”

Consider the following problem: In an(n; d; �)-graphG there is a large set of good vertices (satisfying some condi-
tion) and we wish to find one of them. LetB � V be the set of bad vertices, and assume thatjBj

n = �. Letx1; : : : ; xl
be l vertices chosen uniformly at random fromV , thenPr[8i xi 2 B] � �l. This approach usesl logn random
bits. We will show that by choosing one vertex randomly, and then performing a random walk inG of lengthl, the
probability that the random walk is confined toB is exponentially small inl.
First some intuition. Recall the expander mixing lemma, proven in the previous lecture:

Theorem 3.5 (Expander Mixing Lemma). LetG be an(n; d; �)-graph, then for everyS; T � V (G) it holds that����djSjjT jn
�E(S; T )

���� � �d
p
jSjjT j � �dn

Previously the expander mixing lemma was interpreted as saying that the number of edges between any two sets
of vertices is not far from the expected for sets of those sizes. Now divide the inequality bydn to receive the following
inequality: ���� jSjjT jn2

� E(S; T )

dn

���� � � (3.1)

Consider the following test: select uniformly at random(i; j) two vertices ofG. Check whetheri 2 S andj 2 T .
The termjSjjT j

n2 can be interpreted as the probability that this test succeeds.
Now consider a different test: select uniformly at random(i; j) an edgein G. Check whetheri 2 S andj 2 T .
The termE(S;T )

dn can be interpreted as the probability that this test succeeds. Note that the size of the probability
domain of the first test isn2 while the size of the probability domain of the second test is onlynd, yet the difference
between success probabilities is only a small constant�. In other words a random walk of length1 can be viewed as
discrepancy sets over sets of two vertices. Next we will show that random walks of lengtht are in fact discrepancy
sets for sets oft vertices.
Let G be an(n; d; �)-graph, andB � V with density� = jBj

jV j . ChooseX0 2R V uniformly at random and let
X0; : : : ; Xt be a random walk onG starting atX0. Denote by(B; t) the event that the random walk is confined toB;
i.e. that8i Xi 2 B.

Theorem 3.6. Pr[(B; t)] � (� + �)t

LetP = PB be a projection on the space of vectors supported inB, i.e.

Pij =

(
1 if i = j 2 B
0 otherwise

If v is a distribution vector, thenPv is the residual distribution vector of the distributionv conditioned on being in
the setB. We need two lemmas:

Lemma 3.7. Pr[(B; t)] = k(PÂ)tP~uk
1

Proof. The action ofP over a probability vector~v is to nullify all the coordinated outside the setB, this transforms
a probability vector into the residual probability vector of the same distribution, but conditioned on being inB. Thus
P~u is the residual probability of the uniform distribution conditioned to be inB. ÂP~u is the residual distribution
after a random step has been taken.PÂP~u is the residual probability conditioned on the random step remaining inB.
Repeating this we see that(PÂ)tP~u is the residual probability vector of the random initial point and allt steps being
in B. Since we don’t care where inB we end up, we need to sum the coordinates of this vector, hencePr[(B; T )] is
indeed given byk(PÂ)tP~uk

1
.

Lemma 3.8. For any non negative vectorv:

kPÂP~vk
2
� (� + �) � k~vk

2
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Proof. The idea of the proof is that̂A shrinks all components of a vector except the uniform distribution component,
whereasP shrinks the uniform component without increasing anything else. Together they reduce all parts of the
vector.
DecomposeP~v into P~v = (P~v)k + (P~v)? where(P~v)k is the projection ofP~v on~u andh(P~v)k; (P~v)?i = 0. By
the triangle inequality we know that

kPÂP~vk
2
� kPÂ(P~v)kk2 + kPÂ(P~v)?k2

First we look howP affects(P~v)k. Since~u is an eigenvector of̂A with eigenvalue1 we know:

kPÂ(P~v)kk2 = kP (P~v)kk2 =
p
� � k(P~v)kk2

where the second equality is true since(P~v)k is of the form(a; a; : : : ; a) wherea is some scalar.
If we fix kvk

2
thenk(P~v)kk2 is maximized whenhv; ~ui is maximized. In other wordsk(P~v)kk2 is maximized when

~v is some scalar multiple of~u. Therefore
kPÂ(P~v)kk2 � �k~vk

2
:

Next we look at the effect on(P~v)?. P ’s effect is to multiply some coordinates by0 without changing the others,
soP can only shrink a vector. Since(P~v)? is perpendicular to~u, it is spanned by the remaining eigenvectors ofÂ,
all with eigenvalues at most�. This implies that

kPÂ(P~v)?k2 � kÂ(P~v)?k2 � �k(P~v)?k2
We note thatk(P~v)?k2 � k~vk

2
and conclude thatkPÂ(P~v)?k2 � �k~vk

2
. Adding the two parts together we

conclude that:
kPÂP~vk

2
� (� + �) � k~vk

2

Now we use the lemma to prove theorem 3.6:

Proof. (theorem 3.6)

k(PÂ)tP~uk
1
� p

n � k(PÂ)tP~uk
2

=
p
n � k(PÂP )t~uk

2

� p
n � (� + �)tk~uk

2

= (� + �)t

3.3.1 Application: amplifying the success probability of random algorithms

Let L be some language inRP and assume thatA is a randomized algorithm that decides whetherx 2 L with a
one sided error. Assume thatA tossesm coins and has an error probability of�. Build an(n; d; �)-graph such that
V = f0; 1gm; i.e. the vertex set of the graph is the probability domain ofA’s coin tosses. Fix some inputx and letB
be all the coin tosses for whichA(x) is wrong. Now letA0 be the following algorithm:

1. pick a vertexv0 2 V uniformly and at random.

2. perform a random walk of lengtht resulting with the set of vertices(v0; v1; : : : ; vt).

3. return
St
i=0A(x; vi)

A direct implication of theorem 3.6 yields that

Pr[A0 fails ] = Pr[8i vi 2 B] � (� + �)t

The error probability is reduced exponentially while the number of random bits used is onlym+ t log d = m+O(t).
Next we will show that the same trick can amplify the success probability of a two-sided error algorithm. In order to
show this we need to restate theorem 3.6 in a stronger version.
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Theorem 3.9. LetB0; B1; : : : ; Bt be subsets ofV such thatjBijn = �i. Define(B; t) to be the event that a random
walk (X0; X1; : : : ; Xt) has the property that8i Xi 2 Bi. It holds that

Pr[(B; t)] �
t�1Y
i=0

(
p
�i�i+1 + �)

Note that one should be able to strengthen that by a factor of� p
�0�t, but our simple argument used in the proof

of Lemma 3.8 seems to lose that.
The proof of theorem 3.9 is indeed similar to the proof of theorem 3.6. LetPi be the projection matrix correspond-

ing to the setBi. Lemma 3.7 should be restated such that

Pr[(B; t)] = k
tY

i=1

(PiÂ)P0~uk1

The analouge of Lemma 3.8 is
kPi+1ÂPi~vk�(

p
�i�i+1 + �)kvk

;

and therefore theorem 3.9 follows.
Now letL be a language inBPP and assume thatA is a randomized algorithms that decides whetherx 2 L with a
two sided error probability of� � 1

10 . As before assume thatA tossesm coins and build an(n; d; �)-graph such that
V = f0; 1gm; i.e. the vertex set of the graph is the probability domain ofA’s coin tosses. Fix some inputx and letB
be all the coin tosses for whichA(x) is wrong. Now letA0 be the following algorithm:

1. pick a vertexv0 2 V uniformly and at random.

2. perform a random walk of lengtht resulting with the set of vertices(v0; v1; : : : ; vt).

3. returnmajorityfA(x; vi)g
A0 fails iff a majority of thevi’s are inB. Fix a set of indicesK � [t] such thatjKj � t

2 . For eachi 2 K let
Bi = B. We deduce from Theorem 3.6 that

Pr[8i 2 K vi 2 B] � (� + �)jKj � (� + �)
t
2

(note that sometimes the walk makes more that one transition before testing for membership inB). By assuming that
� is small enough such that�+ � � 1

8 and applying the union bound we deduce that:

Pr[A0 fails ] � 2t � (� + �)
t
2 � 2t �

�
1

8

� t
2
=

�
1

2

� t
2

We achieve an exponential reduction in the error probability using onlym + O(t) random bits. The following table
sums up the parameters of the techniques presented for error reduction:

Method Error Probability No. of random bits
random algorithmA 1

10 m
t independent repetitions ofA 2�t t �m

Sampling a point and it’s neighbors in an(n; t; 1p
t
)-graph. 1

t m

A random walk of lengtht on an(n; d; 1
40 )-graph 2�

t
2 m+O(t)

3.4 Using expanders for hardness of approximation.

In this section we show another application for random walks on expanders. We will show that we can use such
walks in order to establish a hardness of approximation result for anNP optimization problem - the maximum clique
problem.
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For a graphG, we define!(G) to be theclique numberof G. That is,!(G) is the size of the maximum set
S � V (G) such that all vertices inS are neighbors of each other. Computing exactly the clique number of a graph is
NP-hard. Using thePCP Theorem, it is possible to prove that it is even hard toapproximatethe clique number to
within a constant factor. That is, we have the following theorem:

Theorem 3.10.There exists a number0 < a < 1, such that it isNP -hard to distinguish between the following cases:

1. !(G) � an

and

2. !(G) � 1:1an

In this section we will show that even obtaining avery roughapproximation for!(G) isNP-hard. That is, we
will show that it isNP-hard to approximate!(G) even within a factor ofn� for some� > 0. That is, we will prove
the following theorem:

Theorem 3.11. There exists a number� > 0, such that if there is a polynomial-time algorithmA such that for every
graphG with n vertices

n�� � A(G)

!(G)
� n�

thenNP = P.

Note: The results of this section have been superseded by a result of Håstad that it isNP-hard to approximate
!(G) even within a factorn1�� for every� > 0. However, our approach will involve simpler analysis (and of course,
expander graphs).

3.4.1 Proof of Theorem 3.11.

To illustrate the main ideas behind the proof of Theorem 3.11, we will prove a weaker version of this theorem. In the
weak version we will prove under the same assumption the weaker conclusion thatNP � RP (instead ofNP = P).

Lemma 3.12 (Theorem 3.11, weak version).There exists a number� > 0, such that if there is a polynomial-time
algorithmA such that for every graphG with n vertices

n�� � A(G)

!(G)
� n�

thenNP � RP.

After we prove Lemma3.12, we will use the ideas of the proof, along with random walks on expanders to obtain
Theorem 3.11, which can be looked at as a derandomized version of Lemma 3.12.

Proof of Lemma 3.12

(Since this proof will be superseded by the proof of Theorem 3.11, we allow ourselves some slackness.)
We will let � be some constant, whose value will be determined later. Suppose that there exists a polynomial-time

algorithmA that distinguishes between the two cases of Theorem 3.11. We will show that there exists a probabilistic
polynomial-time algorithmB to distinguish between the two cases of Theorem 3.10, thus showing thatNP � RP.1

Our algorithmB will work as follows:

1It may seem as if we only show thatNP � BPP but it is not hard to show (using the self-reducibility ofNP-complete problems) that if
NP � BPP thenNP � RP.
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Algorithm B

� Input: A graphG onn vertices.

1. Construct the graphH , whereH is the following t-th power ofG, for t =
�(logn): The vertex setV (H) is the setV t of all t-tuples inV . The edge set
E(H) is defined as follows:h(v1; : : : ; vt); (u1; : : : ; ut)i is an edge inE(H) iff
the setfv1; : : : ; vtg [ fu1; : : : ; utg is a clique inG.

2. LetH 0 be the graph obtained fromH by samplingm = �(a�t) (= n�(1))
vertices fromH at random and taking their induced graph.

3. Return1 if A(H 0) > n� and0 otherwise. (� will be determined later.)

It may seem like Algorithm B runs in timenO(log n) instead of polynomial-time because the size of the graphH
will be nO(logn). However the construction ofH in Step 1 can be doneimplicitly (that is, we don’t to write out the
full graphH) and so Algorithm B can be implemented in probabilistic polynomial-time.

We have the following claim:

Claim 3.12.1. !(H) = !(G)t

Proof. Clearly if S is a clique inG then the setSt is a clique. Therefore!(H) � !(G)t.
On the other hand we claim that!(H) � !(G)t. Indeed, ifS0 is a clique inH then the union of all tuples inS0 is

a clique inG. If jS0j > kt then it must be that this union contains more thank elements.

For every cliqueS � V (H), the expected fraction of vertices inH 0 that are inS is jSj
jV jt . With high probability we

will have that foreverycliqueS � V (H), the fraction of vertices inS chosen to be inH 0 is �( jSjjV jt ). Therefore we

have that with high probability we will have that!(H 0) = �(!(H)
jV jt �m) = �(!(G)

t

nt �m). We see that:

1. If !(G) � an then!(H 0) � atm = �(1).

2. If !(G) � 1:1an then!(H 0) � 1:1t�(1) � m2� (for � � log 1:1
�2 log a ).

We see that with high probability Algorithm B will return1 if !(G) > 1:1an and0 if !(G) < an which is what
we wanted to prove.

The Actual Proof

Now that we have proved Lemma 3.12, we will now use the ideas of this proof, along with random walk on expander
graphs, to prove Theorem 3.11. We will again let� be some constant, whose value will be determined later, and assume
that there exists a polynomial-time algorithmA that distinguishes between the two cases of Theorem 3.11. We will
useA this time to show that there exists adeterministicpolynomial-time algorithmB0 to distinguish between the two
cases of Theorem 3.10, thus showing thatNP = P.

The only difference between AlgorithmB0 and AlgorithmB, described in Section 3.4.1, is that in Step 2, Al-
gorithmB0 will use aderandomized samplingto construct the graphH 0. The sampling will work in the following
way. We will construct a(n; d; �)-expanderG such thatV (G) = V (G). We will then choose the set oft-tuples to be
sampled inH 0 as the set of allt-tuples that represent alengtht walk in the graphG. We again letm denote the number
of vertices inH 0, note thatm = ndt�1 (whered is the degree ofG). If t = �(logn) andd is constant then this value
is polynomial inn. What we have already seen is that a random lengtht walk in G does sometimes behave similarly
to a randomt-tuple. We need to show that this holds also in this context.

We start with the following claim:

Claim 3.13. Suppose that!(G) � an. For every cliqueS � V (G) in G, the probability that a lengtht random walk
in G doesn’t leaveS (i.e., is contained inSt) is at most(a+ �)t.

Proof. This is a direct application of Theorem 3.6.

As a corollary we obtain the following:
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Corollary 3.14. If !(G) � an then!(H 0) � (a+ �)tm

Proof. A setU � V (H 0) is a clique inH 0 if and only if all tuples inU are part of the same clique inG. Since we
assume that!(G) � an, this means thatjUjm can be at most(a+ �)t.

For the other direction, we need to prove the following claim:

Claim 3.15. Suppose that!(G) � 1:1an. LetS � V (G) be a maximum sized clique inG (i.e., jSj � 1:1an). The
probability that a lengtht random walk inG doesn’t leaveS (i.e., is contained inSt) is at least(1:1a� 2�)t.

Proof. This is an application of the following theorem that is analogous to Theorem 3.6:

Theorem 3.16. In the notation of Theorem 3.6, suppose that� > 6�. Then,

Pr[(B; t)] � (� � 2�)t

Theorem 3.16 provides a lower bound on the probability that a random walk does not leave a specified set of
fraction�. It shows that this probability is not much smaller than than�t (which is what happens if we chooset
independent random vertices). The proofs of Theorem 3.6, 3.16 can be found in the paper “Derandomized Graph
Products” by Alon, Feige, Wigderson and Zuckerman.2 We remark that an analogous theorem to Theorem 3.9 also
holds (i.e., a lower bound on the probability to stay inchangingsets).

We now have the following corollary:

Corollary 3.17. If !(G) � 1:1an then!(H 0) � (1:1a� �)tm.

Using both corollaries we see that if we choose� small enough such that� < 1� a and� < a=30 (we can take
the graphGc for some constantc to ensure this) then we get that

1. If !(G) � an then!(H 0) � �tm for some constant� < 1.

2. If !(G) � 1:1an then!(H 0) � tm for some constant > �.

Since(=�)t = n�
0

= m2� for some constants�0; � we see that we can useA to distinguish between the two cases.

2Available from Avi Wigderson’s homepage onhttp://www.math.ias.edu/ �avi/PUBLICATIONS/ .



Chapter 4

A Geometric View of Expander Graphs

Notes taken by Eran Ofek and Erez Waisbard

Summary: In the previous lectures we dealt with expander graphs in the combinatorial aspect (algo-
rithmic and complexity applications), the algebraic aspect (spectral gap) and probabilistic aspect (rapidly
mixing random walks). In this lecture we start dealing with the geometric/differential aspect of expander
graphs. We introduce the construction of Margulis for expander graphs which is in fact a continuous graph
with an expansion property. We show an analogy between expansion in graphs and the Cheeger constant
which is defined for Riemannian surfaces. We also show the connection between the expansion constant
and the spectral gap.

4.1 The Classical Isoperimetric Problem

A very natural (and ancient) question in geometry is the following:
Of all simple closed curves in the plane of a given length, which curve encloses the greatest area?

The solution to this question is obviously a circle. Although this fact was already known to the Greeks, they could
not prove it. The first proof for this fact (which can be considered rigorous) is the proof of Jacob Steiner (1800’s). This
proof uses a method called Steiner Symmetrization. We will briefly sketch the idea of this method. LetK be a closed
plane curve, letl be a line inR2. Thesymmetrizationof K with respect tol which we denote byK� is a region inR2

which is symmetric aboutl such that any line perpendicular tol intersectsK iff it intersectsK�, and the intersections
have the same length; furthermore the intersections of lines perpendicular tol with K� are connected. It can shown
(via calculus) thatK� has the same area asK and it’s boundary length does not increase with respect to K. In fact, if
l is not parallel to a line of symmetry ofK then symmetrization decreases boundary length.
To gain some intuition for the correctness of this statement, we will show it for the special case in whichK is a
polygon which is composed of parallel trapezoids as demonstrated in figure 4.1.

In this caseK� is accepted fromK if we transform each trapezoid into a symmetric trapezoid (a trapezoid of equal
sides length) with the same bases and height as illustrated in figure 4.1. The area of the new trapezoid remains the
same. Furthermore, the sum of the side lengths can only decrease (this fact can be easily verified). It follows that the
boundary length ofK� is less or equal to that ofK.

We remark that the area and boundary length of any closed curve is accepted by considering the limit of the area
and boundary length of shapes of this special form (see figure 4.2). This gives intuition for the correctness of the claim
in general case.

4.2 Graph Isoperimetric problems

In the spirit of the last section, one can define an analogous problem in graphs (rather than in the Euclidean space). The
graph is analogous to the plane, closed curves are analogous to subsets of vertices, the "area" of a subset of vertices is

29
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K*

K

Symmetry line l

Figure 4.1: Steiner Symmetrization

Figure 4.2:

it’s cardinality and the "boundary length" of a subset is the number of edges which go out from it (or the vertices of
these edges which are outside the set). More specifically we define the following isoperimetric problems:

Definition 4.1. The edge isoperimetric problem: given a graphG and a numberk find

�E(G; k) = min
S�V

fjE(S; S)j : jSj = kg

Definition 4.2. The vertex isoperimetric problem: given a graphG and a numberk find

�V (G; k) = min
S�V

fj�(S) n Sj : jSj = kg

4.2.1 The discrete cube

Let us consider first a well known graph for which the isoperimetric problem is partially solved. The discrete cube
graphGd is formally defined as:

V (Gd) = f0; 1gd

E(Gd) = f(v1; v2) : v1; v2 2 f0; 1gd; the Hamming distance betweenv1; v2 is 1g
An equivalent definition for thed-dimensional cube graph is by recursion:
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� G1 equalsK2 (i.e. two vertices connected by an edge).

� Gd+1 is accepted by taking two copies ofGd and connecting vertexi in the first copy to vertexi in the second
copy (for alli).

It is known that ifk = 2l then�E(Gd; k) is achieved by a set of2l vertices which induces anl-dimensional cube.
In this case�E(Gd; 2

l) = 2l(n� l).
Fork =

�
d
0

�
+
�
d
1

�
+ :::+

�
d
r

�
the vertex expansion�V (Gd; k) is achieved by any setS which is a ball of radiusr

around some vertexv0:

S = fv : v 2 f0; 1gd;The Hamming distance betweenv; v0 � rg

4.3 The construction of Margulis, Gabber-Galil

In this section we describe one of the first explicit construction of an expander graph. In contrast to the expanders we
encountered so far in this course, the construction they give is over a continuous set.

We denote byI the interval(0; 1). The set of vertices is all the points in the continuous cubeI � I . Two linear
transformations define the edges:

T (x; y)! (x+ y; y) mod 1

S(x; y)! (x; x+ y) mod 1

The neighbors of a point(x; y) are the points:T (x; y); S(x; y); T�1(x; y); S�1(x; y). Thus the graph is4-regular.
The expansion property of this graph is described by the following theorem:

Theorem 4.3. (Margulis,Gabber-Galil)
There exists some� > 0 such that for any measurable setA � I � I with �(A) � 1

2 (� denotes the Lebegue measure)
the following holds:

�(�(A) [A) � (1 + �)�(A);

where�(A) = S(A) [ T (A) [ S�1(A) [ T�1(A) is the set of all points which are neighbors of points inA.

It s worthwile to mention here the following conjecture:

Conjecture 4.4. (Linial) For any measurable subsetA, such that�(A) � 1
2 ,

�(A [ S(A) [ T (A)) � 4

3
�(A);

with equality achieved by the hexagon whose vertices are(0; a), (a; 0), (a;�a), (0;�a), (�a; 0), (�a; a) for some
smalla > 0.

4.4 The Cheeger constant, Cheeger inequality

In this section we introduce the Cheeger constant. Loosely speaking, this constant represents the "expansion" of a
curve.

Definition 4.5. LetM (n) be ann-dimensional Riemann surface. TheCheeger constantof M is defined to be:

h(M) = min
C is an

(n� 1)-dimensional
surface which divides
M intoM1; :::Mt

�n�1(C)
mini �n(Mi)
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M

M

2

1

C

M

Figure 4.3: C divides M intoM1;M2

where�n�1(C) is the area ofC and�n(Mi) is the volume ofMi.
An intuitive demonstration of the definition is illustrated in figure 4.3
The analogy between the Cheeger constant and expansion is as follows:
M s G,
C is analogous to a cut inG,
M1;M2 are analogous toS; S,
�n�1(C) s je(S; S)j,
mini �n(Mi) s minfjSj; jSjg.

Given ann-dimensional Riemann surfaceM(n), and a functionf : M(n) ! R, then its Laplacian is�(f) =
div(grad(f)). The Laplacian is a linear operator, and its eigenvalues are all the numbers�, for which there is a
functionf : M(n) ! R satisfying�f = �f . All its eigenvalues are non-negative, and its lowest eigenvalue is zero,
corresponding to the constant function.

Theorem 4.6. LetM be a Riemann surface as described before, denote by� the lowest positive eigenvalue of the
Laplacian ofM , then� � h2

4 .

We will now explain the discrete analogs for the gradient and divergence operators in graphs. LetG = (V;E) be
an undirected graph. Select an orientation for the edges ofG. LetM be theV � E adjacency matrix ofG where the
entryMv;e equals1 (�1) if the edgee enters (leaves)v and0 otherwise.

The gradient: Let f : V ! R be a function on the vertices ofG. f can be thought of as a row vector withV
entries. The gradient operator isf 7! fM . The gradient off is a vector withE entries which tells us how doesf
change along the edges of the graphs. I.e., ife is the edge fromu to v, then(fM)e = fv � fu.

The divergence: Let g : E ! R be a function on the edges ofG. g is a column vector withE entries. The
divergence operator isg 7! Mg. The divergence ofg is a V dimensional vector withMgv =

P
e enters vg(e) �P

e leaves vg(e).

The Laplacian: If we go through with the analogy between real functions inRn and functions on the vertices of
a graph, then the discrete analog of the Laplacian will be:f 7! MM tf (for f : V ! R). The matrixL = MM t is
called the Laplacian ofG. A simple calculation shows that L is the following symmetric matrix:

Li;j =

(
�1; (i; j) 2 E
deg(i); i = j

In the case thatG is ad-regular graph (withAG it’s corresponding adjacency matrix):

� L = d � I �AG.

� The spectrum ofL is in [0;+2d] (since the spectrum ofAG is in [�d;+d]).
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� �1(AG) = d corresponds to�n(L) = 0 and in general�i(AG) = d� �n�i+1(L).

� The spectral gap ofG (�1(AG)� �2(AG)) equals to the lowest positive eigenvalue ofL.

Notice the similarity between Theorem 4.6 and the upper bound onh given by Theorem 4.9.

4.5 Expansion and the spectral gap

In this section we show the that a graph has high expansion (high Cheeger constant) iff it has a large spectral gap.

4.5.1 The Rayleigh quotient

For a real symmetric matrixA one can obtain the eigenvalues ofA using a special quotient known as the Rayleigh
quotient.

Theorem 4.7. LetA be a real symmetric matrix and let�1 � �2 � : : : � �n be its corresponding eigenvalues. Then:

�1 = max
jjxjj=1

xAxt

jjxjj ; �2 = max
jjxjj=1;x?x1

xAxt

jjxjj : : : �n = max
jjxjj=1; x?x1;:::;x?xn�1

xAxt

jjxjj
wherexi is an eigenvector corresponding to�i.

4.5.2 The main theorem

Before stating the theorem, we formally define the expansion constant:

Definition 4.8. The expansion constant of a graphG = (V;E), is

h(G) = min
S�V;jSj� jV j

2

jE(S; S)j
jSj

Theorem 4.9. LetG = (V;E) be a finite, connected, k-regular graph without loops. Let� be the second eigenvalue
ofG. Then

k � �

2
� h(G) �

p
2k(k � �)

Proof. In this lecture we only prove the lower bound onh, showing that a large gap implies high expansion. In order
to prove that� � k � 2h(G), we will give a vectorf ? ~1 for which fAf t

jjf jj � k � 2h(G). ForS � V we definef to
be the following weighted cut function:

f = jSj1S � jSj1S
using the Rayleigh quotient we get:

� � fAf t

jjf jj2 :

We will evaluate the rhs. Starting with the denominator we get that:

jjf jj2 = jSj2jSj+ jSj2jSj = jSjjSj(jSj+ jSj) = njSjjSj

moving on to the numerator we get:

fAf t = 2jE(S)jjSj2 + 2jE(S)jjSj2 � 2jSjjSjjE(S; S)j (4.1)

SinceG is a k-regular graph
kjSj = 2jE(S)j+ jE(S; S)j

and
kjSj = 2jE(S)j+ jE(S; S)j
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substituting2jE(S)j and2jE(S)j in (4.1) yields:

fAf t = nkjSjjSj � n2jE(S; S)j

We now plug it in and get

� � fAf t

jjf jj2 =
nkjSjjSj � n2jE(S; S)j

njSjjSj = k � njE(S; S)j
jSjjSj

Fix S to be a set for which

h(G) =
jE(S; S)j
jSj

it follows that:

� � k � nh(G)

jSj � k � 2h(G)

(sincejSj � n
2 ).
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Expander graphs have a large spectral gap

Notes taken by Yael Vinner

Summary: In the previous lecture we started proving upper and lower bounds onh(G), defined as

h(G) = minjSj�n
2
( e(S;S

C)
jSj ). We proved a lower bound ofd��2 � h(G). In this lecture we will prove

an upper bound ofh(G) � p
2d(d� �). We will also discuss thed-regular infinite tree, which is the

optimal expander, and show that its spectrum is[�2pd� 1; 2
p
d� 1].

5.1 Comments about the previous lecture

Given a graphG, we choose an arbitrary orientation for its edges, and define the matrixMn�m wheren = jV (G)j
andm = jE(G)j. The entriesMue for u = 1 : : : n ande = 1 : : :m, are defined as follows:

Mue =

8<: 1 e = (u! v)
�1 e = (v ! u)
0 otherwise

The Laplacian ofG is defined as the matrixL =M �MT . Then for anyf : V ! R, we have

fLfT = fMMTfT =< fM; fM >=k fM k2

wherek � k is thel2 norm. Furthermore,(fM)e=(x!y) = f(x) � f(y), and therefore we can write

k fM k2=
X

(x;y)2E
(f(x)� f(y))2

Another comment, is about the variational description of the eigenvalues of a matrix, which is

�k = max
x?x1;:::;xk�1

�
xAxT

k x k2
�

This can be re-written in the following way:

�k = min
F;dim(F )=n�k+1

max
x2F

�
xAxT

k x k2
�

5.2 An upper bound onh(G)

Theorem 5.1. For any connected graphG, defineh(G) = minjSj�n
2
( e(S;S

C)
jSj ). Then

h(G) �
p
2d(d� �)
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Proof.

Definition 5.2. Given a functionf : V ! R, define

Bf =
X

(x;y)2E
jf2(x) � f2(y)j

Definition 5.3. Let �0 < �1 < � � � < �r be the different values achieved byf overV . Then we defineLi for
i = 1; : : : ; r as follows:

Li = fx 2 V jf(x) � �ig
This definition leads toL0 � L1 � � � � � Lr.

We will use the three following claims.

Claim 5.4. Bf =
Pr

i=1 e(Li; L
C
i )(�

2
i � �2i�1).

Proof. For (x; y) 2 E, if f(x) = �p > �q = f(y), (x; y)’s contribution toBf is

(�2p � �2q ) = (�2p � �2p�1) + (�2p�1 � �2p�2) + � � �+ (�2q+1 � �2q )

When we sum overE, (�2i � �2i�1) appears once for every edge(x; y) such thatf(x) = �p > �q = f(y) and
p � i > q. In other words,(�2i � �2i�1) appears exactly once for every edge(x; y) such thatx 2 Li andy =2 Li, and
in total e(Li; LCi ) times, which gives us the desired result.

Claim 5.5. Bf �
p
2d� k fM k � k f k.

Proof. Using the Cauchy-Schwartz inequality, we have

Bf =
X
E

jf2(x) � f2(y)j =
X
E

jf(x) + f(y)j � jf(x) � f(y)j �

�
sX

E

(f(x) + f(y))2
sX

E

(f(x)� f(y))2

We know that sX
E

(f(x)� f(y))2 =k fM k

and evaluating the second term in the product gives ussX
E

(f(x) + f(y))2 �
s
2
X
E

(f2(x) + f2(y)) =

s
2d
X
V

f2(x) =
p
2d� k f k

from which we can conclude the inequality in the claim.

Claim 5.6. If f � 0 andjSupp(f)j � n
2 , whereSupp(f) is the subset ofV wheref(x) 6= 0, then

Bf � h(G) k f k2

Proof. Sincef equals zero on more than half of the coordinates, and is positive on the rest,�0 = 0, and for every

i � 1 jLij � n
2 . Thereforee(Li;L

C
i )

jLij � h(G). Plugging this inequality into claim 5.4 yields

Bf =

rX
i=1

e(Li; L
C
i )(�

2
i � �2i�1) � h(G)

rX
i=1

jLij(�2i � �2i�1) =

= h(G)

rX
i=1

�2i (jLij � jLi+1j) = h(G)

rX
i=1

�2i � jfxjf(x) = �igj = h(G) k f k2
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For each eigenvalue�i of A, d� �i is an eigenvalue of the Laplacian,L = dI �A. Let g be an eigenvector ofL
(andA) with eigenvalued � �, where� is the second largest eigenvalue ofA. Definef = g+, i.e. equal tog where
g is positive, and zero elsewhere. Without loss of generality,jSupp(f)j � n

2 , since otherwise we would look at�g
which is also an eigenvector with the same eigenvalue. DefineV + = Supp(f). Then for everyx 2 V + we can write

(Lf)(x) = df(x)�
X
y2V

axyf(y) = dg(x)�
X
y2V +

axyg(y) �

� dg(x) �
X
y2V

axyg(y) = (Lg)(x) = (d� �)g(x)

Sincef(x) = 0 for anyx =2 V +, we can write

k fM k2= fLfT =
X
x2V

f(x) � (Lf)(x) � (d� �)
X
x2V +

g2(x) = (5.1)

= (d� �)
X
x2V

f2(x) = (d� �) k f k2

From claim 5.5 we have
Bf �

p
2d� k fM k � k f k

and from claim 5.6 we have
Bf � h(G) k f k2

If we combine these results we get
h(G) k f k2�

p
2d� k fM k � k f k

If we square this equation and combine with (5.1) we get

h2(G) k f k2� 2d� k fM k2� 2d(d� �) k f k2

and therefore
h2(G) � 2d(d� �)

5.3 The Infinite d-Regular Tree

Let us look at the infinite adjacency matrixAT of the infinited-regular treeT . The infinite vectors we work with are
those inl2(V (T )):

l2(V (T )) = fx : V (T )! Rj
X

v2V (T )

x2v <1g

Define�(AT ) to be the set of all�’s such that(AT ��I) is non invertible. This is the set of all�’s such that(AT ��I)
is not one to one, i.e. there is a vectoru 2 l2 such that(AT � �I)u = 0, or (AT � �I) is not ontol2.

Theorem 5.7.
�(AT ) = [�2pd� 1; 2

p
d� 1]

Givenv 2 V (T ) (the root of the tree),

� 2 �(A) () Æv =2 Range(�I �A)

whereÆv is defined as follows:

Æv(u) =

�
1 u = v
0 u 6= v

The direction( is easy. The other direction requires a proof which will not be given here.
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We wish to find out for which values of�, Æv 2 Range(�I �AT ).
We are trying to find a functionf 2 l2 such that

Æv = (�I �A)f (5.2)

Without loss of generality,f is spherical, meaning ifu;w are the same distance fromv thenf(u) = f(w). This is
true since ifg is a solution to (5.2) then so isf which is the spherical symmetrization ofg (for all vertices with a given
distance fromv, f will be the average ofg on these vertices). Therefore,f(u) depends only on the distancedT (u; v).
We need to define a sequence of numbersx0; x1; : : : such that all verticesu with dT (u; v) = r will have f(u) = xr.
Substituting the sequencefxig1i=0 for f in (5.2), we get the following recursion:

�x0 = dx1 + 1

�xi = xi�1 + (d� 1)xi+1

We will try to find two numbers�1; �2, such that for everyi, xi = A�i1 +B�i2. To find these numbers, we need to
solve the equation

�� = 1 + (d� 1)�2

The solutions to this equation are

�1;2 =
1

2(d� 1)
(� �

p
�2 � 4(d� 1))

If �2 < 4(d � 1) (� 2 �(A)) then�1;2 are complex andj�1j = j�2j = 1p
d�1 . In this case,f is not in l2:

jxij = �((d� 1)�
i
2 ), and for everyi xi appears�((d� 1)i) times ink f k, each time contributing�(((d� 1)�

i
2 )2)

to the sum. This means that each leveli in the tree contributes�(1) to the sum, which results in the sum being infinite.
On the other hand, if�2 > 4(d � 1), then one of the roots�1; �2, say�1, is less than 1p

d�1 in absolute value, in
which case we can chooseB = 0, so the contribution of thei’th level of the tree tof ’s norm will be exponentially
small ini, and thereforef 2 l2. Also, there is a solution to�A = dA�+ 1, since� 6= d�:

�
?
=

d

2(d� 1)
(��

p
�2 � 4(d� 1))

r
1� 4(d� 1)

�2
?
= 1� 2(d� 1)

d

This equality cannot hold ford > 2, since the r.h.s. is negative.



Chapter 6

Upper Bound on Spectral Gap

Notes taken by Yishai Beeri

Summary: This lecture presents a lower bound for�1, the second-largest eigenvalue of ad-regular graph:
�1 � 2

p
(d� 1)(1 � c

�2 ), which is related to the graph’s diameter�. As the diameter grows, so does
the lower bound for�1. This can also be viewed as an upper bound on the graph’s spectral gap.

6.1 Reminder to previous lecture

In the previous lecture we discussed the infinited-regular tree and the spectrum of its (infinite) adjacency matrixA.
We defined the spectrum�(A) as follows:

�(A) := f�j(�I �A) is not invertible g
And we showed that for thed-regular infinite tree:

�(A) = [ �2
p
d� 1 ; 2

p
d� 1 ]

In this lecture we will use the finite (k-tall) d-regular tree to prove a lower bound on�1 for general graphs.

6.2 Lower bound on�1
We show a lower bound on�1 for generald-regular graphs:1

Theorem 6.1. 2 There exists a constantc s.t. for anyd-regular graphG of sizen and diameter�:

�1 � 2
p
(d� 1)(1� c

�2
)

Where�1 is the second largest eigenvalue ofG.

Notes:

� It is easy to show that in the above graphDiam(G) > 
(logd�1 n), and hence it follows that for
any fixedd > 2:

�1 � 2
p
(d� 1)(1�O(

1

log2 n
)):

1The original statement of the lower bound is due to N. Alon and R. Boppana, and appears in A. NilliOn the second eigenvalue of a graph
Discrete Math., 91(2):207-210, 1991

2This stronger statement and proof is taken from J. FriedmanSome geometric aspects of graphs and their eigenfunctionsDuke Math. J.
69(3):487-525, 1993.
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� In the case thatn = d+1 (G is then-clique) the eigenvalues ofG are {n� 1;�1; : : : ;�1 }, since
if A is the adjacency matrix forG, thenA+ I = J andJ ’s eigenvalues are, naturally, {n; 0; : : : ; 0}.
While at first this may seem to be a counter-example to our theorem, note that the theorem deals
with the case whered is fixed andn;� are going to infinity.

� Since�1 = maxx?~1 fxAx
T

jjxjj2 g we expect a proof for the above bound might use a specific "test

function" (=eigenvector), e.g. find a vectorf s.t.
P

x2V (G) f(x) = 0 and fAfT

jjf jj2 � 2
p
d� 1(1 �

c
�2 ).

Proof Sketch:Taking two nodess; t with d(s; t) = �, we build a spherical functionf that will be positive for the
nodes within a distance ofk = b�2 c � 1 from s, and negative on the nodes that are within a distancek from t. The
values off will be derived from the spherical functiong with maximal eigenvalue� for thed-regular tree of heightk,
treatings andt as roots of (separate)k-tall trees. We will show that for the positive part off we haveAf � �f , and

likewise for the negative part off we haveAf � ��f , so thatfAf t � �ff t = �jjf jj2, giving fAfT

jjf jj2 � �. Finally,
the positive and negative parts off will be normalized to ensure

P
f(x) = 0, letting� apply as a lower bound for

�1.

Proof. Setk = b�2 c � 1. Select two nodess; t 2 G with distanced(s; t) = �. For all0 � i � k define:

Si := fvjd(s; v) = ig

and
Ti := fvjd(t; v) = ig

and in addition define
Q := V (G) n (

[
0�i�k

Si [ Ti)

Note:This is simply a breadth-first-search dividing the graph into layers according to the distance from
s andt. Q represents the "middle ground" with at least1 layer of nodes. There are, of course, no edges
between anySi and anyTi.

DenoteT to be the finite tree of heightk, and markAT to be its adjacency matrix.

Claim 6.2. There is a single spherical functiong : [0; : : : ; k + 1]! R onT that satisfies:

g(k + 1) = 0

(we extendg’s domain in includek + 1 even though it is not part ofAT ), and

AT g = �g

(g is an eigenfunction ofAT with eigenvalue�), where� is the maximal eigenvalue ofAT .

This claim can be proved using the same technique as shown in the previous lecture dealing with the infinited-tree.
We will not prove this claim here, but will show a specific functiong that displays these properties.

Definition 6.3. Definef : V (G)! R as follows:

f(v) =

8<: c1g(i) 9i; v 2 Si
�c2g(i) 9i; v 2 Ti

0 otherwise

wherec1; c2 � 0.
Sincef is spherical, it will be convenient to defineF : [0; :::; k] ! R with f(v) = F (i) () v 2 Si. We will

next show thatf gives us the desired properties:
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Lemma 6.4. If g above is non-negative and monotonically non-increasing, then:

v 2 Si => (Af)(v) � �f(v)

and
v 2 Ti => (Af)(v) � �f(v)

Proof. Let v 2 Si for somei. G is d-regular, sov has1 � p � d neighbors in leveli� 1, another0 � q � d� p� 1
neighbors in the same leveli, and the remainingd� p� q neighbors in leveli+ 1, giving:

(Af)(v) = pF (i� 1) + qF (i) + (d� p� q)F (i+ 1)

= pc1g(i� 1) + qc1g(i) + (d� p� q)c1g(i+ 1)

but forg and the matrixAT (of thek-tall d-tree), we know that for a nodeu of level i:

�g(i) = (AT g)(i) = g(i� 1) + (d� 1)g(i+ 1)

since each node has exactly one neighbor in the previous level, andd � 1 neighbors in the next level. Asg is non-
negative and non-increasing we get:

(Af)(v) = c1[pg(i� 1) + qg(i) + (d� p� q)g(i+ 1)]

� c1[g(i� 1) + (d� 1)g(i+ 1)]

= c1(AT g)(i) = c1�g(i)

= �f(v)

The same argument is used forv 2 Ti, with the approriate redefinition of the functionF , and usingc2.

Corollary 6.5. fAfT

jjf jj2 � � andf ? ~1.

Proof. The previous lemma givesj(Af)(v)j � j�f(v)j for v 2 V (G) nQ. Forv 2 Q, note thatf(v) = 0, in which
casej(Af)(v)j � j�f(v)j is trivial. From this follows:

fAfT = < f;Af > =
X

v2V (G)
f(v)(Af)(v)

=
X

9i;v2Si
f(v)(Af)(v) +

X
9i;v2Ti

f(v)(Af)(v) +
X
v2Q

f(v)(Af)(v)

�
X

9i;v2Si
f(v)�f(v) +

X
9i;v2Ti

f(v)�f(v)

= �ffT

since forv 2 Ti f(v) � 0 and forv 2 Q f(v) = 0. From this we get:

fAfT � �ffT =>
fAfT

jjf jj2 � �

Next, we show thatf ? ~1, (namely:
P
f(v) = 0). This is easily achieved by selectingc1 andc2 such thatX

v2Si
f(v) = �

X
v2Ti

f(v)
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Definition 6.6. Finally, we will find the spherical functiong that is non negative, non-increasing, that satisfiesg(k +
1) = 0, and that has the maximal eigenvalue�. We’ll also show that this� yields the desired bound:

g(i) := (d� 1)�i=2 sin(�(k + 1� i))

where� = �
2k+2 .

It is easy to check thatg is non-negative, non increasing, and thatg(k + 1) = 0. We now show thatAT g = �g
with � = 2

p
d� 1 cos(�). For allj:

(AT g)(j) = 1g(j � 1) + (d� 1)g(j + 1)

= (d� 1)�(j�1)=2 sin(�(k + 1� (j � 1))) + (d� 1)(d� 1)�(j+1)=2 sin(�(k + 1� (j + 1)))

= (d� 1)(�j+1)=2 sin(�(k + 2� j)) + (d� 1)(�j+1)=2 sin(�(k � j)

=
p
d� 1(d� 1)�j=2(sin(�(k + 2� j)) + sin(�(k � j)))

And sincesin(�) + sin(�) = 2 sin(�+�2 ) cos(���2 ), we get for allj:

(AT g)(j) = 2
p
d� 1 cos(�)(d � 1)�j=2 sin(�(k + 1� j))

= 2
p
d� 1 cos(�)g(j)

To arrive at our bound, we need to show thatcos(�) � (1� c
�2 ). Recall:

� =
�

2k + 2
~=
�

�

sincek = b�2 c � 1, and use the Taylor expansion for the fucntioncos(x):

cos(x) = 1� x2

2
+ o(x2)

to get:

cos(�) � 1� �2

2�2
= (1� c

�2
)

with c � �2

2 .



Chapter 7

The Margulis construction

Notes taken by Statter Dudu

Summary: We define an explicit family of8-regular graphs on the torusZn� Zn, and prove that this is
a family of expander graphs.

Construction 7.1. Let

T1 =

�
1 2
0 1

�
; T2 =

�
1 0
2 1

�
; e1 =

�
1
0

�
; e2 =

�
0
1

�
;

and define the following8-regular graph G=(V,E) on the vertex setV = Zn�Zn. Each vertexv = (x; y) is adjacent
to the four vertices

T1v; T2v; T1v + e1; T2v + e2;

where all the calculations are performed modn. The other four neighbours ofv are obtained by the four inverse
transformations. (Note that this is an8-regular undirected graph, that may have multiple edges and self loops.)

Theorem 7.2. �2(G) � 5
p
2 < 8

We have already seen that ifG is a d-regular graph of sizen and eigenvalues (of its adjacency matrix)�1 �
�2 : : : � �n, then�1 = d, then its Cheeger constant satisfiesh(G) � (d��2)=2. Therefore, a lower bound on the gap
between�2 andd that is independent ofn implies that this is a family of expanding graphs. Margulis proved a similar
result in 1973 but couldn’t give an explicit lower bound on the gap. Galil and Gabber (1981) used continuous harmonic
analysis to derive a lowerbound on the gap. Boppana simplified the proof, and Jimbo, Marouka (1985) improved it
furthermore using discrete Fourier transform.

As we have seen before, by the Rayleigh quotient Theorem,

maxfj�2j; j�njg = maxfj < Af; f > j :< f; v1 >= 0; jjf jj = 1g
= 2maxfj

X
(i;j)2E

f(i)f(j)j :< f; v1 >= 0; jjf jj = 1g;

wherev1 = 1=
p
n is the eigenvector corresponding to�1, and the maxima are taken over allf : Z2n! C . It follows,

that it is sufficient to prove that for every complex functionf : Z2n! C satisfying
P

x f(x) = 0,

j
X

(x;y)2E
f(x)f(y)j � 5

p
2

2

X
jf(x)j2:

By the definition of our graph, this is equivalent to:

Theorem 7.3. For anyf : Z2n! C satisfying
P

# f(#) = 0, the following inequality holds:

j
X
#2Z2n

f(#)
�
f(T1#) + f(T1#+ e1) + f(T2#) + f(T2#+ e2)

�j � 5
p
2

2

X
jf(x)j2 (7.1)

43



44 CHAPTER 7. THE MARGULIS CONSTRUCTION

Discrete Fourier transform It is hard to use the condition
P

x f(x) = 0 so we will move to a new space using
the discrete Fourier transform.

A character of an abelian group G is a homomorphism� : G! C , mapping addition inG to multiplication inC .
It can be seens, that the characters ofZkn are:�b : Zkn ! C for b 2 Zkn, where�b(a) = !<a;b>. Here,! is thenth
root of the unity (! = e2�i=n), and for anya; b 2 Zkn their inner product is< a; b >=

Pk
j=1 aibi.

Since the characters�b are an orthonormal basis, we can express anyf : Zkn! C asf =
P

b
bf(b)�b, where

bf(a) =< f; �b >=
1

nk=2

X
b

f(b) � �b(a) = 1

nk=2

X
b

f(b) � !<a;b>:

bf : Zkn! C is called the Discrete Fourier Transform - (DFT) off : Zkn! C .

To prove Theorem 7.3, we express the condition of equation (7.1) using the Fourier coefficients off . The conditionP
# f(#) = 0 is equivalent tobf(0; 0) = 0. Using identities 2,4 in appendix 1, one can easily prove that Theorem 7.3

reduces to:

Theorem 7.4. Any functionF : Z2n n (0; 0)! C must satisfy

j
X

#=(#1;#2)2Z2nn(0;0)
F (#) � [F (T�12 #)(1 + !�#1) + F (T�11 #)(1 + !�#2)]j � 5

p
2

2

X
#2Z2nn(0;0)

jF (#)j2:

LetG = jF j. ThenG is a real functionG : Z2n� (0; 0) ! R. Moving the absolute value inside the summation,
and using the equality

j1 + !�aj = 2j cos(�a
n
)j;

it follows that it is sufficient to prove:

Theorem 7.5. Any functionG : Z2n� (0; 0)! R, must satisfy

X
#

G(#) � [G(T�12 #)j cos �#1
n
j+G(T�11 #)j cos �#2

n
j] � 5

p
2

4

X
G2(#):

We would like to convert the LHS into a sum of squares that will match the RHS. To do this we use the following
inequality, valid for any reala; b; 

2ab � a2 +
1


b2:

Let  : (Z2n)
2 ! R be a function satisfying for allx; y 2 Z2n

(x; y) � (y; x) = 1; (7.2)

and in addition, that for all# = (#1; #2) 2 Z2n n (0; 0)

j cos �#1
n
j � [(#; T2#) + (#; T�12 #)] + j cos �#2

n
j � [(#; T1#) + (#; T�11 #)] � 5

p
2

2
: (7.3)

Since for anyp; q 2 Z2n n (0; 0)

2G(p)G(q) � (p; q)G2(p) + (q; p)G2(q);

it follows that

2 � LHS � P
# j cos �#1

n
j � [(#; T�12 #)G2(#) + (T�12 #; #)G2(T�12 #)]

+ j cos �#2
n
j � [(#; T�11 #)G2(#) + (T�11 #; #)G2(T�11 #)]:
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SinceT1 doesn’t change#2, andT2 doesn’t change#1, it follows that:

2 � LHS �
X
#

G2(#) � j cos �#1
n
j � [(#; T2#) + (#; T�12 #)] +G2(#) � j cos �#2

n
j � [(#; T1#) + (#; T�11 #)]

� 5
p
2

2

X
#

G2(#):

Therefore, if we just find a function satisfying the requirements (7.2) and (7.3), Theorem 7.2 would follow, and
we are done. To define, we first define a partial order onZ2n. So, let

a(x) =

(
x if n

2 � x � 0 ;

n� x if n � x � n
2 :

(Notice thata(x) is invariant under modn, i.e. a(x mod n) = a(x).) Then we say that(#1; #2) > (#01; #
0
2) if

a(#1) � a(#01) anda(#2) � a(#02) and at least one of the inqualities is strong. That is the distance to the X axis and/or
to the Y axis is bigger.

The definition of is:

((#1; #2); (#
0
1; #

0
2)) =

8><>:
� if ; (#1; #2) > (#01; #

0
2)

1
� if ; (#1; #2) < (#01; #

0
2)

1 otherwise:

This definition of obviously satisfies (7.2). We will show that for� = 5
4 , also (7.3) is satisfied for any# 2

Z2n n (0; 0). We define the diamond to be the set of all# = (#1; #2) 2 Z2n n (0; 0), satisfying

a(#1) + a(#2) � n

2
:

(-n/2,0) (n/2,0)

(0,-n/2)

(n/2,0)

θ1

θ2

Figure 7.1: The diamond

We analyze the case where# is outside or inside the diamond separately.

� Outside the diamond

(7.3) will follow from the fact that the cosines are small. So, it is sufficient to prove that

2� � (j cos �#1
n
j+ j cos �#2

n
j) � 5

p
2

2
;

or that

j cos �#1
n
j+ j cos �#2

n
j �

p
2: (7.4)
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We can assume w.l.o.g. that we are in the first quadrant. Sincecos �#2n is decreasing, for any given value of#1,
the LHS of (7.4) is maximized, when#2 = n=2� #1. Therefore, using the convexity ofcos we get that

cos
�#1
n

+ cos
�#2
n

� cos
�#1
n

+ cos
�(n2 � #1)

n
� 2 cos

�

4
=
p
2:

.

� Inside the diamond

In this case, we just bound the cosines by 1, and would like to prove that

(#; T1#) + (#; T�11 #) + (#; T2#) + (#; T�12 #) � 5
p
2

2
: (7.5)

It is not difficult to verify that for every# satisfyinga(#1) + a(#2) <
n
2 , one of the following two cases must

hold:

1. Three of the four pointsT1#, T2#, T�11 # andT�12 # are> # and one is< #.

2. Two of the four pointsT1#, T2#, T�11 # andT�12 # are> # and two are incomparable with#.

In the first case, the LHS of (7.5) is� 3
� +�, while in the second case it is� 2

� +2. Substituting� = 5=4, this
gives a upper bound of3:65 or the LHS of (7.3). This is not as good as5

p
2=2 = 3:53 : : :, but it does prove that

the graphs are a family of good expanders.

Appendix

Using the same definitions as before the following properties of the discrete Fourier transform can by easily concluded
from the definitions:

1.
P

a f(a) = 0, bf(0) = 0

2. The dot product of two functions remains invariant under the transform i.e for anyf; gX
a

f(a)g(a) =
X
a

bf(a)bg(a):
3. Parseval’s identity: A special case of 2, wheref = gX

a

jf(a)j2 =
X
a

j bf(a)j2:
4. The shift property : If A is a non-singulark � k matrix with entries overZn, b 2 Zkn andg(x) = f(Ax + b)

then bg(y) = !�<A
�1b;y> bf((A�1)ty):

5. The inverse formula :

f(a) =
1

nk=2

X
b

bf(a)!�<a;b>:



Chapter 8

The Zig Zag Product

Notes taken by Eyal Bigman

Summary: In this lecture we shall introduce a new kind of graph product called theZig Zag Product. We
shall analyze the expansion properties of the zig zag product of expanding graphs and use them to create
an explicit recursive construction of a family of good expanders. Furthermore we will connect the entropy
of a random walk on the graph and its expansion.

8.1 Introduction

We begin with some standard definitions: LetG =< V;E > be ad-regular graph (jV j = n). The adjacency matrix
A(G) = (aij)

n
i;j=1 of the graphG is a symmetricn � n non-negative integer matrix such thataij = k iff there are

k edges between verticesi andj. It follows from regularity that the sum of every row isd. The matrixĜ = 1
dA is

thenormalized adjacency matrix, it is the transition matrix of a random walk onG. Thus ifp 2 <n is a probability
distribution on the vertices at timet thenĜp is the distribution at timet+ 1.

G is a (n; d; �)-expander if� is an upper bound on the second eigenvalue of the normalized adjacency matrix
�2 � � (�1 = 1). It follows from the spectral gap theorem that(1� �)d=2 � h(G) whereh(G) is the expansion of
G. ThusG is a better expander when� is close to0.

The squareG2 = (V;E0) is a graph on the same vertices and(u;w) 2 E0 iff there is a path of length 2 inG
from u to w. If A is the adjacency matrix ofG thenA2 is the adjacency matrix ofG2. It is easy to see thatG2 is a
(n; d2; �2)-expander.

The zig zag product will be an unsymmetric binary function, that given anm-regular graph of sizen and ad-regular
graph of sizem, it yields ad2-regular graph of sizemn. After we define the zig zag product we will prove:

Theorem 8.1 (The Zig Zag Theorem).LetG be a(n;m; �)-expander andH be a(m; d; �)-expander thenGz H
is a (nm; d2; f(�; �))-expander wheref(�; �) = �+ � + �2.

We will present a proof that uses only elementary linear algebra. With some more algebra this bound is improved
in [RVW02] to f(�+ �) = �+ �, and if�; � < 1, it can be shownf(�+ �) < 1.

Before we proceed with the definition let us show how it can be used for an explicit construction of a family of
expanders with constant degree. Ford constant letH be a(d4; d; 14 )-expander, there is a probabilistic proof that such
an expander exists and sinced is constant we can find such a graph by an exhaustive search in constant time, there are
also efficient constructions of such graphs - see [RVW02]. Define recursively:

G1 = H2

Gn+1 = (Gn)
2z H

Proposition 8.2. Gn is a (d4n; d2; 12 )-expander for alln

Proof. By induction. The casen = 1 follows from the definition. If we assume the proposition forn thenG2
n is a

(d4n; d4; 14 )-expander and from theorem 8.1 it follows thatGn+1 is a(d4(n+1); d2; 12 ) graph
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8.2 The Construction

Let G be a(n;m; �)-expander andH be a(m; d; �)-expander. For every vertexv 2 V (G) let e1v; : : : e
m
v be the

edges connected to the vertex. Also, we regard the vertices ofH as the integers1; : : : ;m, denoted by[m]. To obtain
Gz H , we replace every vertexv with a cloud ofm vertices(v; 1); : : : (v;m) one for every edge connected. The
vertices within a cloud are connected by “miniedges” so that every cloud forms a mini copy ofH . The edges ofG are
augmented on both sides by these miniedges to form the edges ofGz H . More formally:

Definition 8.3. Gz H =< V (G) � [m]; E0 >, where((v; i); (u; j)) 2 E0 iff there are somek; l 2 [m] such that
(i; k); (l; j) 2 V (E) andekv = elu.

It is essential of course for the sake of well definedness that the degree ofG equals the size ofH .

Proof of the Zig Zag theorem.It is easy to see thatGzH is a graph of sizemn and degreed2. The expansion constant
of Gz H is a bound on the second eigenvalue of the transition matrix of the random walk on the graph. Each step of
the random walk on an edge ofGz H can be regarded as a random step on a miniedge within a cloud, a deterministic
step on an edge connecting two clouds and another random step within a cloud. Thus, the transition from(v; i) to
(u; j) consists of a random step from(v; i) to (v; k) for somek 2 [m], a deterministic step from(v; k) to (u; l) and
another random step from(u; l) to (u; j).

The transition matrix of the random walk onGz H will therefore be the product of the transition matrices of these

three steps, i.e.\Gz H = ~H ~G ~H, where ~H = Ĥ 
 In is the transition matrix of a random step in each cloud, and

~G(v;k);(u;l) =

�
1 if ekv = elu
0 otherwise

is a matrix of transpositions. It is easy to see thatk ~H k; k ~G k� 1.
Gz H is a regular graph thus the constant vector1mn is an eigenvector, it follows from Rayleigh’s theorem that

�2 = maxf?1mn

jf\GzHf j
kfk2 . Therefore it suffices to showjf

\
GzHf j
kfk2 � �+ � + �2 for everyf ? 1mn.

We can write any vectorf asf = fk + ~Hf?, wherefk is a vector that is constant within each cloud, and~Hf?

sums up to zero within each cloud. Since1m is an eigenvector ofH with eigenvalue one, we get that~Hfk = fk.
Therefore, for everyf ? 1mn:

jf\Gz Hf j = jf ~H ~G ~Hf j
= jfk ~H ~G ~Hfkj+ 2jfk ~H ~G ~Hf?j+ jf? ~H ~G ~Hf?j
= jfk ~Gfkj+ 2jfk ~G ~Hf?j+ jf? ~H ~G ~Hf?j

Now, sincefk ? 1mn, we know thatk ~Gfk k� � k fk k. Also, sincef? sums up to zero in each cloud, we have
k ~Hf? k� � k f? k. Therefore:

jfk ~Gfkj � � k fk k2

jfk ~G ~Hf?j �k ~G k � k fk k � k ~Hf? k� � k fk k � k f? k
jf? ~H ~G ~Hf?j �k ~G k � k ~Hf? k2� �2 k f? k2

The inequalities follow from Cauchy Schwartz and the definition of the operator norm.

jf\Gz Hf > j � � k fk k2 +2� k fk k � k f? k +�2 k f? k2
� � k f k2 +2� k fk k � k f? k +�2 k f k2
= � k f k2 +� � (k fk k2 + k f? k2 �(k fk k � k f? k)2) + �2 k f k2
= (�+ � + �2)� k f k2 �� � (k fk k � k f? k)2
� (�+ � + �2)� k f k2
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8.3 Entropy Analysis

There are several different definitions of entropy for distributionp, the classical definitionsH(p) = �Pn
i=1 pi log(pi),

theH2 entropyH2(p) = � log(k p k2) and the min-entropyH1(p) = � log(k p k1). For any transition matrixA
with expansion constant� and distributionp = 1

n1n + f

k Ap k2=k 1

n
1n + Af k2�k 1

n
1n k2 + k Af k2� ((1� �2) + �2�2) k p k2

where� = kfk
kpk � 1. Hence

H2(Ap) = H2(p) + log((1� �2) + �2�2) = H2(p) + log(1� (1� �2)�2) = H2(p)��E

0 < 1� �2 � 1 implies0 � 1� (1� �2)�2 < 1 hence�E = � log((1� �2) + �2�2) > 0 as long as� > 0. This
shows that the entropy increases by at least�E as long as there is a positive nonuniform component. It follows that
for better expanders (� smaller) theH2 entropy grows faster. It can be shown that theH2 and theH1 are correlated,
therefore the same increase is true for the min-entropy.

We will show next that the classical entropy also grows when� > 0 but we shall make very different considera-
tions. It is currently unknown how fast the entropy grows and how the growth rate relates to the expansion constant.
We note that for all the definitions of entropy, the increase of entropy for nonuniform distributions is essentially the
second law of thermodynamics.

For random variablesX andY with some joint distribution we have the standard entropy equationH(X;Y ) =
H(X) + H(Y jX) thus the entropy of the joint distribution ofX andY is the sum of the entropy ofX and the
conditioned entropy ofY jX . In the case of the zig zag graph the set of vertices isV � [m], the random variables we
will analyze will be the projectionsX andY to the first and second coordinates. We will see that a random step on the
zig zag graph will increase both the entropy ofX and the conditioned entropyH(Y jX) and thus increase the entropy
of the joint distribution.

As we mentioned before a random step consists of a random step within a cloud (zig) a deterministic step between
clouds and another random step within a cloud (zag). Since the zig and the zag steps are within a cloud, they only
affect the second coordinate. They are random steps therefore they increase the conditioned entropy ofY jX as long
as that is less than maximal. For a distribution which is uniform on every cloud the zig and zag steps have no effect.

We can think ofX andY as basins of entropy, taking either a zig or a zag step is like pouring entropy from an
external source into the basin. How much entropy can be poured in? Well that depends on the capacity of the random
variable (maximum entropy) and the amount of entropy present in the basin, i.e. how far is the distribution on every
cloud from uniform.

What about the deterministic step between the clouds? Well this step is deterministic and therefore it does not
change the total amount of entropy in the system, but that does not mean it cannot change the division of the entropy
betweenX andY .

Let us think of the extreme casep = ev 
 1
m1m where the entropy ofX is zero and the entropy ofY is maximal,

i.e. the distribution is concentrated uniformly on the vertices of the cloudv (obviouslyp remains unchanged by the
zig step). In this caseH(Y jX) = log(m) andH(X;Y ) = H(X) +H(Y jX) = 0 + log(m). After the deterministic
step there is equal probability to be in any one ofv’s neighboring clouds, but within these clouds the distribution
is concentrated on the vertex that is actually connected to a vertex inv. The entropy in these clouds is0. The
entropy of clouds not connected tov remains zero, and the entropy inv is zero. Thus we see that the entropy of
X goes from zero tolog(m) and the entropy ofY plummets to zero. We still have the same entropy in the system
H(X;Y ) = H(X)+H(Y jX) = log(m)+0, but the division betweenX andY changes, all the entropy ofY is passed
toX . In the general case the same thing happens, entropy is exchanged betweenX andY . Since deterministic steps
are reversible, not necessarily is the entropy transfered fromY toX , or from a variable with high entropy to a variable
with low entropy. Nevertheless, it can be shown that if the entropy ofY jX is maximal and the joint distribution is
not uniform then the deterministic step reduces the entropy ofY jX . Thus we see that the deterministic step does not
change the entropy in the systems but pours entropy from one vessel to another, and in the case thatY is full andX is
not, some entropy is poured fromY toX .

We can see now the effect of a random step, first entropy is poured intoY , if it is not full then some entropy
is added to the joint distribution. Next entropy is exchanged betweenX andY , necessarily making room for more
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entropy inY if it is full and X is not. Finally yet more entropy is poured intoY and again if it is not full already then
the entropy of the joint distribution is increased.

Thus we see that the total amount of entropy in the system necessarily increases unless the two basins are full
already. Why do we have to pour in entropy from an external source twice? Because in cases likep above, whatever
entropy was poured whileY was full will be wasted and the entropy of the whole system will remain the same. Only
the second step will make room inY for more entropy, thus if we avoid the zag step the entropy in the system will
not increase. On the other hand, since the deterministic step is reversible it could also be the case thatY will be filled
from X and thus the entropy poured in the zag step will be wasted. It can be shown (or follows immediatly form
reversability) that in such a caseY is not full from the start. Thus if we don’t pour entropy onY at the beginig it
may not be possible later. Therefore both the zig and the zag steps are essential in order to assure that the entropy will
actually increase.



Chapter 9

Metric Embedding

Notes taken by Tamir Hazan

Summary: We can embed any metric space intoRn , but with some distortion of the distances. We show
that the graph metric of expander graphs is the hardest metrics to embed, in the sense that of all finite
metric spaces on a given number of points, expanders require the largest distortion.

9.1 Basic Definitions

(X; d) is a metric space if

� d : X �X ! R+ .

� d(x; y) = 0 if and only if x = y.

� d(x; y) = d(y; x).

� d(x; y) � d(x; z) + d(z; y).

In this lecture we will examine how to approximate a finite metric(X; d) by the metric spacel2. l2 is the metric
space(Rn ; k � k) such that for everyy; z 2 Rn , jjy � zjj2 =Pn

i=1(yi � zi)
2.

Given the metric spaces(X; d) and(Rn ; l2) and a transformationf : X ! Rn we define:

� expansion(f) = maxx1;x22X
kf(x1)�f(x2)k

d(x1;x2)

� contraction(f) = maxx1;x22X
d(x1;x2)

kf(x1)�f(x2)k

� distortion(f) = expansion(f) � contraction(f)
It is clear that there are metric spaces that need to be embedded with distortion. E.g the metric(f1; 2; 3; 4g; d)with

d(1; 4) = d(2; 4) = d(3; 4) = 1, andd(i; j) = 2 otherwise, sincef1; 2; 4g, f1; 3; 4g, f2; 3; 4g must be on the same
line in Rn .

9.2 Finding the Minimal Distortion

In this section we will present some of the properties of embeddings inl2. Given a metric space(X; d) we denote its
minimal distortion byC2(X; d).

Theorem 9.1. Bourgain (1985) Any n-point metric space(X; d) can be embedded intoO(logn) dimensional Eu-
clidean space withO(log n) distortion.

Theorem 9.2.Linial, London, and Rabinovich (1995) There is a polynomial time algorithm which computesC2(X; d).
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Proof. The proof is based on semi definite programming. Let(X; d) be a metric space withjX j = n. Letf : X ! l2.
Since we can assume that without loss of generality thatcontraction(f) = 1, thendistortion(f) �  if and only if
for every1 � i < j � n:

(�) d(xi; xj)
2 � kf(xi)� f(xj)k2 � 2d(xi; xj)

2

We say that a matrixZ is positive semi definite (denotedPSD) if Z is symmetric andxTZx � 0 for every
x 2 Rn .

Let ui = f(xi) be the rows of the matrixU . LetZ = U � UT . It is clear thatZ 2 PSD since it is symmetric, and
for everyx 2 Rn , xTZx = xTU � UTx = (UTx)T � (UTx) = kUTxk2 � 0.

But also the converse is true, ifZ 2 PSD thenZ = U � UT for some matrixU . To see that, note thatZ is
symmetric, and therefore diagonizable. ThusZ = A�AT for some matrixA and a diagonal matrix�. Let

p
� be the

diagonal matrix which(
p
�)ii =

p
(�)ii. ThenZ = A

p
�
p
�
T
AT = (A

p
�) � (Ap�)T .

Therefore instead of findingui = f(xi) which satisfies(�) we can find aZ 2 PSD that satisfies

(��) d(xi; xj)
2 � zii + zjj � 2zij � 2d(xi; xj)

2;

sincekui � ujk2 = zii + zjj � 2zij for Z = U � UT .
Thus we conclude thatC2(X; d) �  if and only if there is a positive semi definite matrixZ such that for all

i; j (**) holds. This is a linear programming problem (more precisely a convex programming problem) which can be
solved in polynomial time by the ellipsoid algorithm.

The algorithm above constructs a primal problem and solves it by the ellipsoid algorithm. Looking at the dual
problem gives us an interesting characterization ofC2(X; d). When we transform a primal problem to its dual we take
a non negative combination of its constraints. But how do we look at the constraintZ 2 PSD?

Lemma 9.3. Z 2 PSD if and only if for allQ 2 PSD,
P

i;j qijzij � 0.

Proof. Let Q be a matrix such thatQij = qi � qj . Previously we showed that such a matrix isPSD. Therefore
qTZq =

P
i;j qijzij � 0 implying thatZ 2 PSD.

It can be easily seen that anyQ 2 PSD of rank 1 must have the formQij = qi � qj for some valuesq1; :::; qn.
Thus, if Z is PSD then for every symmetric matrixQ 2 PSD of rank 1,

P
i;j qijzij � 0. The lemma follows

from the fact that anyPSD matrix is a non negative linear combination of rank 1PSD matrices. To see this, note
that anyP 2 PSD can be written asA�AT , where� is a diagonal matrix of the same rank asP . Therefore
P =

Prank(P )
i=1 A�iiA

T .

Our primal problem is:

� Pij qijzij � 0 for all Q 2 PSD.

� d(xi; xj)
2 � zii + zjj � 2zij for all i; j.

� zii + zjj � 2zij � 2d(xi; xj)
2 for all i; j.

We proceed by deriving an explicit formula forC2(X; d) from the dual problem:

Theorem 9.4.

C2(X; d) = max
P2PSD; P �~1=~0

vuut P
pij>0

pijd(xi; xj)2

�Ppij<0
pijd(xi; xj)2

Proof. In the following proof we shall assume that < C2(X; d). Therefore when we inspect a non negative combi-
nation of the constraints of the primal problem (the dual problem) we must get a contradiction.

Let us look at the constraints of the first type (for allQ 2 PSD,< q; z >=
P

ij qijzij � 0). Since the collection
of PSD matrices is convex, a non negative combination

P
k ak < q; z > is equal to< p; z > for some matrix

p 2 PSD. Thus the combination of the first type constraints gives us
P

ij pijzij � 0 for someP 2 PSD.
A contradiction can be reached if a combination of all the constraints result in0 > 0. Unfortunately so far we haveP
ij pijzij � 0 for someP 2 PSD. So to eliminate thezij for i 6= j, we take the following linear combination of

the rest of the constraints:
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� If pkl = 0 then we multiply the constraints involvingzkl by zero.

� If pkl > 0 then we multiply bypkl=2 the constraintd(xk ; xl)2 � zkk + zll � 2zkl

� If pkl < 0 then we multiply bypkl=2 the constraintzkk + zll � 2zkl � 2d(xk ; xl)
2

To eliminatezii, we have to chooseP such that

pii +
X
j 6=i

pij = 0:

Therefore the combination of all the constraints gives

(�)
X
pij>0

pijd(xi; xj)
2 + 2

X
pij<0

pijd(xi; xj)
2 � 0:

We get our contradiction if(�) is violated. Thus we conclude the theorem.

9.3 Embeddings inl2

9.3.1 Embedding the cube

Given a cubef0; 1gr we can easily find an embedding inl2 with distortion
p
r. Given the embeddingid : f0; 1gr !

Rr such thatid(x) = x, we get thatcontraction(id) =
p
r andexpansion(id) = 1. Using our main theorem we can

show that this is the best embedding of the cube. Let define the2r � 2r matrixP :

� P (i; j) = �1 if d(i; j) = 1.

� P (i; j) = r � 1 if i = j.

� P (i; j) = 1 if d(i; j) = r.

� P (i; j) = 0 otherwise.

It is easy to check thatP~1 = 0, and thatP 2 PSD (the later holds, sinceP has the same eigenvectors as the
cube). Since

P
pij>0

pijd(xi; xj)
2 = 2r � r2, and�Ppij<0

pijd(xi; xj)
2 = 2r � r, we get thatC2(X; d) � p

r.

9.3.2 Embedding expander graphs

LetG = (V;E) be a k-regular graph,jV j = n, with �2 � k � �. As before it is simple to see that an expander can
be embedded with distortionO(logn) in l2. Indeed, take the expander and put it as a simplex inRn . Since every
two nodes of the simplex have distance1 we get thatexpansion = 1, andcontraction = diam(G). SinceG is an
expander thendiam(G) = O(log n). As before this result is tight.

Lemma 9.5. LetH = (V;E0) be a graph with the same vertex set asG. 2 vertices are adjacent inH if their distance
in G is at leastlogk n� 2. ThenH has a matchingB of n=2 edges.

Proof. G is k-regular graph thus every vertex has at mostkr vertices at distance� r from it. If r = logk n� 2 then
there are at mostn=2 nodes at this distance. Since all the vertices ofH have degree� n=2 then it has a matching of
the desired size. This follows from Dirac’s sufficient condition for a Hamiltonian circuit. (Modern Graph Theory B.
Bollobas p. 106-107).

Theorem 9.6. LetG = (V;E) be a k-regular graph,jV j = n, with �2 � k � �. ThenC2(G) = 
(logn).
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Proof. LetB be the adjacency matrix of the matching we found inH . For simplicity we assume thatB is a complete
matching inH . LetP = kI �AG + �

2 (B � I) in H . It is easy to see thatP~1 = 0. P 2 PSD since for everyx?~1,

xTPx = xT (kI �AG)x+ xT (�=2)(B � I)x

xT (kI �AG)x � �jjxjj2 sinceG is expander.

xT (B � I)x =
X

(i;j) edge in B

(2xixj � x2i � x2j ) � �2
X

(x2i + x2j ) = 2jjxjj2

To get the lower bound onC2(G) we note thatX
pij>0

d(i; j)2pij � �

2
� n(logk n� 2)2

since the distances of the entries inB are at leastlogk n� 2.

�
X
pij<0

d(i; j)2pij = kn

ThusC2(G) = 
(logn).



Chapter 10

Error Correcting Codes

Notes taken by Elon Portugaly

Summary: An error correcting code is set of words inf0; 1gn. Its distance is the minimal Hamming
distance between two codewords. Therefore, if we transmit a codeword through a noisy channel that flips
some of the bits, then we can correct the errors, as long as the number of bits flipped is bounded by half
the distance. There is a trade-off between the size of the code and the number of errors it can correct.

There are lower bounds (Gilbert Varshamov) and upper bounds (The Balls Bound, MRRW) on the size
and correction capabilities of codes.

A linear code is an error correcting code that is also linear subspace off0; 1gn.

Expanders can be used to build error correcting codes, that have large size and distance. These codes are
also efficiently decodable.

10.1 Definition of Error Correcting Codes

Definition 10.1. A Code is a setC � f0; 1gn.

Definition 10.2. The distance ofC is d � dist(C) � min x6=y
x;y2C

dH(x; y), wheredH(x; y) is thehammingdistance

betweenx andy (the number of coordinatesx andy differ on).

Definition 10.3. The rate ofC is r � rate(C) � log jCj
n .

When defining a code, we desire bothjCj andd to be as large as possible.

10.1.1 Motivation

The setting we look at, is as follows:
We would like to send information through a noisy channel, that may flip some of the bits we send. We code our

information using a set of wordsC � f0; 1gn that we transmit through the channel, and assume that the number of
bits the channel may flip in the transmitted word is bounded from above.

In this setting, it is clear that we would like the number of codewords available to be as large as possible, therefore
we wantjCj to be large. We also would like to be able to reconstruct the codeword that was sent from the corrupted
codeword received. Therefore, we would like that no two codewords could appear the same after they have been
corrupted by the noise. If the number of bits the channel can flip is limited byk, andd > 2k, the last requirement is
fulfilled. Whend is larger, we can deal with noisier channels.

jCj strings can be encoded usingC. Therefore, we can transmitlog jCj information bits, usingn channel bits.
This achieves channel utilization oflog jCjn , which is the rate of the code.

Note: A Code refers to the set of codewords and not to the process of encoding/decoding. However, in
any practical aplication, we would like the code to be efficiently encodable and decodable.
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10.2 Asymptotic bounds

10.2.1 A lower bound: Gilbert Varshamov

This bound shows that good codes can be built.

Theorem 10.4. One can build a lengthn code with distanced and size� 2n

volume of a radiusd hamming ball.

Proof. Following is an exponential time greedy algorithm that builds such a code:

� InitiateS = f0; 1gn; C = ;.
� Repeat untilS is empty:

– Pick any pointx 2 S, and add it in the code.

– Remove all the points inS that are within distanced from x.

Analysis: The volume of a hamming ball of radiusd in f0; 1gn is
Pd

i=0

�
n
i

�
. Therefore, at most

Pd
i=0

�
n
i

�
points

are removed fromS in each iteration, and since the number of points inS at the beginning is2n, the number of
iterations and thus the size ofC at the end of the process must be at least2

n

P
d
i=0 (

n

i)
� 2n

volume of a radiusd ball .

DefineÆ � d
n . Ford � n

2 we have
Pd

i=0

�
n
i

� � � nÆn� � 2nH(Æ), whereH is the binary entropy function

H(x) = �x logx� (1� x) log(1� x):

Therefore

2rn � 2n�
n
Æn

� � 2n(1�H(Æ));

implying that for largen, the rate of the above code satisfiesr � 1�H(Æ).

δ

r

11/2

1

balls bound

GV
MRRW

Figure 10.1: Illustrating Upper and Lower Bounds on rate vs. the relative distance
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10.2.2 An Upper Bound - The Balls Bound

Theorem 10.5. For any lengthn, distanced codeC we havejCj � 2n

volume of a ball of radiusd
2

.

This theorem implies the asymptotic bound:r � 1�H(Æ=2).

Proof. Given a distanced codeC, a draw ball of radiusd=2 around each of the points ofC. If any two balls intersect,
then the distance between them is smaller thand, which contradicts the definition ofd. Therefore, the balls are disjoint,
and their number is limited by the overall volume divided by the volume of each ball.

A much stronger upper bound was shown by McEliece, Rodemich, Rumsey and Welsh 77 (MRRW). The relations
between the three bounds is illustrated in Figure 10.1.

10.3 Linear Codes

A linear code is a code that is a linear subspace of then-dimensional spacef0; 1gn. (In other words, it is closed under
coordinate-wise addition mod2.) Such codes have a polynomial size (inn) description. (For instance by specifying a
basis.)

The Gilbert Varshamov algorithm can be modified to generate linear codes, and thus the Gilbert Varshamov bound
applies to linear codes. Obviously, any general upper bound applies to linear codes as well.

Observation 10.6. Since any linear codeC must include the0 codeword, then for linear codes,

dist(C) = min
06=x2C

weight(x);

where weight(x) is the number of non-zero coordinates ofx.

Note: Although, for a linear code, the encoding can be done in polynomial time, the decoding is in general
NP-hard. I.e., given a linear codeC (using some reasonable representation), and a vectorx, the problem
of finding the element ofC that is closest tox is an NP-hard problem.

10.4 Using Expanders to generate Error Correcting Codes

10.4.1 Defining Codes using Bipartite Graphs

Consider a bipartite graph withn vertices on the left andm vertices on the right side. We call the vertices on left
variables, and the vertices on the rightconstraints. Each variable may assume the value of0 or 1, and we say that a
constraint is satisfied if the sum of all the variables adjacent to it is zero mod2.

Example 10.7. The graph in Figure 10.2 illustrates such a variables and constraints graph. For this graph, constraint
y4 is satisfied iffx3 + x6 + x9 + x14 = 0 while constrainty10 is satisfied iffx12 + x14 = 0. Note that the same
variable may appear in more than one constraint.

To define the code we refer to the variables as the coordinates of a vectorx 2 f0; 1gn. A vectorx is in the code iff
it satisfies all the constraints defined by the graph. We denote byC(G), the code defined byG. The code then, is the
set of all solutions ofm linear equations onn variables. Therefore,jCj � 2n�m or r � n�m

n .



58 CHAPTER 10. ERROR CORRECTING CODES
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y12
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variables constraints
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Figure 10.2: A Variables and Constraints Graph

10.4.2 Codes Using Left Side Expanders

Theorem 10.8. Sipser and Spielman (95):LetG = (VL;VR; E) be a bipartite graph of sizejVLj = n, jVRj = m,
that is k-regular on the left. Assume furthermore, that for anyS � VL of size at most�n, j�(S)j > k

2 jSj. Then
dist(C(G)) > �n.

Proof.

Lemma 10.9. Every setS � VL of size at most�n satisfies theUnique Neighbor Property. I.e, there existsy 2 VR
such thatj�(y) \ Sj = 1

Proof: Consider a setS � VL of size� �n. If the Unique Neighbor Propertydoes not hold forS, then eachy 2
�(S) has at least two neighbors inS. Therefore the number of edges leavingS is at least2�(S) > 2 k

2
jSj = kjSj,

which contradicts the left regularity ofG.

Assume for the purpose of contradiction that dist(C) � �n. Then there exists a nonzero codeword whose weight
is at most�n (Observation 10.6). Letw be such a codeword, andX be its support (the set of coordinatesv where
xv = 1), and lety 2 �(X) be a vertex guaranteed by the Unique Neighbor Property forX . The constraint defined by
y is that the sum of all the variables that are neighbors ofy is even, but in the assignment defined byw, only one of
those variables is assigned the value 1. Therefore, the constraint cannot be satisfied, andw cannot be a codeword. A
contradiction.

Theorem 10.10. Efficient Decoding, Sipser and Speilman (95):In the above conditions, if the expansion of sets of
size at most�n is> 3

4k, and if the distance of the input word!0 from a codeword! is at most�2 n, then the following
decoding algorithm will return! in a linear number of iterations:

While there exists a variable such that most of its neighboring constraints are not satisfied, flip it.

Proof. Let A be the set of errors in!0, i.e. A = fv : !0v 6= !vg. If A is empty, we are done. Otherwise, assume
thatjAj � �n. (We need the assumption to guaranty the expansion, and we will prove later that this assumption holds
throughout the running of the algorithm.)

Partition�(A) to satisfied neighborsS and unsatisfied neighborsU . Then:

jU j+ jSj = j�(A)j > 3

4
kjAj: (10.1)
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Now, count the edges betweenA and�(A) = U [ S. There are at leastjU j edges leavingU , and at least2jSj edges
leavingS (every vertex inS must have at least two neighbors inA). Therefore,

jU j+ 2jSj � kjAj:

Combining this with (10.1) we get that

kjAj � jU j � 2jSj > 2(
3

4
kjAj � jU j);

and therefore,

jU j > 1

2
kjAj: (10.2)

So more than12kjAj neighbors of thejAj members ofA are unsatisfied. Therefore there is a variable inA that has
> 1

2k unsatisfied neighbors. That means that as long as there are errors, there is a variable that most of its neighbors
are unsatisfied. Since by definition,jU j decreases with every step, we deduce that:

Corollary 10.11. If the distance from! does not exceed�n throughout the run of the algorithm, thenU will reach
the empty set, and the algorithm will halt with the codeword!.

To show thatA is always� �n, note that in the beginning,jA0j � �
2 n, and thereforejU0j � j�(A0)j � k �2n.

Therefore, sincejU j is decreasing, throughout the running of the algorithm

jU j � k
�

2
n: (10.3)

We know that at any stepjAij changes by�1. Therefore, if at any timejAj exceeds�n, there must be a timei when
jAij = �n (we can assume that�n is an integer). Then by (10.2),jU j > k �2 n, which is a contradiction to (10.3).
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Chapter 11

Lossless Conductors and Expanders

Notes taken by Ariel Elbaz, Yuval Filmus and Michal Igell

Summary: In this lecture we define conductors, a generalization of expanders. Extractors, dispersers
and condensers are all types of conductors. We use the new structures to explicitly construct lossless
expanders.

11.1 Min-entropy

Min-entropy measures the rarity of the most probable event. If all events occur at probability at most2�k, then the
min-entropy is at mostk, and vice versa. For a random variableX (or a distribution) over some finite setS, let

Supp(X) = fx 2 S : Pr[X = x] > 0g:

Definition 11.1. The min-entropy of a distributionX

H1(X) = min
x

n
log

1

Pr[X = x]

o
= �max

x

n
log
�
Pr[X = x]

�o
where minimum and maximum are taken overx 2 Supp(X).

Note: throughout this work,log is always taken to base2.

Definition 11.2. The Rényi entropy of a distributionX is

H2(X) = � log
X
x

(Pr[X = x])2 = � log E
h
Pr[X = x]

i
:

Lemma 11.3. The min-entropy and Rényi entropy of a distributionX obey the following inequality:

H1(X) � H2(X) � 2H1(X)

The left inequality is tight iffX is uniformly distributed on some setS.

Proof. Sincelog is a monotone increasing function, we have

H2(X) = � log E
�
Pr[X = x]

�
� � log max

x2Supp(X)
Pr[X = x] = H1(X)
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and equality holds iffX is uniformly distributed overSupp(X).
On the other hand, letxM = argmaxx Pr[X = x]. We have

H2(X) = � log
�X

x

(Pr[X = x])2
�

= � log
� X
x6=xM

(Pr[X = x])2 + (Pr[X = xM ])2
�

� � log
�
(Pr[X = xM ])2

�
= �2 log

�
Pr[X = xM ]

�
= 2H1(X)

A distribution which is uniformly distributed on some setS is called a flat distribution, and both its min-entropy
and its Rényi entropy arelog jSj. These are maximal among distributions with supportS.

Flat distributions combine to make the most general distributions:

Lemma 11.4. Every distribution over a finite set is a convex combination of a finite number of flat distributions. In
other words, ifX is a distribution thenX =

P
piU(Si), whereSi � Supp(X), pi � 0 and

P
pi = 1.

Proof. The proof goes by induction onjSupp(X)j. If Supp(X) = fxg thenX = U(x). Otherwise, letxm =
argminPr[X = x], and letpm = Pr[X = xm]. We haveX = pmU(Supp(X)) + (1 � pm)Y , whereSupp(Y ) (
Supp(X) sincexm =2 Supp(Y ).

If we combine a distributionY with a flat distributionX , the joint distribution has min-entropy equal toH1(Y )+
H1(X):

Lemma 11.5.SupposeX is a flat distribution, withH1(X) = c, and letY be another distribution. ThenH1(X;Y ) �
k iff for everyx 2 Supp(X), we haveH1(Y jX = x) � k � c.

Proof. Suppose first thatH1(X;Y ) � k. If H1(Y jX = x) � k � c for somex 2 Supp(X), thenPr[Y = yjX =
x] � 2c�k for somey 2 Supp(Y ). SinceX is flat,Pr[X = x; Y = y] � 2c�k2�c = 2�k, contradicting the promise
H1(X;Y ) � k.

Next, suppose thatH1(Y jX = x) � k � c for all x 2 Supp(X). Then for ally 2 Supp(Y ), we have
Pr[Y = yjX = x] � 2c�k. SinceX is flat,Pr[Y = y] � 2c�k2�c = 2�k. Therefore,H1(Y ) � k.

We complete this section with a technical lemma, showing how to divide a joint distribution according to condi-
tional min-entropy.

Definition 11.6. Two distributionsX andY over the same setS are said to be�-close ifjPr[X 2 P ]�Pr[Y 2 P ]j � �
for every subsetP � S. Alternatively,X andY are�-close if

P
s jPr[X = s] � Pr[Y = s]j � 2�. We leave the

reader to show that the two definitions are equivalent.

Lemma 11.7. LetX1 andX2 be two distributions. Given� > 0 anda, there exist distributionsY1 andY2 such that

� The joint distributions(X1; X2) and(Y1; Y2) are �-close;

� The joint distribution(Y1; Y2) is a convex combination of two other joint distributions(Ŷ1; Ŷ2) and ( �Y1; �Y2),
both having min-entropy at leastH1(X1; X2)� log 1

� ;

� For all x 2 Supp(Ŷ1) we haveH1(Ŷ2jŶ1 = x) � a;

� For all x 2 Supp( �Y1) we haveH1( �Y2j �Y1 = x) � a;
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Proof. We begin by constructing(Ŷ1; Ŷ2) and( �Y1; �Y2). We splitSupp(X1) according toH1(X2jX1 = x):

X̂ = fx : H1(X2jX1 = x) � ag;
�X = fx : H1(X2jX1 = x) < ag:

Now we can define

Pr[Ŷ1 = y1; Ŷ2 = y2] = Pr[X1 = x1; X2 = x2jx1 2 X̂ ];

Pr[ �Y1 = y1; �Y2 = y2] = Pr[X1 = x1; X2 = x2jx1 2 �X ]:

In other words,̂Y1 gets only values in̂X, and�Y1 is restricted to�X.
If p = Pr[X1 2 X̂ ], then the probability of each event in(Ŷ1; Ŷ2) is multiplied by1=p, and the probability of each

event in( �Y1; �Y2) is multiplied by1=(1� p). Therefore, if� � p � 1� � then the min-entropy of(Ŷ1; Ŷ2) and( �Y1; �Y2)
is reduced by at mostlog 1=�. Since(X1; X2) = p(Ŷ1; Ŷ2) + (1� p)( �Y1; �Y2) we can take(Y1; Y2) = (X1; X2).

If, for examplep < �, ( �Y1; �Y2) still has high enough min-entropy, and so we take(Y1; Y2) = ( �Y1; �Y2). This
distribution is�-close to(X1; X2):X

x12X̂;x2

��Pr[X1 = x1; X2 = x2]� Pr[ �Y1 = x1; �Y2 = x2]
��+

X
x12 �X;x2

��Pr[X1 = x1; X2 = x2]� Pr[ �Y1 = x1; �Y2 = x2]
�� =

p+

�
1

1� p
� 1

�
(1� p) = 2p < 2�:

11.2 Conductors and lossless expanders

11.2.1 Conductors

Loosely speaking, a conductor is a function that transfers entropy from its inputs to its output. In other words, if the
input distributions have high min-entropy, then the output distribution will have high min-entropy.

Definition 11.8 (conductors). A functionE : f0; 1gn � f0; 1gd ! f0; 1gm is a (kmax; a; �)-conductor if for any
distributionX on f0; 1gn satisfyingH1(X) = k � kmax, the distributionE(X;Ud) is �-close to a distributionY
whose min-entropy is at leastk + a.

Remark:In this text we identify a distribution with a random variable sampled from it.

In other words,E gets two inputs: a distributionX with min-entropyk � kmax, and the uniform distributionUd
(with min-entropyd). The output is�-close to a distribution with min-entropy at leastk + a.

The following definitions (definitions 3.4 to 3.7 from [CRSW02]) are several special cases of conductors, which
we will later use.

Definition 11.9 (extracting conductors). A functionE : f0; 1gn � f0; 1gd ! f0; 1gm is an(�; a) extracting con-
ductor if for any0 � k � m� a, and anyk-sourceX overf0; 1gn, the distributionE(X;Ud) is a(k + a; �)-source.

Note that ifE : f0; 1gn � f0; 1gd ! f0; 1gm is an(�; a) extracting conductor, it is also an(m� a; �) extractor.

Definition 11.10 (lossless conductors).A functionE : f0; 1gn�f0; 1gd ! f0; 1gm is an(kmax; �) lossless conductor
if for any 0 � k � kmax, and anyk-sourceX overf0; 1gn, the distributionE(X;Ud) is a(k + d; �)-source.

The next two definitions require that the prefix of the output is an extracting conductor:
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Definition 11.11 (buffer conductors). A pair of functionshE;Ci : f0; 1gn � f0; 1gd ! f0; 1gm � f0; 1gb is an
(kmax; a; �) buffer conductor ifE is an(�; a) extracting conductor, andhE;Ci is an(kmax; �)-lossless conductor.

Definition 11.12 (permutation conductors). A pair of functionshE;Ci : f0; 1gn � f0; 1gd ! f0; 1gm � f0; 1gb,
wheren + d = m + b is an (�; a) permutation conductor ifE is an (�; a) extracting conductor, andhE;Ci is a
permutation overf0; 1gn+d.

11.2.2 Lossless expanders

Having defined conductors, we define lossless expanders and reveal the connection.

Definition 11.13. A d-regular bipartite graph is a(kmax; �)-lossless expander if every set ofk � kmax vertices on the
left side has at least(1� �)d � k neighbors.

That is, a lossless expander has almost the maximal expansion possible for ad-regular graph, for small enough
subsets. An alternative view is that for every subset on the left side, most neighbors will be unique neighbors, i.e.
neighboring a single vertex of the set. Naturally,kmax should be somewhat smaller thanm=d for this to be possible,
wherem is the number of vertices on the right side.

Expanders, condensers and dispersers (which we don’t define here) can be viewed as special cases of conductors.
For example, a lossless conductorE can be viewed as a2d-regular bipartite graph with2n vertices on the left side and
2m vertices on the right side, where each set of2k � 2kmax vertices has at least(1 � �)2k+d neighbors on the right
side. In other words, we get a(2kmax ; �)-lossless expander.

We can explicitly construct constant-degree lossless expanders which losslessly expand sets of sizeO(M=D),
whereM = 2m is the number of right vertices, andD = 2d is the left degree.

Theorem 11.14.For any � > 0, there is an explicit family ofD = (N=�M)c-regular bipartite graphs which are
(O(�M=D); �)-lossless expanders, whereN is the number of vertices on the left side,M < N is the number of
vertices on the right side,N = O(M) andc is a constant. Note that sinceN = O(M), the degree itself is bounded
by a constant depending only on�.

We will prove the theorem by constructing an explicit family of(log �M
D ; logD; �)-conductors.

11.3 The Construction

The required lossless conductors will be constructed using a zigzag product. Let us recall the zigzag product for
expanders:

Definition 11.15 (The zigzag product of two regular bipartite graphs).LetH be ad-regular bipartite graph withs
vertices on each side, and letG be ans-regular bipartite graph withn vertices on each side.

The zigzag productGz H is ad2-regular bipartite graph withsn vertices on each side, which we may conceive
asn copies ofH , one per each vertex ofG. Pick a left vertex(x; y) 2 [n]� [s]. The edges emanating from(x; y) are
labeled using labels from[d]� [d]. The edge labeled(a; b) is determined as follows:

1. Take a left to right step in the local copy ofH (usea to choose an edge).

2. Take a left to right step onG, that is between copies ofH .

3. Take a left to right step in the new local copy ofH (useb to choose an edge).

We expand on the second step. Suppose after the first step we are at(x; y0). Letx0 2 G be they0-th neighbor ofx,
and letx be thez-th neighbor ofx0. Then the second step takes us from(x; y0) to (x0; z).
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Figure 11.1: Zigzag product of bipartite graphs

11.3.1 The zigzag product for conductors

We now define the zigzag product for conductors, and show that composing conductors with carefully selected param-
eters, we get constant degree lossless expanders, as in theorem 11.14.

Recall that the zigzag theorem, proved in a previous lecture, shows thatGz H is an expander if bothG andH
are such. Moreover, the degree ofGz H is related toH , while its size and expansion are related to bothG andH .
Unfortunately, whiledeg(Gz H) = deg2(H), the expansion ofGz H is the minimum between the expansion ofH
and the expansion ofG. That is, the expansion ofGz H is at most the square root ofdeg(Gz H) (this can be seen
by considering a set consisting of a single copy ofH). This expansion is too low for lossless expanders, which require
expansion almost as big as the degree.

Recall also that in the proof of the zigzag theorem, of the two random steps (steps 1 and 3 in definition 11.15),
only one is "used" and contributes to the output entropy. That is, out ofd2 choices, onlyd are surely increasing the
entropy.

Here we try to avoid this loss of entropy by buffering the random choices made at each step, and then using a
lossless conductor, together with some fresh truly random bits, to condense the leftovers of entropy.

The name "conductor" suggests an analogy to electricity or water conductors. Another analogy to water is to think
of the lossless conductor construction as putting a bucket beneath each object, so that when we pour randomness
(water) into it, the leftovers (unused randomness, beyond thekmax bound), are stored for later use.

In the zigzag product for conductors we make use of several objects. We remark that they can be explicitly
constructed using lemmas from [CRSW02].

Let us then assume that we have in our hands the following objects:

1. hE1; C1i : f0; 1gn1 � f0; 1gd1 ! f0; 1gm1 � f0; 1gb1 , a permutation conductor that can be taken from lemma
4.4 in [CRSW02];

2. hE2; C2i : f0; 1gn2 � f0; 1gd2 ! f0; 1gd1 � f0; 1gb2 , a buffer conductor;

3. E3 : f0; 1gb1+b2 � f0; 1gd3 ! f0; 1gm3 , a lossless conductor.

BothE2 andE3 can be taken from lemma 4.13 in [CRSW02].
We describe the zigzag product for conductors.
Setn = n1 + n2, d = d2 + d3 andm = m1 + m3. For x1 2 f0; 1gn1 , x2 2 f0; 1gn2 , r2 2 f0; 1gd2 and

r3 2 f0; 1gd3 , define
E : f0; 1gn � f0; 1gd ! f0; 1gm
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byE(x1x2; r2r3)
def
= y1y3, where

� (y2; z2) = hE2; C2i(x2; r2)
� (y1; z1) = hE1; C1i(x1; y2)
� y3 = E3(z1z2; r3)

z1 andz2 are buffers ofhE1; C1i andhE2; C2i.
Figure 2 shows an example of this construction.
Our notation in figure2 is that(yi; zi) are the output ofhEi; Cii on the inputs(xi; ri) (except forE3 which has

only one output). AshE1; C1i gets it’s seed fromhE2; C2i, we get thatr1 = y2, and sinceE3 gets it’s input from
hE1; C1i andhE2; C2i, we get thatx3 = z1z2.

Recall that the zigzag product for bipartite graphs,Gz H , usesH twice. In the new construction, the first use is
replaced withE2. This ensures that whenx2 has high min-entropy,y2 is close to uniform, and is a good seed forE1.
The second use ofH is replaced withE3, which is a lossless conductor. The role ofE3 is to transfer entropy lost in
E1 andE2 to the output.
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Figure 11.2: Entropy flow in a lossless conductor

11.3.2 A specific example of a lossless conductor

It will be constructive for the sake of explanation to look at a concrete example of the construction.
Seta = 1000 log( 1� ) andd = 2a. Then we have

� hE1; C1i : f0; 1gn�20a � f0; 1g14a ! f0; 1gn�20a � f0; 1g14a, an(n� 30a; 6a; �) permutation conductor;
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� hE2; C2i : f0; 1g20a � f0; 1ga ! f0; 1g14a � f0; 1g21a, a(14a; 0; �)-buffer conductor;

� E3 : f0; 1g35a � f0; 1ga ! f0; 1g17a , a(15a; a; �) lossless conductor.

The result is
E : f0; 1gn � f0; 1g2a ! f0; 1gn�3a

which is a(n� 30a; 2a; 4�)-lossless conductor.
Let us try and follow the entropy flow from the input(x1x2; r2r3) to the outputy1y3.
Let k = H1(X1; X2), then we show that if we start with min-entropyk, we end up with min-entropy ofk + 2a.

Two main ideas for this example are emphasized:

1. The entropy is conserved byhE1; C1i; hE2; C2i, becausehE1; C1i is a permutation conductor, andhE2; C2i is
a buffer conductor. Therefore, we get

k + a = H1(X1; X2; R2) = H1(X1; Y2; Z2) = H1(Y1; Z1; Z2)

2. We want to verify that enough entropy is transferred, usingE1 andE2, toY1. We know thatH1(Y1; Z1; Z2) =
k + a, and if we prove thatH1(Y1) � k � 14a, thenH1(Z1; Z2jY1) � 15a. In that caseE3, which is a
(15a; a; �)-conductor will conducta bits of entropy fromR3 to Y3. That is, all the entropy ofZ1; Z2 will be
transferred to the outputY3, without any entropy loss, as we want.

To prove thatH1(Y1) � k� 14a, we look at the two cases, which lemma 11.7 essentially shows that are sufficient to
prove the general case.

Case 1 For allx1 2 Supp(X1), we haveH1(X2jX1 = x1) � 14a.

In this case,H1(Y2jX1 = x1) = 14a, for anyx1 2 Supp(X1). ThereforeY2 can be used as a seed forhE1; C1i
for anyx1 2 Supp(X1). We know thatH1(X1) � k� 20a, and thereforeE1 conducts6a bits of entropy from
the seed intoY1, and we get thatH1(Y1) � k � 14a.

Case 2 For allx1 2 Supp(X1), we haveH1(X2jX1 = x1) � 14a.

SinceH1(X1; X2) = k, it follows thatH1(X1) � k � 14a. Therefore, sinceE2 is a lossless extrac-
tor, H1(Y2jX1 = x1) � H1(X2jX1 = x1) for any x1 2 Supp(X1). It follows thatH1(X1; Y2) �
H1(X1; X2) = k. SincehE1; C1i is a permutation, alsoH1(Y1; Z1) � k, and again we get thatH1(Y1) �
k � 14a.

To complete the example, for anyy1 2 Supp(Y1),

H1(Z1; Z2jY1 = y1) � H1(Y1; Z1; Z2)�H1(Y1) � (k + a)� (k � 14a) = 15a:

Therefore, the lossless extractorE3 transfersa bits of entropy fromR3 to Y3, and we get thatH1(Y3jY1 = y1) �
H1(Z1; Z2jY1 = y1) + a. This implies that,H1(Y1; Y3) � k + 2a, as needed.
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Chapter 12

Cayley graph expanders

Notes taken by Eyal Rozenman

Summary: We describe ideas leading to an elementary construction of Cayley graphs which are ex-
panders with relatively small degree.

A set of elementsS in a groupH is agenerating setif every element ofh 2 H can be written ash = s1 �s2 : : : �sk
with si 2 S.

Definition 12.1. TheCayley graphC(H;S) of a groupH and a generating setS is a graph whose vertices are the
elements ofH , and where(g; h) is an edge ifg � s = h for somes 2 S.

This generally defines a directed graph. If the set of generatorsS is symmetric- i.e. s 2 S iff s�1 2 S, then(g; h)
is an edge iff(h; g) is, and we have an undirected graph. It is a regular graph of degreejSj.
Example 12.2.

� The additive cyclic groupCd = Z=dZwith generatorsS = f+1;�1g is the cycle ond vertices.

� The additive group of the vector space(F2)d over the field with two elements is generated by the standard basis
vectorse1 = (1; 0; : : : ; 0); e2; : : : ; ed. The Cayley graph is the discrete cube - ad-regular graph.

Consider the following construction, resulting in the graph depicted in figure 12.1. The degree of the discrete cube
is equal to the number of vertices in the d-cycle, so we can form a zigzag product of the two. Let’s look at the simpler
replacement product. In this product we replace every vertex of(F2)

d by a cloud ofd vertices representingCd. On
each cloud we preserve the edges of the originalCd. We also connect each vertex in the cloud to one of thed neighbors
of the cloud inF d

2 . For example, let’s connect vertex(v; h) to (v + eh; h). Like the zigzag construction, this product
is an expander if the original two graphs are expanders.

We started with two Cayley graphs and created a third graph by a graph-theoretic construction. Is the resulting
graph also a Cayley graph of some group? The answer is yes. It’s thesemidirect productof Cd andF d

2 . To define this
product we shall need (alas) some more definitions:

Definition 12.3. An actionof a groupB on a groupA is a group homomorphism� : B ! Aut(A). In other words,
each elementb 2 B corresponds to an automorphism�b of A, and we demand that�b1�b2 = �b1�b2 .

Definition 12.4. Suppose a groupB acts on a groupA. Thesemidirect productAoB is a group whose elements are
pairs(a; b) wherea 2 A andb 2 B. We define

(a1; b1) � (a2; b2) = (a1 � �b1(a2); b1 � b2):
Example 12.5.

� The direct product of two groupsA � B is a special case of a semidirect product where�b is the identity
automorphism ofA for all b 2 B. In this case(a1; b1) � (a2; b2) = (a1 � a2; b1 � b2).

69
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Figure 12.1:A Cayley graph ofF 3
2 o C3

� We have an action ofCd onF d
2 : the elementh 2 Cd cyclically permutes the coordinates ofF d

2 by h places. We
can thus defineF d

2 o Cd.

It turns out that under certain conditions there is a close relation between the semidirect product of groups and the
replacement product of their Cayley graphs. Suppose a groupB acts on a groupA. Theorbit of an elementa 2 A
under the action ofB is the setf�b(a)jb 2 Bg. For example, the orbit ofv 2 F d

2 under the action ofCd is the set of
all cyclic shifts ofv

Claim 12.6. Suppose we have two groupsA;B with sets of generatorsSA; SB , such thatjBj = jSAj. Further, suppose
thatB acts onA in such a way thatSA is the orbit of one of the elementsx 2 SA. ThenS := (1; SB) [ f(x; 1)g
generatesAoB, andC(AoB;S) is a replacement product ofC(A;SA) andC(B;SB).

Proof. To see thatS indeed generatesAoB notice that the elements(SA; 1)[ (1; SB) generate it. Now observe that
(1; b) � (x; 1) � (1; b�1) = (�b(x); 1), so we can indeed generate all of(SA; 1) starting with(x; 1), so(1; SB)[f(x; 1)g
is generating. Look atC(AoB;S). It consists of clouds of the elements ofB, with the graph ofC(B;SB) on them,
since(a; b) � (1; sb) = (a; b � sb). Between clouds we have edges like(a; b) � (x; 1) = (a � �b(x); b). So the cloud of
the elementa is indeed connected by one edge to each of the clouds of the neighbors ofa in the graphC(A;SA), and
this is a replacement product.

Exercise 12.7.Under the assumptions of the claim, we can also describe the zigzag product of two Cayley graphs as
a Cayley graph onAoB. Which generating set do we need?

Example 12.8. Look atF 3
2 andC3 with the generators used above. In the Cayley graph ofF 3

2 o C3 with generators
as in the claim, the neighbors of the cloud ofv = (1; 0; 0) 2 F 3

2 are:

(v; 0) � (e0; 0) = (v + e0; 0)

(v; 1) � (e0; 0) = (v + e1; 1)

(v; 2) � (e0; 0) = (v + e2; 2)

And this is indeed a replacement product.

Recall that a replacement product of two expander graphs is again an expander. So we can try to make an expander
graph which is also a Cayley graph using the semidirect product. As a starter, we look for generators forF d

2 that make
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it an expander. Since this is an abelian group, then for every set of generators the eigenvectors of the graph are the
Fourier basis - which are vectors of the typefy(x) = (�1)<x;y>. For the standard basise1; : : : ed the eigenvalues areX

i

fy(ei) =
X
i

(�1)<ei;y> = d� 2jyj

Wherejyj is the Hamming weight of the binary vectory. So�1 = d; �2 = d � 2. The second normalized eigenvalue
is (d� 2)=d and obviously, this is not a good expander. How do we find another set of generators which does give an
expander? Suppose we have a setS = fv1; v2; : : : ; vrg of generators. Write anjSj � d matrixA whose rows are the
elements ofS. To be an expander, we need to satisfy, for everyy 6= 0X

i

fy(vi) =
X
i

(�1)<vi;y> � c � jSj

for some constantc < 1, independent ofd. This means that the vectorsAx (with x 6= 0) don’t have too much
difference between the numbers of 0’s and 1’s. In particular, each word must have a sufficient number of 1’s. In short
- a good expander in this case gives an error correcting code. Using this intuition, one would try a random2d � d
matrixA, which we know gives a good code, and indeed

Claim 12.9. For a random2d � d binary matrix, almost surely2d � Æ < jAxj < 2d � (1 � Æ) for all nonzerox (for
some constantÆ > 0).

So we have an expander. With two "small" flaws: (a) It’s not explicit, and (b) The degree is too large. To get rid
of flaw (b) we want not just an arbitrary set of generating vectors. We want the generators to be one orbit under the
action ofCn, for example. Luckily, this also turns out to work

Claim 12.10. Pick two random vectorsu; v 2 F d
2 . Consider the matrixA generated by the orbits ofu andv under the

action ofCd, that is, the2d�dmatrix of the cyclic shifts ofu andv. ThenA (a.s.) satisfies2d �Æ < jAxj < 2d �(1�Æ)
for all nonzerox (for some constantÆ > 0).

So now, by using a semidirect product withCd we get an expander. The only difference is that we used two orbits,
instead of one as in claim 12.6.

Exercise 12.11.Claim 12.6 still holds whenSA is a union ofk orbits under the action ofB. The Cayley graph of the
semidirect will havejSB j+ k generators.

We can now use this idea to give a counterexample to

Conjecture 12.12. If a group sequenceGn is an expander with one set of generatorsSn of bounded size then it is
also an expander with any other set of generatorsUn of bounded size.

Recall that we have two matrices that (with their inverses) makeSL2(Fp) an expander.SL2(p) acts on thep+ 1

elements of the projective plane overFp, so just as we did withCd we can form the semidirect productF p+1
2 oSL2(p).

It also turns out that there are two orbits ofSL2 that makeF p+1
2 an expander (random orbits will do). So the semidirect

product is an expander with4 generators, for everyp. On the other hand, we have another set of generators for which
F p+1
2 is not an expander - the standard basis. This gives a set of 3 generators forF p+1

2 o SL2(p) which is not an
expander (recall that the replacement product is never a better expander than its components).

Can we iterate the semidirect product construction to get a sequence of Cayley expander graphs the same way we
did with the zigzag product? For a groupG let Fp[G] be the group ring overFp. we would like to make the additive
group an expander using a constant number of orbits under the action ofG. If we could do that in general, we could
define a sequence iteratively byGi+1 = Fpi [Gi]oGi. This is indeed possible with a proper choice ofpi andG1:

Theorem 12.13.�2(C(Gn; Sn)) � 1=2 andSn � log(n=2)jGnj wherelog(n=2) is the iterated logarithm.

This is the (almost) best construction of this type we can hope to get using this construction, since the groupGn is
a solvable group with solvability index at mostn (asGn�1 is a normal subgroup with abelian quotientFpn�1 [Gn�1]).
In this case it is known that any generating set which gives�2 � 1=2 has cardinality at leastlog(n)jGnj

The property we need to makeFp[G] an expander with a constant number of orbits is
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Theorem 12.14.Let d1; d2; : : : ; dt be the dimensions of the irreducible representations ofG. if jfi : di < rgj < cr

for all integerr and some constantc, then there is a constant number of orbits ofFp[G] that make it an expander.

Miraculously,Fp[G] inherits this property ifG is a monomial group, which means all its irreducible represen-
tations are induced from one-dimensional representations of subsets ofG. Furthermore,Fp[G] is also monomial!
Even better, we can find the generating orbits explicitly. This gives a sequence of explicit Cayley graphs which are
expanders with an "almost constant" number of generators.



Chapter 13

On eigenvalues of random graphs and the
abundance of Ramanujan graphs

Notes taken by Danny Gutfreund

Summary: In this lecture we will be looking at eigenvalue distributions of random graphs and matrices.
Our starting point is the question: Is it true that almost every graph is Ramanujan?

First, we consider generalizations of this question that look at the distribution of eigenvalues in general
(and not only the second eigenvalue). We state “Wigner’s semicircle law”, and give a partial proof to a
version of this law (By McKay) for regular graphs.

In the second part of the lecture, we define lifts of graphs and extend the definition of Ramanujan graphs
to general (non-regular) graphs. We then state some conjectures and results regarding the abundance of
Ramanujan graphs (under this new definition).

13.1 The eigenvalue distribution of random matrices and regular graphs

Open problem 13.1. Is it true that almost everyd-regular graph is Ramanujan? More formally, is it true that,

lim
n!1

Pr(�2(Gn) � 2
p
d� 1) = 1

WhereGn is a randomd-regular graph of sizen.

Friedman gave a positive answer upto an� additive factor,

Theorem 13.2. For every� > 0,
lim
n!1

Pr(�2(Gn) � 2
p
d� 1 + �) = 1

WhereGn is a randomd-regular graph of sizen.

Extending this question to random symmetric matrices, and the distribution of all the eigenvalues, we have the
following theorem by Wigner, known as “Wigner’s semicircle law”.

Theorem 13.3. LetAn be an � n symmetric matrix overR, whereaij (i 6= j) are sampled independently from a
distributionF , andaii from a distributionG.
Let�1(An) � � � � � �n(An) be the eigenvalues ofAn.
Define the empiric distribution,

Wn(x) =
1

n
jfi : �i(An) � xgj

Let,
W (x) = lim

n!1
Wn(2x�

p
n)
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where�2 = var(F ) = var(G).
If it holds that8k; R jxjkdF; R jxjkdG < 1, thenW (x) is continuous with density2�

p
1� x2 if jxj � 1, and 0

otherwise.

Going back to eigenvalues of adjacency matrices ofd-regular graphs, we have the following version of Wigner’s
semicircle law, proven by McKay.

Theorem 13.4. LetGn be an infinite sequence ofd-regular graphs, such that, for allk � 3, Ck(Gn) = o(jGnj),
whereCk(Gn) is the number of lengthk cycles inGn.
Define,

F (Gn; x) =
1

jGnj jfi : �i(Gn) � xgj

Then for everyx,

F (x) = lim
n!1

F (Gn; x) =

Z x

�2pd�1

d
p
4(d� 1)� z2

2�(d2 � z2)
dz

The idea of the proof is that under the assumption that there are very few short cycles, the neighborhood of almost
every node looks like a tree. So we can count the number of cycle-free paths from a node to itself. We state this
formally in the following lemma.

Lemma 13.5. LetG be ad-regular graph, and letv be a node such that there are no cycles in itsr-neighborhood.
Then the number of paths of lengthr that start and end inv is 0 if r is odd, and ifr = 2s it is,

 (r) =
sX

j=1

�
2s� j

s

�
j

2s� j
dj(d� 1)s�j

Proof. Clearly, if ther-neighborhood ofv does not contain any cycles, then every lengthr path that starts and ends in
v is cycle-free, and hencer must be even.

Let r = 2s. Every lengthr path that starts and ends inv, defines a sequence,0 = Æ0; Æ1 � � � Ær = 0. WhereÆi
is the distance fromv after we didi steps on the path. Clearly, for everyi, Æi � 0, andjÆi � Æi�1j = 1. We would
like to count the number of such sequences in which exactlyj out ofÆ0 � � � Ær are 0. This is a simple generalization of
Catalan numbers and the answer is, �

2s� j

s

�
j

2s� j

We know that a path that defines such a sequence visitsv exactlyj times. Each time it leavesv it has exactlyd
possibilities for the next step. This gives the termdj . In steps that go away fromv, i.e. whenÆi+1 � Æi = 1, we have
d�1 different nodes that we can continue too (we cannot backtrack to the previous node). and for steps that go toward
v we have no choice because we have to go back on the same edge that we used before. There ares� j steps of each
type, altogether we have(d� 1)s�j possibilities for such steps.

If Ck(Gn) = o(jGnj) (for everyk � 3), then for every constantr, almost every node has cycle-freer-neighborhood.
LetPr(Gn) be the number of simple paths of lengthr from a node to itself inGn. Then from Lemma 13.5 we conclude
that,

lim
n!1

Pr(Gn)

Gn
=  (r)

Therefore, the functionF (x) must satisfy
R
xrdF =  (r), for everyr. In order to finish the proof of the theorem

we need some inverse transformation, that calculatesF (x) out of its moments. This is achieved using the Chebyshev
polynomials, but we do not include the details in this lecture note.

13.2 Random lifts and general Ramanujan graphs

We start by defining the notion of coverings and lifts.
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Definition 13.6. LetG andH be two graphs. We say that a functionf : V (H) ! V (G) is a covering, if for every
v 2 V (H), the restriction off to the set of neighbors ofv, �H(v), is one to one and onto�G(f(v)).
If a covering function fromH toG exists, we say thatH lifts G.

Example 13.7. The zig-zag product ofG andH (whereH is the smaller of the two) liftsH2.

Remark 13.8. If G is connected then every covering function onG has a covering numbern, such that for every
v 2 V (G), jf�1(v)j = n, and for everye 2 E(G), jf�1(e)j = n.

Definition 13.9. Let f be a covering function onG. For a nodev 2 V (G), we say thatf�1(v) is the fiber ofv.

LetG be a connected graph. We denote byLn(G) the set of graphs that are lifts ofG with covering numbern.
We would like to characterize the members ofLn(G). If H 2 Ln(G) thenV (H) = V (G) � [n]. That is, for every
v 2 V (G), the nodes(v; 1); � � � ; (v; n) in V (H) are the fiber ofv. Next we define the edges ofH , for every edge
(v; u) 2 E(G) we take some permutation� 2 Sn and define the following edges inH , ((v; i); (u; �(i))) (for every
i 2 [n]). Thus every choice of permutations defines a member inLn(G). This also gives us a way to sample random
elements from this set.

What can we say about the eigenvalues of lifts ofG? We know that the eigenvalues ofG are also the eigenvalues
of its lifts. To see this, leth : V (G) ! R be an eigenfunction ofG with eigenvalue�, and letH coverG with the
mapf : V (H) ! V (G), thenh Æ f is an eigenfunction ofH with the same eigenvalue. Thus ifH lifts G, we can
talk about itsold eigenvalues, i.e. those that were inherited fromG, and itsneweigenvalues, which are the rest of the
eigenvalues.

Definition 13.10. The universal covering space of a graphG is a graph that lifts all the lifts ofG.

Example 13.11.The infinited-regular tree is the universal covering space of everyd-regular graph.

Grienberg and Lubotzky gave the following definition which extends the definition of Ramanujan graphs to general
(non-regular) graphs.

Definition 13.12. We say that a graphG is Ramanujan if the absolute value of every eigenvalue ofG except�0 is at
most the spectral radius1 of the universal covering space ofG.

Conjecture 13.13.For every graphsG, if we lift it high enough then almost surely we will get a Ramanujan graph.

Lubotzky and Nagnibeda falsified this conjecture by constructing an infinite treeT , that covers infinite number of
finite graphs such that none of them is Ramanujan.

Friedman showed that the construction of Lubotzky and Nagnibeda, in fact, constructs a single graphG� that
is covered by all the graphs thatT covers and has large second eigenvalue (i.e. larger than the spectral radius of
T ). Since all the other graphs inherit the eigenvalues ofG�, none of them can be Ramanujan. He then rephrased
Conjecture 13.13 as follows,

Conjecture 13.14. For every graphG, if we lift it high enough to a graphH , then thenew eigenvalues ofH will
almost surely be at most the spectral radius of the universal covering ofH .

To support his conjecture, Friedman proved the following theorem.

Theorem 13.15. Let G be a graph with a largest eigenvalue�0, and let� be the spectral radius of its universal
covering space. Then in almost every (high enough) lift ofG, every new eigenvalue� satisfies,

� �
p
�0�+ o(1)

This is a generalization of the following result by Broder and Shamir.

Theorem 13.16.For almost everyd-regular graph, the second eigenvalue is at mostO(d
3
4 ).

To see that Theorem 13.15 generalizes 13.16, note that ford-regular graphs,�0 = d and� =
p
d.

1We refer the reader to lecture 5. There we defined the spectrum�(AT ) of the adjacency matrix of an infinite treeT . The spectral radius is the
maximal (absolute) value in�(AT ).



76CHAPTER 13. ON EIGENVALUES OF RANDOM GRAPHS AND THE ABUNDANCE OF RAMANUJAN GRAPHS



Chapter 14

Some Eigenvalue Theorems

Notes taken by Yonatan Bilu

Summary: The last lecture in the course surveys several bounds on eigenvalues of symmetric matrices,
and in particular those of graphs. Throughout this summary, the eigenvalues of a graph refer to the
eigenvalues of its adjacency matrix, and are denoted by�1 � �2 � ::: � �n.

The class ended in a picnic, where juicy watermelon slices were served on Harry Potter plates, along side
Harry Potter napkins, to students wearing silly Harry Potter paper hats.

Theorem 14.1. For everyd and� there is ac = c(�; d), such that ifG is a d-regular graph onn vertices, then the
number of its eigenvalues with absolute value greater than2

p
d� 1� � is at leastcn.

Proof. See “Elementary Number Theory, Group Theory and Ramanujan Graphs”, by G. Davidoff, P. Sarnak and A.
Vallete. The proof makes use of the notoriousC̆ebyshev Polynomials.

Theorem 14.2. (Füredi & Komlos̆ ’81) : LetP1 be a random distribution onR with expectation� and variance�2,
andP2 a random distribution onR with expectation� and variance�2 as well. Assume further that both distributions
are bounded. LetA be a real,n � n symmetric matrix, with off-diagonal entries chosen i.i.d. according toP1, and
diagonal entries chosen i.i.d. according toP2. Then with probability tending to1 asn tends to infinity the following
holds:

1. maxi�2 j�ij < 2�n+O(n
1
3 logn)

2. �1 � N((n� 1)�+ � + �2

n ; 2�
2)1

Proof. The proof is derived by looking at moments of increasing order. An alternative approach, by Kahn and Sze-
meredi, relies on the Rayleigh quotient to understand the behavior of random matrices.

Theorem 14.3. (Broder & Shamir ’87): For almost alld-regular graphs,�2 = O(d
3
4 ).

Proof. LetG be a random2d-regular graph onn vertices, generated by choosingd random permutations,�1; :::; �d,
and defining an edge(v; �i(v)) for everyv 2 [n] andi 2 [d]. Let P be the transition matrix of the Markov chain
defined by the graph, i.e. it’s adjacency matrix divided by2d. Let �1 � �2 � ::: � �n be its eigenvalues, and
� = maxfj�2j; j�njg. Since�1 = 1, and for anyk, f�ki gni=1 are the eigenvalues ofP k, we have�2k � tr(P 2k)� 1,
and therefore:

E(�) � (E(�2k ))
1
2k � (E(tr(P 2k ))� 1)

1
2k ; (14.1)

where the inequality on the left follows from Jansen’s inequality.
Let v be a vertex ofG. A path in the graph that starts atv is uniquely defined be a wordS over the alphabet

f�1; ��11 ; :::; �d; �
�1
d g (these permutations label the edges of the path). Let us generate the graph by going along a

1N(�; �2) refers to the Normal Distribution with expectation� and variance�2.
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random path, and choosing�i(u) uniformly among the currently allowed values. In other words, say we are currently
at a vertexu. We choose uniformly at randomi 2 [d] and� 2 f�1; 1g. If ��i (u) is already defined, we move to that
vertex. We call this a “forced move”. Otherwise, we choose��i (u) uniformly at random among the values not yet
taken by��i . We call this a “free move”.

Definered(S) to be the reduction ofS, that is, what remains ofS if we repeatedly remove all two consecutive
letters in it of the form�i; �

�1
i .

Since we want to boundtr(P 2k), we would like to bound the probability thatS induces a path that starts and ends
in v. We divide this event into three:

1. red(S) is the identity.

2. The path defined byS has exactly one (simple) loop.

3. The path defined byS has at least two loops.

We bound each of these in the following three lemmas:

Lemma 14.4. LetS be a word of length2k generated as above, then:

Pr[red(S) = ;] � (
2

d
)k

Proof. The idea is to count closed paths in the infinite2d-regular tree, using Catalan numbers.

Lemma 14.5. LetS0 be a word of length2k generated as above, and letS = red(S0). Denotes = jSj, and assume
s > 1, then:

Pr[S start at 1, has exactly one loop, and ends in 1] � 1

n
+O(

s

n2
)

Proof. Assume w.l.o.g. thatS is a loop (otherwise, we argue for the loop, which is even shorter thans), and denote
the vertices it visits1 = v0; :::; vs = 1. Since all these vertices are distinct, the choice made atvs�1 is free. Therefore,
the probability that at this point vertex1 is chosen is 1

n�s =
1
n +O( s

n2 )

Lemma 14.6. LetS be a word of length2k generated as above,then:

Pr[S has two loops] � O(
k4

n2
)

Proof. ForS to have two loops there have to be two “free choices” where we choose a vertex that was already visited
before. The probability of choosing a vertex that was already chosen before, is at most2k

n . The probability of this

happening at two specific steps, is at most4k2

n2 . By the union bound, the probability that it happens at some two steps

isO( k
4

n2 ).

Note that Lemma 14.5 is not exactly what we need, since it deals with a reduced word. Broder and Shamir also
bound the probability that whenjSj = 2k, jred(S)j = s. With this, they show that the probability of the second case

is bounded by1n +O( k2
k

ndk ). This, together with the other two bounds yields:

Pr[S starts at v and returns to v] � (
2

d
)k +

1

n
+O(

k2k

ndk
+
k4

n2
) (14.2)

Finally, we need to choose thek that minimizes the RHS, so we roughly need( 2d)
k = k4

n2 , or k � (2 �
o(1)) logd=2 n. Putting this back in 14.1, we getE(�) � ( 2d )

1
4 (1 + o(1)). The proof is finished by showing that

� is concentrated around its mean by using martingales.

Note: Currently, the best result is by Joel Friedman, who showed�2 �
p
2d� 1 + �, for all � > 0.
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Note: The random model of Broder & Shamir, that of choosingd
2 random matchings, does not induce a

uniform distribution ond-regular graphs. However, this model iscontiguousto the uniform model, that
is, any graph property that occurs in one of them w.h.p., occurs w.h.p. in the other as well. For details see
chapter 9 in “Random Graphs” by S. Janson, T. Luczak and A. Ruciński.
Another source of reference is Nick Wormald’s survey, “Models of random regular graphs”, which appears
in “Surveys in Combinatorics”, 1999, J.D. Lamb and D.A. Preece, eds.
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