
Welcome to CS 127!

This handout contains:

• Course overview and syllabus
• Lecture notes for lecture 1: Tue 1/26.
• Lecture notes for lecture 2: Thu 1/28.
• Homework 1 – The first problem set, due Friday Feb 5, 5pm.

All information about the course (including links to the canvas and Piazza
websites there) can be found on its home page:
http://www.boazbarak.org/cs127 (google “CS127 boaz”)

If you take this course, you need to:

• Read the lecture notes for lectures 1 and 2; preferably before the lecture
on Thursday and in any case no later than the weekend. (See also
mathematical background document on the web page.)

• Sign up to Piazza website today (so you can get announcements) and
post intro message about yourself on discussion board sometime this
week (see Exercise 1 in the homework).

• From week 2 on, you will need to read lecture notes for each lecture
before it’s given, and do a short reading comprehension quiz on the
canvas website before the Thursday lecture. First quiz will be on lectures
1-4 due on Thu 2/4 11:30am.

• Problem sets 2 and onwards will be due on Tuesday 11:30am the week
after they are given (submit via canvas).

• The ideal way to prepare the homework is to type them using
Markdown. Source files for the P-sets are on the web and you can use
https://www.madoko.net/ to edit them and create a PDF.

http://www.boazbarak.org/cs127
https://www.madoko.net/

CS 127: Cryptography / Boaz Barak

Foreword and Syllabus

“Human ingenuity cannot concoct a cipher which human ingenuity
cannot resolve.” Edgar Allan Poe, 1841

Cryptography - the art or science of “secret writing” - has been around for several
millenia, and for almost all of that time Edgar Allan Poe’s quote above held
true. Indeed, the history of cryptography is littered with the figurative corpses of
cryptosystems believed secure and then broken, and sometimes with the actual
corpses of those who have mistakenly placed their faith in these cryptosystems.
Yet, something changed in the last few decades. New cryptosystems have
been found that have not been broken despite being subjected to immense
efforts involving both human ingenuity and computational power on a scale that
completely dwarves the “crypto breakers” of Poe’s time. Even more amazingly,
these cryptosystem are not only seemingly unbreakable, but they also achieve
this under much harsher conditions. Not only do today’s attackers have more
computational power but they also have more data to work with. In Poe’s age,
an attacker would be lucky if they got access to more than a few ciphertexts
with known plaintexts. These days attackers might have massive amounts of
data- terabytes or more - at their disposal. In fact, with public key encryption,
an attacker can generate as many ciphertexts as they wish.

These new types of cryptosystems, both more secure and more versatile, have
enabled many applications that in the past were not only impossible but in fact
unimaginable. These include secure communication without sharing a secret,
electronic voting without a trusted authority, anonymous digital cash, and many
more. Cryptography now supplies crucial infrastructure without which much of
the modern “communication economy” could not function.

This course is about the story of this cryptographic revolution. However, beyond
the cool applications and the crucial importance of cryptography to our society,
it contains also intellectual and mathematical beauty. To understand these often
paradoxical notions of cryptography, you need to think differently, adapting
the point of view of an attacker, and (as we will see) sometimes adapting the
points of view of other hypothetical entities. More than anything, this course is
about this cryptographic way of thinking. It may not be immediately applicable
to protecting your credit card information or to building a secure system, but
learning a new way of thinking is its own reward.

1

Syllabus

In this fast-paced course, I plan to start from the very basic notions of cryp-
togrpahy and by the end of the term reach some of the exciting advances that
happened in the last few years such as the construction of fully homomorphic
encryption, a notion that Brian Hayes called “one of the most amazing magic
tricks in all of computer science”, and indistinguishability obfuscators which are
even more amazing. To achieve this, our focus will be on ideas rather than imple-
mentations and so we will present cryptographic notions in their pedagogically
simplest form– the one that best illustrates the underlying concepts– rather than
the one that is most efficient, widely deployed, or conforms to Internet standards.
We will discuss some examples of practical systems and attacks, but only when
these serve to illustrate a conceptual point.

Depending on time, I plan to cover the following notions:

• Part I: Introduction

1. How do we define security for encryption? Arguably the most
important step in breaking out of the “build-break-tweak” cycle
that Poe’s quote described has been the idea that we can have a
mathematically precise definition of security, rather than relying on
fuzzy notions, that allow us only to determine with certainty that a
system is broken but never have a chance of proving that a system is
secure .

2. Perfect security and its limitations: Showing the possibility (and
the limitations) of encryptions that are perfectly secure regardless the
attacker’s computational resources.

3. Computational security: Bypassing the above limitations by re-
stricting to computationally efficient attackers. Proofs of security by
reductions.

• Part II: Private Key Cryptography

1. Pseudorandom generators: The basic building block of cryptog-
raphy, which also provided a new twist on the age-old philosophical
and scientific question of the nature of randomness.

2. Pseudorandom functions, permutations, block ciphers: Block
ciphers are the working horse of crypto.

3. Authentication and active attacks: Authentication turns out to
be as crucial, if not more, to security than secrecy and often a pre-
condition to the latter. We’ll talk about notions such as Message
Authentication Codes and Chosen-Ciphertext-Attack secure encryp-
tion, as well as real-world examples why these notions are necessary.

2

4. Hash functions and the “Random Oracle Model”: Hash func-
tions are used all over in crypto, including for verifying integrity,
entropy distillation, and many other cases.

5. Building pseudorandom generators from one-way permuta-
tions (optional): Justifying our “axiom” of pseudo-random genera-
tors by deriving it from a weaker assumption.

• Part III: Pubic key encryption

1. Public key cryptography and the obfuscation paradigm: How
did Diffie, Hellman, Merkle, Ellis even dare to imagine the possiblity
of public key encryption?

2. Constructing public key encryption: Factoring, discrete log,
and lattice based systems: We’ll discuss several variants for con-
structing public key systems, including those that are widely deployed
such as RSA, Diffie-Hellman, and the ellyptic curve variants, as well as
some variants of lattice based cryptosystems that have the advantage
of not being broken by quantum computers, as well as being more
versatile. The former is the reason why the NSA has advised people
to transition to lattice-based cryptosystems in the not too far future.

3. Signature schemes: These are the public key versions of authenti-
cation though interestingly are easier to construct in some sense than
the latter.

4. Active attacks for encryption: Chosen ciphertext attacks for
public key encryption.

• Part IV: Advanced notions

1. Fully homomorphic encryption: Computing on encrypted data.

2. Multiparty secure computation: An amazing construction that
enables applications such as playing poker over the net without trust-
ing the server, privacy preserving data mining, electronic auctions
without a trusted auctioneer, electronic elections without a trusted
central authority.

3. Zero knowledge proofs: Prove a statement without revealing the
reason to why its true.

4. Quantum computing and cryptography: Shor’s algorithm to
break RSA and friends. Quantum key distribution. On “quantum
resistant” cryptography.

5. Indistinguishability obfuscation: Construction of indistinguisha-
bility obfuscators, the potential “master tool” for crypto.

6. Practical protocols: Techniques for constructing practical proto-
cols for particular tasks as opposed to general (and often inefficient)

3

feasibility proofs.

Prerequisites

The main prerequisite is the ability to read, write (and even enjoy!) mathematical
proofs. In addition, familiarity with algorithms, basic probability theory and
basic linear algebra will be helpful. We’ll only use fairly basic concepts from all
these areas: e.g. Oh-notation- e.g. O(n) running time- from algorithms, notions
such as events, random variables, expectation, from probability theory, and
notions such as matrices, vectors, and eigenvectors. Mathematically mature
students should be able to pick up the needed notions on their own. See the
“mathematical background” handout for more details.

No programming knowledge is needed. If you’re interested in the course but
are not sure if you have sufficient background, or you have any other questions,
please don’t hesitate to contact me.

Why is cryptography hard?

Cryptography is a hard topic. Over the course of history, many brilliant people
have stumbled in it, and did not realize subtle attacks on their ciphers. Even
today it is frustratingly easy to get crypto wrong, and often system security is
compromised because developers used crypto schemes in the wrong, or at least
suboptimal, way. Why is this topic (and this course) so hard? Some of the
reasons include:

• To argue about the security of a cryptographic scheme, you have to think
like an attacker. This requires a very different way of thinking than what
we are used to when developing algorithms or systems, and arguing that
they perform well.

• To get robust assurances of security you need to argue about all possible
attacks . The only way I know to analyze this infinite set is via mathematical
proofs . Moreover, these types of mathematical proofs tend to be rather
different than the ones most mathematicians typically work with. Because
the proof itself needs to take the viewpoint of the attacker, these often
tend to be proofs by contradiction and involve several twists of logic that
take some getting used to.

• As we’ll see in this course, even defining security is a highly non trivial task.
Security definitions often get subtle and require quite a lot of creativity.
For example, the way we model in general a statement such as “An attacker
Eve does not get more information from observing a system above what
she knew a-priori” is that we posit a “hypothetical alter ego” of Eve called
Lilith who knows everything Eve knew a-priori but does not get to observe
the actual interaction in the system. We then want to prove that anything

4

that Eve learned could also have been learned by Lilith. If this sounds
confusing, it is. But it is also fascinating, and leads to ways to argue
mathematically about knowledge as well as beautiful generalizations of
the notion of encryption and protecting communication into schemes for
protecting computation .

If cryptography is so hard, is it really worth studying? After all, given this
subtlety, a single course in cryptography is no guarantee of using (let alone
inventing) crypto correctly. In my view, regardless of its immense and growing
practical importance, cryptography is worth studying for its intellectual content.
There are many areas of science where we achieve goals once considered to be
science fiction. But cryptography is an area where current achievements are so
fantastic that in the thousands of years of secret writing people did not even
dare imagine them. Moreover, cryptography may be hard because it forces you
to think differently, but it is also rewarding because it teaches you to think
differently. And once you pass this initial hurdle, and develop a “cryptographer’s
mind”, you might find that this point of view is useful in areas that seem to
have nothing to do with crypto.

5

CS 127: Cryptography / Boaz Barak

Lecture 1 - Introduction

Optional additional reading: Chapters 1 and 2 of Katz-Lindell book.1

Ever since people started to communicate, there were some messages that they
wanted kept secret. Thus cryptography has an old though arguably undistin-
guished history. For a long time cryptography shared similar features with
Alchemy as a domain in which many otherwise smart people would be drawn
into making fatal mistakes. d The definitive text on the history of cryptography
is David Kahn’s “The Codebreakers”, whose title already hints at the ultimate
fate of most cryptosystems.2 (See also “The Code Book” by Simon Singh.) We
now recount just a few stories to get a feel for this field. But, before we do so,
we should introduce the cast of characters. The basic setting of “encryption” or
“secret writing” is the following: one person, whom we will call Alice, wishes
to send another person, whom we will call Bob, a secret message. Since Alice
and Bob are not in the same room (perhaps because Alice is imprisoned in a
castle by her cousin the queen of England), they cannot communicate directly
and need to send their message in writing. Alas, there is a third person, whom
we will call Eve, that can see their message. Therefore Alice needs to find a way
to encode or encrypt the message so that only Bob (and not Eve) will be able to
understand it.

In 1587, Mary the queen of Scots, and the heir to the throne of England, wanted
to arrange the assasination of her cousin, queen Elisabeth I of England, so that
she could ascend to the throne and finally escape the house arrest under which
she has been for the last 18 years. As part of this complicated plot, she sent
a coded letter to Sir Anthony Babington. It is what’s known as a substitution
cipher where each letter is transformed into a different symbol, and so the
resulting letter looks something like the following:

At a first look, such a letter might seem rather inscrutable- a meaningless
sequence of strange symbols. However, after some thought, one might recognize
that these symbols repeat several times and moreover that different symbols
repeat with different frequencies. Now it doesn’t take a large leap of faith to
assume that perhaps each symbol corresponds to a different letter and the more
frequent symbols correspond to letters that occur in the alphabet with higher

1Because this is an undergraduate course, I omit almost all references and credits from
these lecture notes unless the name has become standard in the literature, or I believe that the
story of some discovery can serve a pedagogical point. See the Katz-Lindell book for historical
notes and references.

2Traditionally, cryptography was the name for the activity of making codes, while cryp-
toanalysis is the name for the activity of breaking them, and cryptology is the name for the
union of the two. These days cryptography is often used as the name for the broad science
of constructing and analyzing the security of not just encryptions but many schemes and
protocols for protecting the confidentiality and integrity of communication and computation.

1

Figure 1: Snippet from encrypted communication between queen Mary and Sir
Babington

frequency. From this observation, there is a short gap to completely breaking the
cipher, which was in fact done by queen Elisabeth’s spies who used the decoded
letters to learn of all the co-conspirators and to convict queen Mary of treason,
a crime for which she was executed.

Trusting in superficial security measures (such as using “inscrutable” symbols)
is a trap that users of cryptography have been falling into again and again over
the years. As in many things, this is the subject of a great XKCD cartoon:

Figure 2: On the added security of using uncommon symbols

The Vigenère cipher is named after Blaise de Vigenère who described it in a
book in 1586 (though it was invented earlier by Bellaso). The idea is to use
a collection of subsitution cyphers - if there are n different ciphers then the
first letter of the plaintext is encoded with the first cipher, the second with the
second cipher, the nth with the nth cipher, and then the n+ 1st letter is again
encoded with the first cipher. The key is usually a word or a phrase of n letters,
and the ith substition cipher is obtained by shifting each letter ki positions in
the alphabet. This “flattens” the frequencies and makes it much harder to do
frequency analysis, which is why this cipher was considered “unbreakable” for
300+ years and got the nickname “le chiffre indéchiffrable” (“the unbreakable
cipher”). Charles Babbage cracked the Vigenère cipher in 1854 but did not
publish it. In 1863 Friedrich Kasiski broke the cipher and published the result.
The idea is that once you guess the length of the cipher, you can reduce the task
to breaking a simple substitution cipher which can be done via frequency analysis
(can you see why?). Confederate generals used Vigenère regularly during the
civil war, and their messages were routinely cryptanalzed by Union officers.

2

Figure 3: Confederate Cipher Disk for implementing the Vigenère cipher

Figure 4: Confederate encryption of the message “Gen’l Pemberton: You can
expect no help from this side of the river. Let Gen’l Johnston know, if possible,
when you can attack the same point on the enemy’s lines. Inform me also and I
will endeavor to make a diversion. I have sent some caps. I subjoin a despatch
from General Johnston.”

3

The story of the Enigma cipher had been told many times, and you can get
some information on it from Kahn’s book as well as Andrew Hodges’ biography
of Alan Turing. This was a mechanical cipher (looking like a typewriter) where
each letter typed would get mapped into a different letter depending on the
(rather complicated) key and current state of the machine which had several
rotors that rotated at different paces. An identically wired machine at the other
end could be used to decrypt. Just as many ciphers in history, this has also
been believed by the Germans to be “impossible to break” and even quite late
in the war they refused to believe it was broken despite mounting evidence to
that effect. (In fact, some German generals refused to believe it was broken even
after the war.) Breaking Enigma was an heroic effort which was initiated by
the Poles and then completed by the British at Bletchley Park; as part of this
effort they built arguably the world’s first large scale mechanical computation
devices (though they looked more similar to washing machines than to iPhones).
They were also helped along the way by some quirks and errors of the german
operators. For example, the fact that their messages ended with “Heil Hitler”
turned out to be quite useful. Here is one entertaining anecdote: the Enigma
machine would never map a letter to itself. In March 1941, Mavis Batey, a
cryptanalyst at Bletchley Park received a very long message that she tried to
decrypt. She then noticed a curious property— the message did not contain the
letter “L”.3 She realized that it must be the case that the operator, perhaps to
test the machine, have simply sent out a message where he repeatedly pressed the
letter “L”. This observation helped her decode the next message, which helped
inform of a planned Italian attack and secure a resounding British victory in
what became known as “the Battle of Cape Matapan”. Mavis also helped break
another Enigma machine which helped in the effort of feeding the Germans with
the false information that the main allied invasion would take place in Pas de
Calais rather than on Normandy. See this inteview with Sir Harry Hinsley for
more on the effect of breaking the Enigma on the war. General Eisenhower said
that the intelligence from Bletchley park was of “priceless value” and made a
“very decisive contribution to the Allied war effort”.

Defining encryptions

We now turn to actually defining what is an encryption scheme. Clearly we can
encode every message as a string of bits, i.e., an element of {0, 1}` for some `.
Similarly, we can encode the key as a string of bits as well, i.e., an element of
{0, 1}n for some n. Thus, we can think of an encryption scheme as composed
of two functions. The encryption function E maps a secret key k ∈ {0, 1}n and
a message (known also as plaintext) m ∈ {0, 1}` into a ciphertext c ∈ {0, 1}o

for some o. We write this as c = Ek(m). The decryption function D does the
reverse operation, mapping the secret key k and the cyphertext c back into the

3Here is a nice exercise: compute (up to an order of magnitude) the probability that a
50-letter long message composed of random letters will end up not containing the letter “L”.

4

http://www.cix.co.uk/~klockstone/hinsley.htm

plaintext message m, which we write as m = Dk(c). The basic equation is that
if we use the same key for encryption and decryption, then we should get the
same message back. That is, for every k ∈ {0, 1}n and m ∈ zo`,

m = Dk(Ek(m)) .

A note on notation: We will always use i, j, `, n, o to denote natural
numbers. n will often denote the length of our secret key, and ` the
length of the message, sometimes also known as “block length” since
longer messages are simply chopped into “blocks” of length ` and
also appropriately padded. We will use k to denote the secret key, m
to denote the secret plaintext message, and c to denote the encrypted
ciphertext. Note that c,m and k are bit strings of lengths o, ` and
n respectively. The length of the secret key is often known as the
“security parameter” and in other texts it is often denoted by k or κ.
We use n to correspond with the standard algorithmic notation for
input length (as in O(n) time algorithms).

Note that this definition so far says nothing about security and does not rule
out trivial “encryption” schemes such as the scheme Ek(m) = m that simply
outputs the plaintext as is. Defining security is tricky, and we’ll take it one step
at a time, but lets start by pondering what is secret and what is not. A priori
we are thinking of an attacker Eve that simply sees the ciphertext C and does
not know anything on how it was generated. So, it does not know the details
of E and D, and certainly does not know the secret key k. However, many of
the troubles past cryptosystems went through was caused by them relying on
“security through obscurity”— trusting that the fact their methods are not known
to their enemy will protect them from being broken. This is a faulty assumption -
if you reuse a method again and again (even with a different key each time) then
eventually your adversaries will figure out what you are doing. And if Alice and
Bob meet frequently in a secure location to decide on a new method, they might
as well take the opportunity to exchange their secrets.. These considerations led
Kerchoffs to state the following principle:

A cryptosystem should be secure even if everything about the system,
except the key, is public knowledge. (Auguste Kerckhoffs, 1883)

(The actual quote is “Il faut qu’il n’exige pas le secret, et qu’il puisse sans
inconvénient tomber entre les mains de l’ennemi” loosely translated as “The
system must not require secrecy and can be stolen by the enemy without causing
trouble”. According to Steve Bellovin the NSA version is “assume that the first
copy of any device we make is shipped to the Kremlin”.)

Why is it OK to assume the key is secret and not the algorithm? Because
we can always choose a fresh key. But of course if we choose our key to be
“1234” or “passw0rd!” then that is not exactly secure. In fact, if you use any
deterministic algorithm to choose the key then eventually your adversary will
figure out. Therefore for security we must choose the key at random. Thus
following can be thought of as a restatement of Kerchkoffs’s principle:

5

There is no secrecy without randomness

This is such a crucial point that is worth repeating:

There is no secrecy without randomness

At the heart of every cryptographic scheme there is a secret key, and the secret
key is always chosen at random. A corollary of that is that to understand
cryptography, you need to know some probability theory. Fortunately, we don’t
need much of probability- only probability over finite spaces, and basic notions
such as expectation, variance, concentration and the union bound suffice for most
of we need. In fact, understanding the following two statements will already get
you much of what you need for cryptography:

• For every fixed string x ∈ {0, 1}n, if you toss a coin n times, the probability
that the heads/tails pattern will be exactly x is 2−n.

• A probability of 2−128 is really really small.

The handout on mathematical background contains some of the probability
and discrete mathematics that we’ll need, and this will also be reviewed in the
sections.

Figure 5: XKCD Cartoon: Random number generator

Note: Generating randomness in actual cryptographic systems

How do we actually get random bits in actual systems? The main idea is to use
a two stage approach. First we need to get some data that is unpredictable from
the point of view of an attacker on our system. Some sources for this could be
measuring latency on the network or hard drives (getting harder with solid state
disk), user keyboard and mouse movement patterns (problematic when you need
fresh randomness at boot time), clock drift and more, there are some other
sources including audio, video, and network. All of these can be problematic,
especially for servers or virtual machines, and so hardware based random number
generators based on phenomena such as thermal noise or nuclear decay are

6

becoming more popular. Once we have some data X that is unpredictable, we
need to estimte the entropy in it. You can roughly imagine that X has k bits of
entropy if the probability that an attacker can guess X is at most 2−k. People
then use a hash function (an object we’ll talk about more later) to map X into
a string of length k which is then hopefully distributed (close to) uniformly
at random. All of this process, and especially understanding the amount of
information an attacker may have on the entropy sources, is a bit of a dark art
and indeed a number of attacks on cryptographic systems were actually enabled
by weak generation of randomness. Here are a few examples.

One of the first attacks was on the SSL implementation of Netscape (the browser
at the time). Netscape use the following “unpredicatable” information— the
time of day and a process ID both of which turned out to be quite predictable
(who knew attackers have clocks too?). Netscape tried to protect its security
through “security through obscurity” by not releasing the source code for htier
pseudorandom generator, but it was reverse engineered by Ian Goldberg and
David Wagner (Ph.D students at the time) who demonstrated this attack.

In 2006 a programmer removed a line of code from the procedure to generate
entropy in OpenSSL package distributed by Debian since it caused a warning
in some automatic verification code. As a result for two years (until this was
discovered) all the randomness generated by this procedure used only the process
ID as an “unpredictable” source. This means that all communication done by
users in that period is fairly easily breakable (and in particular, if some entities
recorded that communication they could break it also retroactively). This caused
a huge headache and a worldwide regeneration of keys, though it is believed that
many of the weak keys are still used. See XKCD’s take on that incidence.

In 2012 two separate teams of researchers scanned a large number of RSA keys on
the web and found out that about 4% of them are easy to break. The main issue
were devices such as routers, internet-connected printers and such. These devices
sometimes run variants of Linux– a desktop operating system– but without a
harddrive, mouse or keyboard, they don’t have access to many of the entropy
sources that desktop have. Coupled with some good old fashioned ignorance
of cryptography and software bugs, this led to many keys that are downright
trivial to break, see this blog post and this web page for more details.

After the entropy is collected and then “purified” or “extracted” to a uniformly
random string that is, say, a few hundred bits long, we often need to “expand” it
into a longer string that is also uniform (or at least looks like that for all practical
purposes). We will discuss how to go about that in the next lecture. This step
has its weaknesses too and in particular the Snowden documents, combined
with observations of Shumow and Frguson, strongly suggest that the NSA has
deliberately inserted a trapdoor in one of the pseudorandom generators published
by the National Institute of Standards and Technologies (NIST). Fortunately,
this generator wasn’t widely adapted but apparently the NSA did pay $10M
to RSA security so the latter would make this generator their default option in
their products.

7

https://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
https://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
http://www.xkcd.com/424/
https://freedom-to-tinker.com/blog/nadiah/new-research-theres-no-need-panic-over-factorable-keys-just-mind-your-ps-and-qs/
https://factorable.net/

Defining the secrecy requirement.

Defining the secrecy requirement for an encryption is not simple. Over the
course of history, many smart people got it wrong and convinced themselves
that ciphers were impossible to break. The first person to truly ask the question
in a rigorous way was Claude Shannon in 1949. Simply by asking this question,
he made an enormous contribution to the science of cryptography and practical
security. We now will try to examine how one might answer it. Let me warn you
ahead of time that we are going to insist on a mathematically precise definition
of security. That means that the definition must capture security in all cases,
and the existence of a single counterexample, no matter how “silly”, would
make us rule out a candidate definition. This exercise of coming up with “silly”
counterexamples might seem, well, silly. But in fact it is this method that has
led Shannon to formulate his theory of secrecy, which (after much followup work)
eventually revolutionized cryptography, and brought this science to a new age
where Poe’s maxim no longer holds, and we are able to design ciphers which
human (or even nonhuman) ingeniuity cannot break.

The most natural way to attack an encryption is for Eve to guess all possible
keys. In many encryption schemes this number is enormous and this attack
is completely infeasible. For example, the theoretical number of possibilities
in the Enigma cipher was about 10113 which roughly means that even if we
built a filled the milky way galaxy with computers operating at light speed, the
sun would still die out before it finished examining all the possibilities.4 One
can understand why the Germans thought it was impossible to break. (Note
that despite the number of possibilities being so enormous, such a key can still
be easily specified and shared between Alice and Bob by writing down 113
digits on a piece of paper.) Ray Miller from the NSA had calculated that, in
the way the Germans used the machine, the number of possibilities was “only”
1023 which still would mean that it would take about a year to exhaust using
the fastest supercomputer of 2015, at a time digital computers were not yet
invented. Clearly, it is sometimes possible to break an encryption without trying
all possibilities, and so having a huge number of key combinations does not
guarantee security, as an attacker might find a shortcut (as the allies did) and
recover the key without trying all options.

But perhaps we can simply define security as requiring the key to be unrecoverable
except with tiny probability, no matter what method? Here is an attempt at
such a definition:

Security Definition (First Attempt): An encyption scheme (E,D) is n-
secure if no matter what method Eve employs, the probability that she can

4There are about 1068 atoms in the galaxy, so even if we assumed that each one of those
atoms was a computer that can process say 1021 decryption attempts per second (as the speed
of light is 109 meters per second and the diamter of an atom is about 10−12 meters), then it
would still take 10113−89 = 1024 seconds, which is about 1017 years to exhaust all possibilities,
while the sun is estimated to burn out in about 5 billion years.

8

recover the true key k from the ciphertext c is at most 2−n.

You might wonder if this definition is not too strong to make sense, after all how
are we going ever to prove that Eve cannot recover the secret key no matter
what she does? Edgar Allan Poe would say that there can always be a method
that we overlooked. However, in fact this definition is too weak! Consider the
following encryption: the secret key k is chosen at random in {0, 1}n but our
encryption scheme simply ignores it and lets Ek(m) = m and Dk(c) = c. This is
a valid encryption, but of course completely insecure as we are simply outputing
the plaintext in the clear. Yet, no matter what Eve does, if she only sees c and
not k, there is no way she can guess the true value of k with probability better
than 2−n, since it was chosen completely at random and she gets no information
about it. Formally, one can prove the following result:

Theorem: Let (E,D) be the encryption scheme above. For every function Eve :
{0, 1}` → {0, 1}n and for everym ∈ {0, 1}`, the probability that Eve(Ek(m)) = s
is exactly 2−n.

Proof: This follows beacuse Ek(m) = m and hence Eve(Ek(m)) = Eve(m)
which is some fixed value k′ ∈ {0, 1}n that is independent of k. Hence the
probability that k = s′ is 2−n. QED

The math behind the above argument is very simple, yet I urge you to read and
re-read the last two paragraphs until you are sure that you completely understand
why this encryption is in fact secure according to the above definition. This is
a “toy example” of the kind of reasoning that we will be employing constantly
throughout this course, and you want to make sure that you follow it.

So, the above “Theorem” is true, but one might question its meaning. Clearly
this silly example was not what we meant when stating this definition. However,
as mentioned above, we are not willing to ignore even silly examples and must
amend the definition to rule them out. One obvious objection is that we don’t
care about hiding the key- it is the message that we are trying to keep secret.
This suggests the next attempt:

Security Definition (Second Attempt): An encyption scheme (E,D) is
n-secure if for every message m no matter what method Eve employs, the
probability that she can recover m from the ciphertext c = Ek(m) is at most
2−n.

Now this seems like it captures our intended meaning. But remeber that we
are being anal, and truly insist that the definition holds as stated, namely that
for every plaintext message m and every function Eve : {0, 1}o → {0, 1}`, the
probability over the choice of k that Eve(Ek(m)) = m is at most 2−n. But now
we see that this is clearly impossible. After all, this is supposed to work for every
message m and every function Eve, but clearly if m is that all-zeroes message
0` and Eve is the function that ignores its input and simply outputs 0`, then it
will hold that Eve(Ek(m)) = m with probability one.

So, if before the definition was too weak, the new definition is too strong and

9

is impossible to achieve. The problem is that of course we could guess a fixed
message with probability one, so perhaps we could try to consider a definition
with a random message. That is:

Security Definition (Third Attempt): An encyption scheme (E,D) is n-
secure if no matter what method Eve employs, if m is chosen at random from
{0, 1}`, the probability that she can recover m from the ciphertext c = Ek(m) is
at most 2−n.

This weakened definition can in fact be achieved, but we have again weakened it
too much. Consider an encryption that hides the last `/2 bits of the message,
but completely reveals the first `/2 bits. The probability of guressing a random
message is 2−`/2, but this is still a scheme that would be completely insecure in
practice. The point being that in practice we don’t encrypt random messages—
our messages might be in English, might have common headers, and might have
even more structures based on the context. In fact, it may be that the message
is either “Yes” or “No” (or perhaps either “Attack today” or “Attack tomorrow”)
but we want to make sure Eve doesn’t learn which one it is.

Perfect Secrecy

So far all of our attempts at definitions oscillated between being too strong (and
hence impossible) or too weak (and hence not guaranteeing actual security). The
key insight of Shannon was that in a secure encryption scheme the ciphtertext
should not reveal any additional information about the plaintext. So, if for
example it was a priori possible for Eve to guess the plaintext with some
probability 1/k (e.g., because there were only k possiblities for it) then she
should not be able to guess it with higher probability after seeing the ciphertext.
This is formalized as follows:

Security Definition (Perfect Secrecy): An encryption scheme (E,D) is
perfectly secret if there for every set M ⊆ {0, 1}` of plaintexts, and for every
strategy used by Eve, if we choose at random m ∈ M and a random key
k ∈ {0, 1}n, then the probability that Eve guesses m after seeing Ek(m) is at
most 1/|M |.

In particular, if we encrypt either “Yes” or “No” with probability 1/2, then Eve
won’t be able to guess which one it is with probability better than half. In fact,
that turns out to be the heart of the matter:

Two to Many Theorem: An encryption scheme (E,D) is perfectly secret
if and only if for every two distinct plaintexts {m0,m1} ⊆ {0, 1}` and every
strategy used by Eve, if we choose at random b ∈ {0, 1} and a random key
k ∈ {0, 1}n, then the probability that Eve guesses mb after seeing Ek(mb) is at
most 1/2.

Proof: The “only if” direction is obvious— this condition is a special case of
the perfect secrecy condition for a set m of size 2.

10

The “if” direction is trickier. We need to show that if there is some set M (of
size possibly much larger than 2) and some strategy for Eve to guess (based on
the ciphertext) a plaintext chosen from M with probability larger than 1/|M |,
then there is also some set M ′ of size two and a strategy Eve′ for Eve to guess
a plaintext chosen from M ′ with probability larger than 1/2.

Let’s fix the message m0 for example to be the all zeroes message. Since
Eve(Ek(m0)) is a fixed string, if we pick a random m1 from M then it holds
that

Pr[Eve(Ek(m0)) = m1] ≤ 1/|M |

while under our assumption, on average it holds that

Pr[Eve(Ek(m1)) = m1] > 1/|M |

Thus in particular, due to linearity of expectation, there exists somem1 satisfying

Pr[Eve(Ek(m1)) = m1] > Pr[Eve(Ek(m0)) = m1] .

But this can be turned into an attacker Eve′ such that the probability that
Eve′(Ek(mb)) = mb is larger than 1/2. Indeed, we can define Eve′(c) to output
m1 if Eve(c) = m1 and otherwise output a random message in {m0,m1}. The
probability that Eve′(c) equals m1 is higher when c = Ek(m1) than when
c = Ek(m0), and since Eve′ outputs either m0 or m1, this means that the
probability that Eve′(Ek(mb)) = mb is larger than 1/2 (Can you see why?)
QED.

Exercise: Another equivalent condition for perfect secrecy is the following:
(E,D) is perfectly secret if for every plaintexts m,m′ ∈ {0, 1}`, the two random
variables {Ek(m)} and {Ek′(m′)} (for randomly chosen keys k and k′) have
precisely the same distribution.

So, perfect secrecy is a natural condition, and does not seem to be too weak
for applications, but can it actually be achieved? After all, the condition that
two different plaintexts are mapped to the same distribution seems somewhat at
odds with the condition that Bob would succeed in decrypting the ciphertexts
and find out if the plaintext was in fact m or m′. It turns out the answer is yes!
For example, the table below details a perfectly secret encryption for two bits.

Table 1: A perfectly secret encryption scheme with 2 bit keys, plain-
texts, and ciphertexts; the rows are indexed by possible ciphertexts,
the columns indexed by possible plaintexts, and the (c,m) location
of the matrix corresponds to the key that maps m to c.

Plain: 00 01 10 11
Cipher:

00
00 01 10 11

11

01
01 00 11 10

10
10 11 00 01

11
11 10 01 00

In fact, this can be generalized to any number of bits:

Theorem (One time pad, Vernam 1917): For every n, there is a perfectly
secret encryption (E,D) with plaintexts of n bits, where the key size and the
ciphertext size is also n.

Proof: The encryption scheme is actually very simple - to encrypt a message
m ∈ {0, 1}n with key k ∈ {0, 1}n, we output Ek(m) = m ⊕ k where ⊕ is the
exclusive or (XOR) operation. That is, m⊕ k is a vector in {0, 1}n such that
(m⊕ k)i = ki +mi (mod 2). Decryption works identically - Dk(c) = c⊕ k. It is
not hard to use the associativity of addition (and in particular XOR) to verify
that Dk(Ek(m)) = (m ⊕ k) ⊕ k = m ⊕ (k ⊕ k) = m where the last equality
follows from k ⊕ k = 0n (can you see why?). Now we claim that for every
message m ∈ {0, 1}n, the distribution Ek(m) for a random k is the uniform
distribution Un on {0, 1}n. By the exercise above, this implies that the scheme
is perfectly secret, since for every two messages m,m′ the distributions {Ek(m)}
and {Ek′(m′)} will both be equal to the uniform distribution. To prove the
claim we need to show that for every y ∈ {0, 1}n, Pr[Ek(m) = y] = 2−n where
this probability is taken over the choice of a random k ∈ {0, 1}n. Now note that
Ek(m) = y if and only if m ⊕ k = y or, equivalently, k = m ⊕ y. Since k is
chosen uniformly at random in {0, 1}n, the probability that it equals m⊕ y is
exactly 2−n QED.

Note: Importance of using the one time pad only once:

The “one time pad” is a name analogous to the “point away from
yourself gun”- the name suggests the fatal mistake people often end
up doing. Perhaps the most dramatic example of the dangers of “key
reuse” is the Venona Project. The Soviets have used the one-time
pad for their confidential communication since before the 1940’s
(WHEN?), and in fact even before Shannon apparently the U.S.
intelligence already knew that it is in principle “unbreakable” in 1941
(see page 32 in the Venona document)). However, it turned out that
the hassles of manufacturing so many keys for all the communication
took its toll on the Soviets and they ended up reusing the same

12

http://nsarchive.gwu.edu/NSAEBB/NSAEBB278/01.PDF
http://nsarchive.gwu.edu/NSAEBB/NSAEBB278/01.PDF

keys for more than one message, though they tried to use them for
completely different receivers in the (false) hope that this wouldn’t
be detected. The Venona project of the U.S. Army was founded
in February 1943 by Gene Grabeel- a former highschool teacher
from Madison Heights, Virgnia and Lt. Leonard Zukbo. In October
1943, they had their breakthrough when it was discovered that the
Russians are reusing their keys (credit to this discovery is shared
by Lt. Richard Hallock, Carrie Berry, Frank Lewis, and Lt. Karl
Elmquist, see page 27 in the document). In the 37 years of its
existence, the project has resulted in a treasure chest of intelligence,
exposing hundreds of KGB agents and Russian spies in the U.S. and
other countries, including Julius Rosenberg, Harry Gold, Klaus Fuchs,
Alger Hiss, Harry Dexter White and many others.

Necessity of long keys

The one time pad requires a key the size of the message, which means that
if you plan to communicate with x people, you are going to have to maintain
(securely!) x huge files that are each as long as the length of the maximum
total communication you expect with that person. Imagine that every time you
opened an account with Amazon, Google, or any other service, they would need
to send you in the mail a DVD full of random numbers, and every time you
suspected a virus, you’ll need to ask all these services for a fresh DVD. This
doesn’t sounds so appealing. Ideally, one could think that Alice and Bob only
share a key that is long enough to be unguessable, e.g., 128 bits, and use that
for all their communication. Unfortunately this is impossible to achieve with
perfect secrecy:

Theorem: If E is a perfectly secret system with key of length n and messages
of length ` then ` ≤ n.

Proof: Suppose, towards the sake of contradiction that there was a perfectly
secret system (E,D) with a key of length n but messages of length ` > n. Then
consider the following adversary strategy for Eve: given a ciphertext c, guess
a random key k ∈ {0, 1}n and output m = Dk(c). The probability that Eve is
successful is at least 2−n, since with this probability she guesses the key correctly.
But by perfect secrecy, if the message is chosen at random, she should have been
successful with probability at most 2−` < 2−n.

This proof might not be fully convincing - after all, an attack that succeeds with
probability 2−n is not very worrying. But this violation of the security definition
can be significantly boosted:

Theorem: If E is an encryption with key of length n and messages of length
≥ n+ 10 then there exist two messages m0,m1 and a strategy for Eve so that
given an encryption c = Ek(mb) for random k and b ∈ {0, 1}, Eve can output
mb with probability at least 0.99.

13

Proof: Suppose that we choose two messages m0,m1 at random, encrypt m1 to
obtain a ciphertext c1 and ask what is the probability that there exists some key
k such that c1 = Ek(m0). Now, let’s fix the choice of m0 and so consider the set
C0 = {Ek(m0) : k ∈ {0, 1}n}. The size of this set is at most 2n. Now for every
choice of the key k, the map m1 7→ Ek(m1) is one to one and so the image of
this map is some set Dk of size 2n+10 (i.e., there are exactly 2n+10 ciphertexts
that are the encryption under k of some m1 ∈ {0, 1}n+10). If we pick m1 at
random then c1 = Ek(m1) is chosen at random from the set Dk and hence the
probability that c1 falls into C0 is at most |C0|/|Dk| ≤ 2−10 < 0.01. Hence in
particular, there must be some choice of m0,m1 such that Eve decides given
c to output m0 if c ∈ C0 and output m1 otherwise, then she will be successful
with probability at least 0.99. QED

Note: The above proof is short but subtle. I suggest you try to read it very
carefuly and make sure you understand it, since it is a prototype for future
probabilistic arguments that we will be making regularly. It might help for
you to consider a “baby case” when there are, say, 10 possible messages and 4
possible keys, and try to prove in this case that you can always find a pair of
messages m0,m1 such that you can tell with probability at least 60% whether
an encryption was of m0 or of m1.

Advanced comment: Adding probability into the picture

There is a sense in which both our secrecy and our impossiblity results
might not be fully convincing, and that is that we did not explicitly
consider algorithms that use randomness . For example, maybe
Eve can break a perfectly secret encryption if she is not modeled
as a deterministic function Eve : {0, 1}o → {0, 1}` but rather a
probabilistic process. Similarly, maybe the encryption and decryption
functions as well could be probabilistic processes as well. It turns out
that none of those matter. For the former, note that a probabilistic
process can be thought of as a distribution over functions, in the
sense that we have a collection of functions f1, ..., fN mapping {0, 1}o

to {0, 1}`, and some probabilities p1, . . . , pN (non-negative numbers
summing to 1), so we now think of Eve as selecting the function fi

with probability pi. But if none of those functions can give advantage
better than 1/2, then neither can this collection. A similar (though
more involved) argument shows that the impossiblity result showing
that the key must be at least as long as the message still holds
even if the encryption and decryption algorithms are allowed to be
probabilistic processes as well (working this out is a great exercise).

14

~ MathDefs ~

CS 127: Cryptography / Boaz Barak

Additional reading: Chapter 3 up to and including Section 3.3 in Katz Lindell
book.

Recall our cast of characters- Alice and Bob want to communicate securely over
a channel that is monitored by the nosy Eve. In the last lecture, we have seen the
definition of perfect secrecy that guarantees that Eve cannot learn anything about
their communication beyond what she already knew. However, this security
came at a price. For every bit of communication, Alice and Bob have to exchange
in advance a bit of a secret key. In fact, the proof of this result gives rise to the
following simple Python program that can break every encryption scheme that
uses, say, a 128 bit key, with a 129 bit message:

Gets ciphertext as input and two potential plaintexts
Positive return value means first is more likely,
negative means second is more likely,
0 means both have same likelihood.
#
We assume we have access to the function Decrypt(key,ciphertext)
def Distinguish(ciphertext,plaintext1,plaintext2):

bias = 0
key = [0,0,....,0] #128 0's
while(sum(key)<128):

p = Decrypt(key,ciphertext)
if p==plaintext1: bias++
if p==plaintext1: bias--
increment(key)

return bias

increment key when thought of as a number sorted from least significant
to most significant bit. Assume not all bits are 1.
def increment(key):

i = key.index(0);
for j in range(i-1): key[j]=0
key[i]=1

Now, generating, distributing, and protecting huge keys causes immense logistical
problems, which is why almost all encryption schemes used in practice do in
fact utilize short keys (e.g., 128 bits long) with messages that can much longer
(sometimes even terrabytes or more of data).

So, why can’t we use the above Python program to break all encryptions in the
Internet and win infamy and fortune? We can in fact, but we’ll have to wait a
really long time, since the loop in Distinguish will run 2128 times, which will
take much more than the lifetime of the universe to complete, even if we used
all the computers on the planet.

1

However, the fact that this particular program is not a feasible attack, does not
mean there does not exist a different attack. But this still suggests a tantalizing
possibility: if we consider a relaxed version of perfect secrecy that restricts Eve
to performing computations that can be done in this universe (e.g., less than 2256

steps should be safe not just for human but for all potential alien civilizations)
then can we bypass the impossibility result and allow the key to be much shorter
than the message?

This in fact does seem to be the case, but as we’ve seen, defining security is a
subtle task, and will take some care. As before, the way we avoid (at least some
of) the pitfalls of so many cryptosystems in history is that we insist on very
precisely defining what it means for a scheme to be secure.

Let us defer the discussion how one defines a function being computable in “less
than T operations” and just say that there is a way to formally do so. Given
the perfect secrecy definition we saw last time, a natural attempt for defining
computational security would be the following:

Security Definition (First Attempt): An encryption scheme (E,D) is com-
putationally n-secure if for every two distinct plaintexts {m0,m1} ⊆ {0, 1}` and
every strategy of Eve using at most 2n computational steps, if we choose at
random b ∈ {0, 1} and a random key k ∈ {0, 1}n, then the probability that Eve
guesses mb after seeing Ek(mb) is at most 1/2.

This seems a natural definition, but is in fact impossible to achieve if the key is
shorter than the message. The reason is that if the message is even one bit longer
we can always have a very efficient procedure that achieves success probability of
about 1/2 + 2−n−1 by guessing the key. (I.e., replace the loop in Distinguish
by choosing the key at random.)

However, such tiny advantage does not seem very useful, and hence our actual
definition will be the following:

Security Definition (Computational Security): An encryption scheme
(E,D) is computationally n-secure if for every two distinct plaintexts {m0,m1} ⊆
{0, 1}` and every strategy of Eve using at most 2n computatoinal steps, if we
choose at random b ∈ {0, 1} and a random key k ∈ {0, 1}n, then the probability
that Eve guesses mb after seeing Ek(mb) is at most 1/2 + 2−n.

Having learned our lesson, let’s try to see that this strategy does give us the kind
of conditions we desired. In particular, let’s verify that this definition implies
the analogous condition to perfect secrecy.

Theorem: If (E,D) is computationally n-secure then every subset M ⊆ {0, 1}`
and every strategy of Eve using at most 2n− (100`+ 100) computational steps, if
we choose at random m ∈M and a random key k ∈ {0, 1}n, then the probability
that Eve guesses m after seeing Ek(mb) is at most 1/|M |+ 2−n+1.

Before proving this theorem note that it gives us a pretty strong guarantee. In
the exercises we will strengthen it even further showing that no matter what prior

2

information Eve had on the message before, she will never get any non-negligible
new information on it. One way to phrase it is that if your attacker used a
256-bit secure encryption to encrypt a message, then your chances of getting to
learn any additional information about it before the universe collapses are more
or less the same as the chances that a fairy will materialize and whisper it in
your ear.

Proof: The proof is rather similar to the equivalence of guessing one of two
messages vs. one of many messages for perfect secrecy. However, in the compu-
tational context we need to be careful keeping track of Eve’s running time. In
that proof we showed that if there exists:

• A subset M ⊆ {0, 1}` of messages

and

• An adversary Eve : {0, 1}o → {0, 1}` such that

Pr
m←RM,k←R{0,1}n

[Eve(Ek(m)) = m] > 1/|M |

Then there exist two messages m0,m1 and an adversary Eve′ : {0, 1}0 → {0, 1}`
such that Prb←R{0,1},k←R{0,1}n [Eve′(Ek(mb)) = mb] > 1/2.

To adapt this proof to the computational setting and complete the proof of the
current theorem we need to:

• Show that if the probability of Eve succeeding was 1
|M | + ε then the

probability of Eve′ succeeding is at least 1
2 + ε/2.

• Show that if Eve can be computed in T operations, then Eve′ can be
computed in T + 100`+ 100 operations.

The first point can be shown by simply doing the same proof more carefully,
keeping track how the advantage over 1

|M | for Eve translates into an advantage
over 1

2 for Eve′. The second point is obtained by looking at the definition of
Eve′ from that proof. On input c, Eve′ computed m = Eve(c) (which costs T
operations) and then checked if m = m0 (which costs, say, at most 5` operations),
and then output either 1 or a random bit (which is a constant, say at most 100
operations). QED

Note: The proof of this theorem is a model to how a great many of the results
in this course will look like. Generally we will have many theorems of the form:

“If there is a scheme S′ satisfying security definition X ′ then there
is a scheme S satisfying security definition X”

In this case X ′ was “computational n-security” (hardness of distinguishing
between encryptions of two ciphertexts) and X was the more general notion of
hardness of getting a non-trivial advantage over guessing for an encryption of

3

a random m ∈ M . Also here the scheme S was the same as S′, but generally
that need not always be the case. All of these proofs will have the same global
structure— we will assume towards a contradiction, that there is an efficient
adversay strategy Eve demonstrating that S violates X, and build from Eve
a strategy Eve′ demonstrating that S′ violates X. This is such an important
point that it deserves repeating:

The way you show that if S′ is secure then S is secure is by giving a
transformation from an adversary that breaks S into an adversary
that breaks S′

For computational security, we will always want that Eve′ will be efficient if
Eve is, and that will usually be the case because Eve′ will simply use Eve as a
black box, which it will not invoke too many times, and addition will use some
polynomial time preprocessing and postprocessing. The more challenging parts
of such proofs are typically:

• Coming up with the strategy Eve′.

• Analyzing the probability of success and in particular showing that if Eve
had non-negligible advantage then so will Eve′.

Figure 1: We show that the security of S′ implies the security of S by transforming
an adversary Eve breaking S into an adversary Eve′ breaking S′

The asymptotic approach

For practical security, often every bit of security matters. We want our keys to
be as short as possible and our schemes to be as fast as possible while satisfying
a particular level of security. However, for understanding the principles behind
encryption, keeping track of those bits can be a distraction, and so just like
we do for algorithms, we will use asymptotic analysis (also known as big Oh
notation) to sweep many of those details under the carpet.

To a first approximation, there will be only two types of running times we will
encounter in this course:

4

• Polynomial running time of the form d · nc for some constants d, c > 0 (or
poly(n) = nO(1) for short) , which we will consider as efficient

• Exponential running time of the form 2d·nε for some constants d, ε > 0 (or
2nΩ(1) for short) which we will consider as infeasible.1

Similarly, we will consider probabilities of the form 1/poly(n) as noticeable while
probabilities of the form 2−nΩ(1) whill be called negligible .

These are not all the theoretically possible running times. One can have interme-
diate functions such as nlogn though we will generally not encounter those. To
make things clean (and to correspond to standard terminology), we will say that
an algorithm A is efficient if it runs in time poly(n) when n is its input length
(which will always be the same, up to polynomial factors, as the key length).
If µ(n) is some probability that depends on the input/key length parameter n,
then we say that µ(n) is negligible if it’s smaller than every polynomial. That is,
for every c, d there is some N , such that if n > N then µ(n) < 1/(cn)d. Note
that for every non-constant polynomials p, q, µ(n) is negligible if and only if the
function µ′(n) = p(µ(q(n))) is negligible.

From now on, we will require all of our encryption schemes to be efficient
which means that the encryption and decryption algorithms should run in
polynomial time. Security will mean that any efficient adversary can make at
most a negligible gain in the probability of guessing the message over its a priori
probability. That is, we make the following definition:

Security Definition (Computational Security): An encryption scheme
(E,D) is computationally secure if for every two distinct plaintexts {m0,m1} ⊆
{0, 1}` and every efficient strategy of Eve, if we choose at random b ∈ {0, 1} and
a random key k ∈ {0, 1}n, then the probability that Eve guesses mb after seeing
Ek(mb) is at most 1/2 + µ(n) for some negligible function µ(·).

Counting number of operations.

One more detail that we’ve so far ignored is what does it mean exactly for a
function to be computable using at most T operations. Fortunately, when we
don’t really care about the difference between T and, say, T 2, then essentially
every reasonable definition gives the same answer. Formally, we can use the
notions of Turing machines or Boolean circuits to define complexity. For con-
creteness, lets define that a function F : {0, 1}n → {0, 1}m has complexity there
exists a Boolean circuit (that uses the AND, OR and NOT gates) with at most
T gates that computes F . We will often also consider probabilistic functions
in which case we allow the circuit a RAND gate that outputs a single random

1Some texts reserve the term exponential to running times of the form 2εn for some ε > 0
and call running time of , say, 2

√
n subexponential . However, we will generally not make this

distinction in this course.

5

bits. For more on circuit complexity you can take a look at Chapter 6 of my
computational complexity textbook with Arora (see also draft on the web).

The fact that we only care about asymptotics means you don’t really need to
think of gates, etc.. when arguing in cryptography. However, it is comforting to
know that this notion has a precise mathematical formulation. See the appendix
below for a more precise formulation of this and some discussion.

Our first conjecture

We are now ready to make our first conjecture:

The Cipher Conjecture:2 There exists a computationally scure encryption
scheme (E,D) (where E,D are efficient) with a key of size n for messages of
size n+ 1.

A conjecture is a well defined mathematical statement which (1) we believe is
true but (2) don’t know yet how to prove. Proving the cipher conjecture will be
a great achievement and would in particular settle the P vs NP question, which
is arguably the fundamental question of computer science. That is, the following
is known to be a theorem (feel free to ignore it if you don’t know the definition
of P and NP, though if it piques your curiousity, you can find more about it by
reading the first two chapters of my book with Arora):

Theorem: If P = NP then there does not exist a computationally secure
encryption with efficient E and D and where the message is longer than the key.

Proof idea: If P = NP then whenever we have a loop that searches through
some domain to find some string that satisfies a particular property (like the
loop in the Distinguish subroutine above that searches over all keys) then this
loop can be sped up exponentially .

While it is very widely believed that P 6= NP , at the moment we do not know
how to prove this, and so have to settle for accepting the cipher conjecture as
essentially an axiom, though we will see later in this course that we can show it
follows from some seemingly weaker conjectures.

There are several reasons to believe the cipher conjecture. We now briefly
mention some of them:

• Intuition: If the cipher conjecture is false then it means that for every
possible cipher we can make the exponential time attack described above
become efficient. It seems “too good to be true” in a similar way that the
assumption that P=NP seems too good to be true.

2As will be the case for other conjectures we talk about, the name “The Cipher Conjecture”
is not a standard name, but rather one we’ll use in this course. In the literature this conjecture
is mostly referred to as the conjecture of existence of one way functions, a notion we will learn
about later. These two conjectures a priori seem quite different but have been shown to be
equivalent.

6

http://theory.cs.princeton.edu/complexity/circuitschap.pdf

• Concrete candidates: As we will see in the next lecture, there are several
concrete candidate ciphers using keys shorter than messages for which
despite tons of effort, no one knows how to break them. Some of them
are widely used and hence governments and other benign or not so benign
organizations have every reason to invest huge resources in trying to
break them. Despite that as far as we know (and we know a little more
after Snowden) there is no significant break known for the most popular
ciphers. Moreover, there are other ciphers that can be based on canonical
mathematical problems such as factoring large integers or decoding random
linear codes that are immensely interesting in their own right independently
of their cryptographic applications.

• Minimalism: Clearly if the cipher conjecture is false then we also don’t
have a secure encryption with a key, say, twice as long as the message.
But it turns out the cipher conjecture is in fact necessary for essentially
every cryptographic primitive, including not just private key and public
key encryptions but also digital signatures, hash functions, pseudorandom
generators, and more. That is, if the cipher conjecture is false then to a
large extent crytpgoraphy does not exist, and so we essentially have to
assume it if we want to do any kind of cryptography.

Why care about the cipher conjecture?

“Give me a place to stand, and I shall move the world” Archimedes,
circa 250 BC

Every perfectly secure encryption scheme is clearly also computationally secure,
and so if required a message of size n instead n+ 1 then the conjecture would
have been trivially satisfied by the one-time pad. However, having a message
longer than the key by just a single bit does not seem that impressive. Sure, if
we used such a scheme with 128-bit long keys, our communication will be smaller
by a factor of 128/129 (or a saving of about 0.8%) over the one-time pad, but
this doesn’t seem worth the risk of using an unproven conjecture. However, it
turns out that if we assume this rather weak condition, we can actually get a
computationally secure encryption scheme with a message of size p(n) for every
polynomial p(·). In essence, we can fix a single n-bit long key and communicate
securely as many bits as we want!

Moreover, this is just the beginning. There is a huge range of other useful
cryptographic tools that we can obtain from this seemingly innocent conjecture:
(We will see what all these names and some of these reductions mean later in
the course.)

We will soon see the first of the many reductions we’ll learn in this course.
Together this “web of reductions” forms the scientific core of cryptography,
connecting many of the core concepts and enabling us to construct increasingly

7

Figure 2: Web of reductions between notions equivalent to ciphers with larger
than key messages

sophisticated tools based on relatively simple “axioms” such as the cipher
conjecture.

Prelude: Computational Indistinguishability

The task of Eve in breaking an encryption scheme is to distinguish between an
encryption of m0 and an encryption of m1. It turns out to be useful to consider
this question of when two distributions are computationally indistinguishable
more broadly:

Definition (Computational Indistinguishability): Let X and Y be two
distributions over {0, 1}o. We say that X and Y are (T, ε)-computationally
indistinguishable, denoted by X ≈T,ε Y , if for every function Eve computable
with at most T operations,

|Pr[Eve(X) = 1]− Pr[Eve(Y) = 1]| ≤ ε .

We say that X and Y are simply computationally indistinguishable, denoted by
X ≈ Y , if they are (T, ε) indistinguishable for every polynomial T (o) and inverse
polynomial ε(o).3

3This definition implicitly assumes thatX and Y are actually parameterized by some number
n (that is polynomially related to o) so for every polynomial T (o) and inverse polynomial ε(o)
we can take n to be large enough so that X and Y will be (T, ε) indistinguishable. In all the
cases we will consider, the choice of the parameter n (which is usually the length of the key)
will be clear from the context.

8

Note: The expression Pr[Eve(X) = 1] can also be written as E[Eve(X)] (since
we can assume that whenever Eve(x) does not output 1 it outputs zero). This
notation will be useful for us sometimes.

We can use computational indistinguishability to phrase the definition of compu-
tational security more succinctly:

Theorem (C.I. phrasing of computational security): Let (E,D) be a
valid encryption scheme. Then (E,D) is computationally secure if and only if
for every two messages m0,m1 ∈ {0, 1}`,

{Ek(m0)} ≈ {Ek(m1)}

where each of these two distributions is obtained by sampling a random
k←R{0, 1}n.

The proof is left as an Exercise in Homework 1.

One intuition for computational indistinguishability that it is related to some
notion of distance. If two distributions are computationally indistinguishable,
then we can think of them as “very close” to one another, at least as far as
efficient observers are concerned. Intuitively, if X is close to Y and Y is close
to Z then X should be close to Z. Similarly if four distributions X,X ′, Y, Y ′
satisfy that X is close to Y and X ′ is close to Y ′, then you might expect that
the distribution (X,X ′) where we take two independent samples from X and X ′
respectively, is close to the distribution (Y, Y ′) where we take two independent
samples from Y and Y ′ respectively. We will now verify that these intuitions
are in fact correct:

Lemma (Triangle Inequality for Computational Indistinguishability):4
Suppose {X1} ≈T,ε {X2} ≈T,ε · · · ≈T,ε {Xm}. Then {X1} ≈T,(m−1)ε {Xm},
where o is the length of the Xi’s.

Proof: Suppose that there exists a T time Eve such that

|Pr[Eve(X1) = 1]− Pr[Eve(Xm) = 1]| > (m− 1)ε .

Write

Pr[Eve(X1) = 1]−Pr[Eve(Xm) = 1] =
m−1∑
i=1

(Pr[Eve(Xi) = 1]− Pr[Eve(Xi+1) = 1]) .

4Results of this form are known as “triangle inequalities” since they can be viewed as
generalizations of the statement that for every three points on the plane x, y, z, the distance
from x to z is not larger than the distance from x to y plus the distance from y to z. In other
words, the edge x, z of the triangle (x, y, z) is not longer than the sum of the lengths of the
other two edges x, y and y, z.

9

Thus,

m−1∑
i=1
|Pr[Eve(Xi) = 1]− Pr[Eve(Xi+1) = 1]| > (m− 1)ε

and hence in particular there must exists some i ∈ {1, . . . ,m− 1} such that

|Pr[Eve(Xi) = 1]− Pr[Eve(Xi+1) = 1]| > ε

contradicting the assumption that {Xi} ≈T,ε {Xi+1} for all i ∈ {1, . . . ,m− 1}.
QED

Lemma (Computational Indistinguishability is preserved under repe-
tition): Suppose that X1, . . . , X`, Y1, . . . , Y` are distributions over {0, 1}n such
that Xi ≈T,ε Yi. Then (X1, . . . , X`) ≈T−10`n,`ε (Y1, . . . , Y`).

Proof: For every i ∈ {0, . . . , `} we define Hi to be the distribution
(X1, . . . , Xi, Yi+1, . . . , Y`). Clearly H0 = (X1, . . . , X`) and H` = (Y1, . . . , Y`).
We will prove that for every i, Hi ≈T−10`n,ε Hi+1, and the proof will then follow
from the triangle inequality (can you see why?). Indeed, suppose towards the
sake of contradction that there was some i ∈ {0, . . . , `} and some T − 10`n-time
Eve′s : {0, 1}n` → {0, 1} such that

|E[Eve′(Hi)]− E[Eve(Hi+1)]| > ε .

In other words

∣∣EX1,...,Xi−1,Yi,...,Yell[Eve′(X1, . . . , Xi−1, Yi, . . . , Y`)]− EX1,...,Xi,Yi+1,...,Yell[Eve′(X1, . . . , Xi, Yi+1, . . . , Y`)]
∣∣ > ε .

By linearity of expectation we can write the difference of these two expectations
as

EX1,...,Xi−1,Xi,Yi,Yi+1,...,Yell [Eve′(X1, . . . , Xi−1, Yi, Yi+1, . . . , Y`)− Eve′(X1, . . . , Xi−1, Xi, Yi+1, . . . , Y`)]

. By the averging principle5 this means that there exist some values
x1, . . . , xi−1, yi+1, . . . , y` such that

|EXi,Yi [Eve′(x1, . . . , xi−1, Yi, yi+1, . . . , y`)− Eve′(x1, . . . , xi−1, Xi, yi+1, . . . , y`)]| > ε

5This is the principle that if the average grade in an exam was at least α then someone
must have gotten at least α, or in other words that if a real-valued random variable Z satisfies
EZ ≥ α then Pr[Z ≥ α] > 0.

10

Now Xi and Yi are simply independent draws from the distributions X and Y
respectively, and so if we define Eve(z) = Eve′(x1, . . . , xi−1, z, yi+1, . . . , y`) then
Eve runs in time at most the running time of Eve plus 2`n and it satisfies

|EXi [Eve(Xi)]− EYi [Eve(Yi)]| > ε

contradicting the assumption that Xi ≈T,ε Yi. QED

Note: The above proof illustrates a powerful technique known as the hybrid
argument whereby we show that two distribution C0 and C1 are close to each
other by coming up with a sequence of distributions H0, . . . ,Ht such that
Ht = C1, H0 = C0, and we can argue that Hi is close to Hi+1 for all i. This
type of argument repeats itself time and again in cryptography, and so it is
important to get comfortable with it.

The Length Extension Theorem

Extension via repetition

We now turn to showing the length extension theorem. For a warm-up, let’s
show that we can actually repeat encryptions to get an n/(n+ 1) saving.

Theorem (security of repetition): Suppose that (E′, D′) is a computation-
ally secure encryption scheme with n bit keys and n + 1 bit messages. Then
the scheme (E,D) where Ek1,...,kt(m1, . . . ,mt) = (E′k1

(m1), . . . , E′kT (mt)) and
Dk1,...,kt(c1, . . . , ct) = (D′k1

(c1), . . . , D′kt(ct)) is a computationally secure scheme
with tn bit keys and t(n+ 1) bit messages.

Proof: This might seem “obvious” but in cryptography, even obvious facts are
sometimes wrong, so it’s important to prove this formally. Luckily, this is a fairly
straightforward implication of the fact that computational indisinguishability is
preserved under many samples. That is, by the security of (E′, D′) we know that
for every two messages m,m′ ∈ {0, 1}n+1, Ek(m) ≈ Ek(m′) where k is chosen
from the distribution Un. Therefore by the indistinguishability of many samples
lemma, for every two tuples m1, . . . ,mt ∈ {0, 1}n+1 and m′1, . . . ,m′t ∈ {0, 1}

n+1,

(E′k1
(m1), . . . , E′kt(mt)) ≈ (E′k1

(m′1), . . . , E′kt(m
′
t))

for random k1, . . . , kt chosen independently from Un which is exactly the condi-
tion that (E,D) is computationally secure. QED

Theorem (Length Extension of ciphers): Suppose that there exists a
computaitonally secure encryption scheme (E′, D′) with key length n and message
length n + 1. Then for every polynomial t(n) there exists a computationally
secure encryption scheme (E,D) with key length n and message length t(n).

11

Proof: Let t = t(n). We are given a cipher E′ which can encrypt n+ 1-bit long
messages with an n-bit long key and we need to encrypt a t-bit long message
m = (m1, . . . ,mt) ∈ {0, 1}t. Our idea is simple (at least in hindsight). Let
k0←R{0, 1}n be our key (which is chosen at random). To encryptm using k0, the
encryption function will choose t random strings k1, . . . , kt←R{0, 1}n.6 We will
then encrypt the n+ 1-bit long message (k1,m1) with the key k0 to obtain the
ciphertext c1, then encrypt the n+ 1-bit long message (k2,m2) with the key k1
to obtain the ciphertext c2, and so on and so forth until we encrypt the message
(kt,mt) with the key kt−1. We output (c1, . . . , ct) as the final ciphertext.7

To decrypt (c1, . . . , ct) using the key k0, first decrypt c1 to learn (k1,m1), then
use k1 to decrypt c2 to learn (k2,m2), and so on until we use kt−1 to decrypt ct
and learn (kt,mt). Finally we can simply output (m1, . . . ,mt).

Figure 3: Constructing a cipher with t bit long messages from one with n+ 1
long messages

The above are clearly valid encryption and decryption algorithms, and hence the
real question becomes is it secure??. The intuition is that c1 hides all information
about (k1,m1) and so in particular the first bit of the message is encrypted
securely, and k1 still can be treated as an unknown random string even to an
adversary that saw c1. Thus, we can think of k1 as a random secret key for the
encryption c2, and hence the second bit of the message is encrypted securely,
and so on and so forth.

The above looks like a reasonable intuitive argument, but to make sure it’s true
we need to give an actual proof. Let m,m′ ∈ {0, 1}t be two messages. We need
to show that EUn(m) ≈ EUn(m′). The heart of the proof will be the following
claim:

6Note that this makes the encryption function probabilistic but it does not increase the size of
the key; while we didn’t explicitly say that the encryption can be probabilistic before, allowing
this is absolutely fine and in fact will be necessary for some future security requirements.

7The astute reader might note that the key kt is actually not used anywhere in the encryption
nor decryption and hence we could encrypt n more bits of the message instead in this final
round. We used the current description for the sake of symmetry and simplicity of exposition.

12

Claim: Let Ê be the algorithm that on input a message m and key k0 works
like E except that its the ith block contains E′ki−1

(k′i,mi) where k′i is a random
string in {0, 1}n, that is chosen independently of everything else including the
key ki. Then, for every message m ∈ {0, 1}t

EUn(m) ≈ ÊUn(m) .

Note that Ê is not a valid encryption scheme since it’s not at all clear there
is a decryption algorithm for it. It is just an hypothetical tool we use for
the proof. Once we prove the claim then we are done since we know that for
every pair of message m,m′, EUn(m) ≈ ÊUn(m) and EUn(m′) ≈ ÊUn(m′) but
ÊUn(m) ≈ ÊUn(m′) since Ê is essentially the same as the t-times repetition
scheme we analyzed above. Thus by the triangle inequality we can conclude that
EUn(m) ≈ EUn(m′) as we desired.

Proof of claim: We prove the claim by the hybrid method. For j ∈ {0, . . . , `},
let Hj be the distribution of ciphertexts where in the first j blocks we act like Ê
and in the last t− j blocks we act like E. That is, we choose k0, . . . , kt, k

′
1, . . . , k

′
t

independently at random from Un and the ith block ofHj is equal to E′ki−1
(ki,mi)

if i > j and is equal to E′ki−1
(k′i,mi) if i ≤ j. Clearly, Ht = ÊUn(m) and

H0 = EUn(m) and so it suffices to prove that for every j, Hj ≈ Hj+1. Indeed,
let j ∈ {0, . . . , `} and suppose towards the sake of contradiction that there exists
an efficient Eve′ such that

|E[Eve′(Hj)]− E[Eve′(Hj+1)]| ≥ ε (∗)

where ε = ε(n) is noticeable. By the averaging principle, there exists some fixed
choice for k′1, . . . , k′t, k0, . . . , kj−2, kj , . . . , kt such that (∗) still holds. Note that
in this case the only randomness is the choice of kj←RUn and moreover the first
j − 1 blocks and the last t− j blocks of Hj and Hj+1 would be identical and we
can denote them by α and β respectively and hence write (∗) as

∣∣Ekj−1 [Eve′(α,Ekj−1(kj ,mj), β)− Eve′(α,Ekj−1(k′j ,mj), β)
∣∣ ≥ ε (∗∗)

But now consider the adversary Eve that is defined as Eve(c) = Eve′(α, c, β).
Then Eve is also efficient and by (∗∗) it can distinguish between E′Un(kj+1,mj)
and E′Un(k′j+1,mj) thus contradicting the security of (E′, D′). QED

Appendix: The computational model

For concreteness sake let us give a precise definition of what it means for a
function or probabilistic process f mapping {0, 1}n to {0, 1}m to be computable
using T operations:

13

Defintion: A probabilistic straightline program consists of a sequence of lines,
each one of them one of the following forms:

• a = b NAND c where a is a variable identifier and b, c are either variables
that have been assigned a value before, or the constants 0 or 1.

• a = RAND where a is a variable identifier.
• a = INPUT where a is a variable identifier.
• OUTPUT b where b is a variable that has been assigned a value before.

Given a program π, we say that its size is the number of lines it contains. If
the program has n INPUT commands and m OUTPUT commands, we identify it
with the probabilistic process that maps {0, 1}n to {0, 1}m in the natural way.
(That is, the variables all correspond to a single bit in {0, 1}, every time INPUT
is called we take a new bit from the input, and every time OUTPUT is called we
output a new bit.)

If F is a (probabilistic or deterministic) map of {0, 1}n to {0, 1}m, the complexity
of F is the size of the smallest program π that computes it.

If you haven’t taken a class such as CS121 before, you might wonder how such
a simple model captures complicated programs that use loops, conditionals,
and more complex data types than simply a bit in {0, 1}, not to mention some
special purpose crypto-breaking devices that might involve tailor-made hardware.
It turns out that it does (for the same reason we can compile complicated
programming languages to run on silicon chips with a very limited instruction
set). In fact, as far as we know, this model can capture even computations
that happen in nature, whether it’s in a bee colony or the human brain (which
contains about 1010 neurons, so should in principle be simulatable by a program
that has up to a few order of magnitudes the same number of lines). Crucially,
for cryptography, we care about such programs not because we want to actually
run them, but because we want to argue about their non existence.8 If we have
a process that cannot be computed by a straightline program of length shorter
than 2128 > 1038 then it seems safe to say that a computer the size of the human
brain (or even all the human and nonhuman brains on this planet) will not be
able to perform it either.

8An interesting potential exception to this principle that every natural process should
be simulatable by a straightline program of comparable complexity are processes where the
quantum mechanical notions of interference and entanglement play a significant role. We will
talk about this notion of quantum computing towards the end of the course, though note that
much of what we say does not really change when we add quantum into the picture. We can
still capture these processes by straightline programs (that now have somewhat more complex
form), and so most of what we’ll do just carries over in the same way to the quantum realm as
long as we are fine with conjecturing the strong form of the Cipher conjecture and similar ones,
namely that these are infeasible to break even for quantum computers. (All current evidence
points toward these strong forms being true as well.)

14

~ MathDefs ~

CS 127: Cryptography / Boaz Barak

Homework 1

Total of 141 points. (Note that while this exercise is long, 100 points are a
perfect score, so you don’t have to solve all questions if you don’t have the time
for it.)

0. (10 points + 5 points bonus) Log in to canvas and: (a) Post on the canvas
discussion board a short message introducing yourself to the rest of the
class- what’s your background and why you are interested in cryptography.
Feel free to also add something about your non academic interests and
hobbies. For a bonus of 5 points include a photo of yourself. (b) Answer
on the “Week 0” module in canvas the “background questionnaire” quiz.
This is not graded and there are no wrong answers- it’s just a way for me
to get a better sense of people’s backgrounds.

Exercises from the “mathematical background” handout.

1. (16 points) In the following exercise X,Y denote random variables over
some sample space S. You can assume that the probability on S is the
uniform distribution— every point s is output with probability 1/|S|. Thus
E[X] = (1/|S|)

∑
s∈S X(s). We define the variance and standard deviation

of X and Y as above (e.g., V ar[X] = E[(X − E[X])2] and the standard
deviation is the square root of the variance).

a. (2 points) Prove that V ar[X] is always non-negative.

b. (2 points) Prove that V ar[X] = E[X2]− E[X]2.

c. (2 points) Prove that always E[X2] ≥ E[X]2.

d. (2 points) Give an example for a random variableX such that E[X2] 6=
E[X]2.

e. (2 points) Give an example for a random variable X such that its
standard deviation is not equal to E[|X − E[X]|].

f. (2 points) Give an example for two random variables X,Y such that
E[XY] = E[X]E[Y].

g. (2 points) Give an example for two random variables X,Y such that
E[XY] 6= E[X]E[Y].

1

h. (2 points) Prove that if X and Y are independent random variables
(i.e., for every x, y, Pr[X = x ∧ Y = y] = Pr[X = x] Pr[Y = y]) then
E[XY] = E[X]E[Y] and V ar[X + Y] = V ar[X] + V ar[Y].

2. (15 points) Suppose that H is chosen to be a random function mapping
the numbers {1, . . . , n} to the numbers {1, ..,m}. That is, for every i ∈
{1, . . . , n}, H(i) is chosen to be a random number in {1, . . . ,m} and that
choice is done independently for every i. For every i ≤ j ∈ {1, . . . , n},
define the random variable Xi,j to equal 1 if there was a collision between
H(i) and H(j) in the sense that H(i) = H(j) and to equal 0 otherwise.

a. (3 points) For every i ≤ j, compute E[Xi,j].
b. (3 points) Define Y =

∑
i≤j Xi,j to be the total number of collisions.

Compute E[Y] as a function of n and m. In particular your answer
should imply that if m < n2/1000 then E[Y] > 1 and hence in
expectation there should be at least one collision and so the function
H will not be one to one.

c. (3 points) Prove that if m > 1000 · n2 then the probability that H is
one to one is at least 0.9.

d. (3 points) Give an example of a random variable Z (unrelated to the
function H) that is always equal to a non-negative integer, and such
that E[Z] ≥ 1000 but Pr[Z > 0] < 0.001.

e. (3 points) Prove that if m < n2/1000 then the probability that H is
one to one is at most 0.1.

3. (15 points) In this exercise we we will work out an important special case
of the Chernoff bound. You can take as a given the following facts:

I) The number of x ∈ {0, 1}n such that
∑
xi = k is

(
n
k

)
= n!

k!(n−k)! .
II) Stirling’s approximation formula: for every n ≥ 1,

√
2πn

(
n
e

)n ≤ n! ≤ 2
√

2πn
(

n
e

)n

where e = 2.7182 . . . is the base of the natural logarithm.

Do the following:

a. (5 points) Prove that for every n, Prx←R{0,1}n [
∑
xi ≥ 0.6n] <

2−n/1000

The above shows that if you were given a coin of bias at least 0.6, you
should only need some constant number of samples to be able to reject the
“null hypothesis” that the coin is completely unbiased with extremely high
confidence. In the following somewhat more challenging questions (which
can be considered as bonus exercise) we try to show a converse to this:

b. Let P be the uniform distribution over {0, 1}n and Q be the 1/2 + ε-
biased distribution corresponding to tossing n coins in which each
one has a probability of 1/2 + ε of equalling 1 and probability 1/2− ε

2

of equalling 0. Namely the probability of x ∈ {0, 1}n according to Q
is equal to

∏n
i=1(1/2− ε+ 2εxi).

i. (5 points) Prove that for every threshold θ between 0 and n, if
n < 1/(100ε)2 then the probabilities that

∑
xi ≤ θ under P and

Q respectively differ by at most 0.1. Therefore, one cannot use
the test whether the number of heads is above or below some
threshold to reliably distinguish between these two possibilities
unless the number of samples n of the coins is at least some
constant times 1/ε2.

ii. (5 points) Prove that for every function F mapping {0, 1}n to
{0, 1}, if n < 1/(100ε)2 then the probabilities that F (x) = 1
under P and Q respectively differ by at most 0.1. Therefore, if
the number of samples is smaller than a constant times 1/ε2 then
there is simply no test that can reliably distinguish between these
two possiblities.

Exercises from Lecture 1

4. (20 points) Prove that every encryption scheme (E,D) is perfectly secret if
and only if for every plaintexts m,m′ ∈ {0, 1}`, the two random variables
{Ek(m)} and {Ek′(m′)} (for randomly chosen keys k and k′) have precisely
the same distribution.

5. (20 points- a bit harder bonus question) In the lecture we saw that any
perfectly secret private key encryption scheme needs to use a key as large as
the message. But we actually made an implicit subtle assumption: that the
encryption process is deterministic. In a probabilistic encryption scheme,
the encryption function E may be probabilistic: that is, given a message
m and a key k, the value Ek(x) is not fixed but is distributed according to
some distribution Cx,k. The decryption function is still given only the key
k and not the internal randomness used by E, and we require that for every
message m, Pr[Dk(Ek(m)) = m] > 0.99 where this probability is taken
both over the choice of the key k and the internal randomness used by E.
Prove that even a probabilistic encryption scheme cannot be perfectly secret
with a key that’s significantly shorter than the message. That is, show
that for every probabilistic encryption scheme (E,D) using n-length keys
and n+ 10-length messages, there exist two messages m,m′ ∈ {0, 1}n+10

such that the distributions {Ek(m)} and {Ek′(m′)} are not identical.

Exercises from Lecture 2

6. (20 points) Prove the Computational Indistinguishability phrasing of com-
putational security Theorem.

3

7. (20 points) Give a direct proof (not going through computational indistin-
guishability) in your own words for the length extension theorem in the
special case t = 2 and when the messages arem0 = 00 andm1 = 01. That is,
show how to transform an adversary Eve that can distinguish between the
distribution C0 = (E′k0

(k1, 0), E′k1
(k2, 0)) and C1 = (E′k0

(k1, 0), E′k1
(k2, 1))

(for random k0, k1, k2) with advantage ε into an adversay Eve′ that runs in
time polynomial in the running time of Eve and can distinguish between
E′k(m′) and E′k(m′′) for two messages m′,m′′ ∈ {0, 1}n+1 with advantage
at least, say, ε/10.

4

	handout_cover
	chap00-foreword
	chap01-introduction
	chap02-computational-security
	hw1

