
COS 433 - Cryptography - Final Take Home Exam

Boaz Barak

May 12, 2010

• Read these instructions carefully before starting to work on the exam. If any of them are not
clear, please email me before you start to work on the exam.

• Schedule: You can work on this exam in a period of 48 hours of your choice between Monday
May 3rd 2010 and Friday May 14th 2010 5pm. (i.e., you need to submit the exam either 48
hours after you downloaded it from the website or by Friday May 14 5pm, whichever comes
sooner.) This is a strict deadline. You may submit the exam earlier.

Please type up the exam, and submit it (as a pdf, postscript, or word doc file) to Boaz,
Sushant and Shi by email. If you have a problem with typing up the exam, then please let
me know as soon as possible. In this case you should submit two copies of the handwritten
exam to my mailbox, and also email me, Sushant and Shi at the same time to let us know
that you’ve done so.

• Restrictions, allowed texts, honor code: You should work on the exam alone. You can
use your notes from the class, the homework exercises and their solutions, and the handouts
I gave in class or put on the webpage, you can also use the Boneh-Shoup, Katz-Lindell,
Goldreich and Arora-Barak textbooks as well as Trevisan’s lecture notes. You can also use
any personal summaries and notes of the material that you prepare on your own or with a
group before starting to work on the exam. You should not use any other material while
solving this exam. When you submit the exam by email, you should also include in the email
the honor pledge (the pledge is “I pledge my honor that I did not violate the honor code
during this exam and followed all instructions”).

• Writing: You should answer all questions fully, clearly and precisely. When describing an
algorithm or protocol, state clearly what are the inputs, operation, outputs, and running
time. When writing a proof, provide clear statements of the theorem you are proving and
any intermediate lemmas or claims. I recommend that you first write a draft solution of all
questions before writing up your final submitted exam.

• Partial solutions: If there is a question you can not solve fully, but you can solve a par-
tial/relaxed version or a special case, then please state clearly what is the special case that you
can solve, and the solution for this case. You will be given partial credit for such solutions,
as long as I feel that this special case captures a significant part of the question’s spirit.

• Assumptions: Unless explicitly said otherwise, you may assume as true any of the ax-
ioms/assumptions that were given in class such as: existence of one-way functions and
permutations, commitment schemes, pseudorandom generators, functions and permutations,
hardness of factoring random Blum integers, hardness of inverting the RSA permutation, deci-
sional Diffie Hellman, existence of chosen-message (CMA) secure signature schemes, existence

1



of collision-resistant hash functions, existence of chosen ciphertext (CCA) secure encryption
schemes, and existence of a fully homomorphic encryption scheme. Whenever you use such
an assumption, state it clearly and precisely. It is recommended that you review these as-
sumptions and definitions before you start working on this test.

Note on the random oracle model: You can use the random oracle model, but unless
the question states otherwise, it is preferred that you avoid doing so if possible (you will get
at least the majority of points for a valid solution in the random oracle model). If you use
as a black-box a CCA secure public key encryption scheme this does not count as using the
random oracle model (even though the only construction we saw for this in class used the
random oracle model).

• Quoting results: You can quote without proof theorems that were proven in class or given
as a homework exercise. However, you should quote them precisely, and state the date and
lecture number or the homework number and question. You cannot quote without proof any
other results— this includes results that were only stated without proof in class, and results
that are proven in the textbooks but not in class. If you do use a proof from another source
such as a textbook, you should write the proof in full but also add a reference to the place
it appears. When solving a question, you can use the results of a previous question as given,
even if you did not manage to solve it.

• Clarifications: I have made an effort to make the questions as clear and unambiguous as
possible. In case any clarifications are needed, I will try to be always available by email. You
can also email me with your number and good times to call, and I will call you back. If you
need me more urgently, you can call me at 609-981-4982 between 11am and 10pm EST. You
can also email Sushant and Shi as well. If there are any unresolved doubts, please write your
confusion as part of the answer and maybe you will get partial credit.

2



This exam has 4 questions, with a total of 135 points.

Question 1 (30 points). Consider the following primitives: (1) one-way function, (2) one-time
secure digital signature scheme, (3) CPA secure public key encryption, (4) fully homomorphic
CPA-secure private key encryption, (5) a chosen ciphertext secure (CCA) private key encryption
that for a key of length n handles messages of length 10n and the encryption algorithm uses n bits
of randomness.

For each pair {i, j} of these primitives, say whether the existence of i implies the existence of
j, and/or vice versa. If you do not know whether an implication holds, then say so. (This is OK,
as some of these implications are open questions.)

For any implication you claim to hold, either give a proof or quote the lecture in class in which
it was proven (and explain exactly how what was proven in class yields the implication). For this
question you cannot use any unproven assumption. As a reminder, a polynomial-time computable
function F : {0, 1}∗ → {0, 1}∗ is a one-way function if there does not exists a polynomial time
algorithm A and a polynomial p : N→ N such that for infinitely many n’s, Prx←R{0,1}n [A(F (x)) =
x′ s.t. F (x′) = F (x)] ≥ 1/p(n). You can use the result we stated in class without proof that if
there exists a one-way function then there exists a pseudorandom generator with output length
larger than the input length.

As a hint, there are 6 basic implications known between the above primitives, and the rest of
the known implications are derived from these using transitivity. One of these six is harder than the
other five, and so you may want to look at the other questions first after you show five implications.

Question 2 (30 points). (This question is very long since I tried to use very precise notation, but
I don’t think it’s very hard.)

A 3CNF formula is a formula on taking variables in {0, 1} that is of the form of an AND of
OR’s, where each OR depends on three variables or their negation. More formally, ϕ is a 3CNF
variable on n variables x1, . . . , xn if it is of the form C1 ∧ · · · ∧ Cm where each Ci (known as a
clause) has the form (yi,1 ∨ yi,2 ∨ yi,3) and each yi,j (known as a literal) is equal to either x` or ¬x`
for some ` ∈ [n]. (Recall that ∧ is AND, ∨ is OR, and ¬ is NOT.) For x ∈ {0, 1}n, we denote by
ϕ(x) ∈ {0, 1} the value of ϕ when its variables are assigned the value x (identifying 0 with “false”
and 1 with “true”).

In this question we consider the following protocol, where the public input is a 3CNF formula
ϕ with m clauses and n variables, and the prover’s private input is x ∈ {0, 1}n. You will prove that
it is a zero knowledge protocol for the statement “∃x s.t. ϕ(x) = 1”.

Public input: 3CNF formula ϕ on n variables and m clauses. We assume every variable appears
in at least one clause, and that m ≥ n.

Prover’s (Alice) private input: x ∈ {0, 1}n such that ϕ(x) = 1.

Prover’s first message: Loosely speaking, in this step the prover will encode every variable x`
by a random string a` ∈ {0, 1}3 such that a`,1⊕a`,2⊕a`,3 = x` and will send commitments to
the encoding of (a randomly reordered version of) the literals of each clause. We now explain
precisely what the prover does:

1. For every variable x`, the prover chooses at random a`,1, a`,2 ∈ {0, 1} and sets a`,3 =
x` ⊕ a`,1 ⊕ a`,2.

3



2. The prover reorders randomly the three literals of every clause. We let π be a string of
length 100m that describes this reordering (we can think of π as a tuple of m permuta-
tions over [3], where πi denotes the ith permutation). The prover computes π̂ = Com(π),
where Com is a commitment scheme (see below for a reminder of definition and notation).

3. For every clause Ci, let yi,1, yi,2, yi,3 be the three literals (in the new order) of Ci, where
each literal is a variable or its negation. For j ∈ [3], k ∈ [3], the prover lets ci,j,k = a`,k
if the literal yi,j is equal to the variable x`, and she lets ci,j,k = ¬a`,k if the literal is the
negation ¬x`. For i ∈ [m], j, k ∈ [3], the prover computes ĉi,j,k = Com(ci,j,k).

4. The prover sends the commitments π̂ and {ĉi,j,k}i∈[m],j,k∈[3] to the verifier.

Verifier’s (Bob) message The verifier tosses a coin a←R {0, 1} and:

• If a = 0 then Bob chooses at random `←R [n] and chooses at random two literals yi,j and
yi′,j′ (where i, i′ ∈ [m] and j, j′ ∈ [3]) that refer to the variable x`. (These are literals of
ϕ in the original ordering.) Bob then sends k at random in [3] and sends (0, i, j, i′, j′, k)
to Alice. Intuitively, the meaning of this message is that Bob wants to verify that the
encodings of the two literals are consistent.

• If a = 1 them Bob chooses at random i ←R [m], and sends (1, i) to Alice. Intuitively,
the meaning of this message is that Bob wants to verify that the clause i has at least
one literal with value 1.

Prover’s (Alice) second message Upon receiving the message from Bob, Alice does the follow-
ing:

• If the message was (0, i, j, i′, j′, k) then Alice sends to Bob the randomness used in the
commitment π̂, and the randmoness used in the commitments ĉi,πi(j),k and ĉi′,πi′ (j′),k
(where we denote by πi(j) the new order in [3] of the jth literal of the ith clause under
π).

• If the message was (1, i) then Alice lets j ∈ [3] be such that yi,j = 1 (this is in the new
ordering, note that there must be at least one such literal, since ϕ(x) = 1— if there is
more than one then Alice chooses such a literal at random), and sends the randomness
to the commitments ĉi,j,1, ĉi,j,2, ĉi,j,3.

Bob’s decision On receiving Alice’s message, Bob does as follows depending on the value a he
selected earlier:

• If a = 0, Bob checks that the randomness he receives is consistent with the commitment
π̂, that π encodes a proper reordering (i.e., m permutations of [3]) and that Alice did
indeed send valid openings to the commitments ĉi,πi(j),k and ĉi′,πi′ (j′),k. Let c and c′ be
respectively the decommitted values of these commitments. Then if the literals yi,j and
yi,k have the same sign (i.e., they are both of the form x` or they are both of the form
¬x`), then Bob checks that c = c′. Otherwise he checks that c =6= c′. If all checks pass
then Bob accepts the proof, otherwise he rejects it.

• If a = 1, Bob checks that the randomness he receives is consistent with the commitments
x̂i,j,1, x̂i,j,2, x̂i,j,3 (where i ∈ [m] is the clause index Bob chose in his message, while j is a
number in [3]), and that the XOR of the decommitted values is equal to 1. If all checks
pass then Bob accepts the proof, otherwise he rejects it.

4



Prove that the above is a zero knowledge protocol for 3SAT statements. That is, prove:

1. (5 points) (Completeness) If ϕ(x) = 1 and both verifier and prover follow the protocol, then
the verifier will accept the proof with probability one.

2. (15 points) (Soundness) If ϕ is a formula such that ϕ(x) = 0 for all x ∈ {0, 1}n, then no
matter what the prover strategy is, the verifier will reject the proof with probability at least
1/(100m2).

3. (5 points) ((Honest verifier zero knowledge) There is a probabilistic polynomial time algo-
rithm SIM such that if we let R(ϕ, x) be the random variable consisting of the verifier’s
random tape and messages received in a real interaction where both verifier and prover fol-
low the protocol on inputs ϕ, x then R(ϕ, x) is computationally indistinguishable from the
random variable SIM(ϕ).

4. (10 points) (Full-fledged zero knowledge) For every polynomial-time (possibly cheating) strat-
egy V ∗ for the verifier, there is a probabilistic polynomial time algorithm SIM∗ such that
if we let RV ∗(ϕ, x) be the random variable consisting of the verifier’s random tape and mes-
sages received in a real interaction where both the prover follows the protocol and the verifier
uses V ∗ on inputs ϕ, x then RV ∗(ϕ, x) is computationally indistinguishable from the random
variable SIM∗(ϕ). (Note that this subsumes the previous item, so if you answer this item,
you can skip the previous one.)

Reminder— definition of commitment: for simplicity one can think of Com : {0, 1}n+1 ×
{0, 1}n+1 as a function with the following properties: Binding: Com is one to one and hiding:
Com(b, Un) is computaitonally indistinguishable from Com(b′, Un) for every b, b′ ∈ {0, 1}, where Un
denotes the uniform distribution over {0, 1}n. For b ∈ {0, 1}, we denote by Com(b) the random vari-
able Com(b, Un) and for z ∈ {0, 1}m we denote by Com(x) the concatenation Com(x1) · · ·Com(xm).

Question 3 (45 points). In the construction of fully homomorphic encryption we needed the notion
of circular security. In this question we explore it further:

1. (10 points) Say that a private key encryption (E,D) with key size = plaintext size = n is
CPA’-secure if for every polynomial-time adversary A there is a negligible function µ such
that A cannot distinguish with success better than 1/2 + µ(n) between the following two
cases: (i) k is chosen at random in {0, 1}n and A is given 1n as input and access to a box
that on input x ∈ {0, 1}n outputs Ek(x) and (ii) k is chosen at random in {0, 1}n and A is
given 1n as input and access to a box that on input x ∈ {0, 1}n outputs Ek(0

n). (We stress
that in both cases, the box uses fresh randomness in each invocation.)

Prove that (E, d) is CPA’ secure if and only if it is CPA secure.

2. Say that a private key encryption (E,D) with key size = plaintext size = n is KDM-secure
(for key dependent messages) if for every polynomial-time adversary A there is a negligible
function µ such that A cannot distinguish with success better than 1/2 + µ(n) between the
following two cases: (i) k is chosen at random in {0, 1}n and A is given 1n as input and access
to a box that on input a Boolean circuit C mapping n bits to n bits outputs Ek(C(k)) and
(ii) k is chosen at random in {0, 1}n and A is given 1n as input and access to a box that on
input a Boolean circuit C mapping n bits to n bits outputs Ek(C(0n)).

5



We say that (E,D) is circular secure if it is CPA secure and in addition satisfies KDM
security as above in the following restricted sense— we only require indistinguishability for
the case that the adversary A is restricted to send to its box a Boolean circuit C that is
either the identity function (i.e., C(k) = k for all k), or a constant function (i.e. there is some
x ∈ {0, 1}n such that C(k) = x for every k ∈ {0, 1}n). (In both cases we fix some canonical
polynomial size representation of the circuits for the identity and constant functions, and A
must use these representations.)

(a) (7 points) Show that there exists a CPA secure encryption scheme that is not circular
secure.

(b) (8 points) Show that there exists a CPA circular secure encryption scheme that is not
KDM secure.

(c) (10 points) Show that the following encryption scheme is KDM secure in the random
oracle model : we have a random oracle H : {0, 1}2n → {0, 1}n and the key is a random
string k ∈ {0, 1}n. To encrypt x ∈ {0, 1}n we set Ek(x) = (r,H(k ◦ r) ⊕ x), where r
is chosen at random in {0, 1}n and ◦ denotes concatenation. To decrypt (r, y) we set
Dk(r, y) = y ⊕ H(k ◦ r). KDM security in the random oracle model is defined in the
same way, except that the adversary also has black-box access to the random oracle H.

(d) (10 points) Show that if (E,D) is a circular secure private key encryption scheme that
is also fully homomorphic then it is also KDM secure.

For this question we’ll make a slightly simplified and strengthened definition of fully
homomorphic encryption: say that a CPA-secure private key scheme (E,D) with key-
size = plaintext-size = n is fully homomorphic if there exists a probabilistic polynomial-
time algorithm EV AL such that for every key k ∈ {0, 1}n and Boolean circuit C :
{0, 1}n → {0, 1}n and every ciphertext X such that X is in the range of Ek(x) for
some x ∈ {0, 1}n (i.e., there is some randomness r s.t. X = Ek(x; r)), EV AL(C,X) is
distributed identically to the distribution of Ek(C(x)) with independent randomness. We
stress that EV AL does not get the private key k as input. Also note that EV AL(C,X)
is a random variable depending on the randomness used EV AL, while C,X are fixed.

Question 4 (30 points). Consider a key exchange protocol where the client has the public keys of
a server, chooses a key k ←R {0, 1}n for a private key scheme, interacts with the server, and at the
end decides whether or not to accept the key as valid. For simplicity in this question we restrict
ourselves to sequential attacks— the adversary can modify the messages from the client to server,
but cannot start new interactions in the middle. That is, the attack game has the following form—
we choose b←R {0, 1} and do the following:

1. For a polynomial number of interactions, the client and server run the protocol sequentially.
The adversary sees and can also modify any message sent by the client or the server to a
different message of its choice, including dropping the message, in which case we assume both
client and server abort this particular interaction.

2. Whenever the server accepts a key k, he outputs Epriv,cca

k (0), whenever a client accepts a key k,
it outputs Epriv,cca

k (b).

3. The adversary outputs b′ ∈ {0, 1}. We say the adversary is successful if b′ = b.

6



We say the protocol is secure if the probability the adversary succeeds in this attack is at most
1
2 + n−ω(1).

Notation: We denote by (Sign,Ver) a secure signature scheme. We denote by Epub,cca a CCA
secure public key encryption scheme, by Epub,cpa a CPA secure public key encryption scheme, and
by Epriv,cca a CCA secure private key encryption scheme. The protocol is secure if it is secure for
every suitable choice of the underlying schemes. In all cases we denote by e and by v the public
encryption key and verification key of the server, and assume that the client knows them.

For each of the following protocols, either prove that it is secure (for every suitable choice of
the schemes) or give an example showing it is insecure (for some choice of the schemes).
Protocol 1:

• Client chooses k ←R {0, 1}n and sends y = Epub,cca
e (k). Client immediately accepts k.

• Server receives message y, and decrypts it to obtain k. If decryption was valid then he accepts
k.

Protocol 2: Same as Protocol 1 replacing Epub,cca with Epub,cpa.
Protocol 3:

• Client chooses k ←R {0, 1}n and sends y = Epub,cpa
e (k).

• Server receives message y, and decrypts it to obtain k. If decryption was valid then he accepts
k. Server sends t = Signs(y) to Client.

• Client receives message t from server, and accepts k if and only if Verv(y, t) = 1.

7


