
COS 433 - Cryptography - Final Take Home Exam

Boaz Barak

December 23, 2005

• Read these instructions carefully before starting to work on the exam. If any of them are not
clear, please email me before you start to work on the exam.

• Schedule: You can work on this exam in a period of 96 hours of your choice between
December 15th, 2005 and January 17th, 2005 at 12:00 pm. The exam needs to be submitted
to my mail box by January 17th, 2005 noon. This is a strict deadline. You may submit the
exam earlier. If you typed up your exam, I would appreciate it if you also email me a copy of
it at the same time. If you submit it through the mail box earlier than the deadline, please
email me to let me know you did so, and email again if I don’t acknowledge receipt.

• Restrictions , honor code: You should work on the exam alone. You can use your notes
from the class, the homework exercises and their solutions, and the handouts I gave in class
or put on the webpage. You can also use any personal summaries and notes of the material
that you prepare before starting to work on the exam. You should not use any other material
while solving this exam. You should write and sign the honor pledge on your submitted exam
(the pledge is “I pledge my honor that I did not violate the honor code during this exam and
followed all instructions”).

• Writing: You should answer all questions fully, clearly and precisely. When describing an
algorithm or protocol, state clearly what are the inputs, operation, outputs, and running
time. When writing a proof, provide clear statements of the theorem you are proving and
any intermediate lemmas or claims. I recommend that you first write a draft solution of all
questions before writing (or preferably, typing) up your final submitted exam.

• Partial solutions: If there is a question you can not solve fully, but you can solve a par-
tial/relaxed version or a special case, then please state clearly what is the special case that you
can solve, and the solution for this case. You will be given partial credit for such solutions,
as long as I feel that this special case captures a significant part of the question’s spirit.

• Polynomial security: Whenever in this exam we say that a primitive is secure under some
attack, we mean that it is (T (n), ε(n)) secure for T (n) = nω(1) and ε(n) = n−ω(1), where n is
the key size/security parameter of the scheme . That is, any adversary that is implementable
by polynomial-sized circuit, and attacks the primitive has probability less than 1/poly(n) of
success (for every polynomial poly(·) and large enough n). The conditions of the attack and
meaning of success are of course determined by particular security definition.

• Assumptions: You may assume as true any of the axioms/assumptions that were given in
class: existence of one-way permutations, commitment schemes, pseudorandom generators,
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pseudorandom permutations, hardness of factoring random Blum integers, hardness of in-
verting the RSA permutation, decisional Diffie Hellman, existence of chosen-message (CMA)
secure signature schemes, existence of collision-resistant hash functions, existence of chosen
ciphertext (CCA) secure encryption schemes, and existence of secure oblivious transfer (OT)
and private information retrieval (PIR) protocols. Whenever you use such an assumption,
state it clearly and precisely. It is recommended that you review these assumptions and
definitions before you start working on this test.

Note on the random oracle model: You can use the random oracle model, but it is
preferred that you avoid doing so if possible (you will get at least the majority of points
for a valid solution in the random oracle model). If you use as a black-box a CCA secure
encryption scheme this does not count as using the random oracle model (even though the
only construction we saw for this in class used the random oracle model).

• Quoting results: You can quote without proof theorems that were proven in class. However,
you should quote them precisely, and state the date and lecture number where the theorem
was proven. You can also use the hardcore theorem of Goldreich and Levin, even though it
was not fully proved in class. When solving a question, you can use the results of a previous
question as given, even if you did not manage to solve it.

• Clarifications: I have made an effort to make the questions as clear and unambiguous as
possible. In case any clarifications are needed, I will try to be always available by email. You
can also email me with your number and good times to call, and I will call you back. If you
need me more urgently, you can call me at my cell phone 917-674-6110 between 11am and
10pm EST. You can also reach Dave at his email. Feel free to email me before starting to
work on the exam to check my availability in that 96 hour period. If there are any unresolved
doubts, please write your confusion as part of the answer and maybe you will get partial
credit.

Turn the page only when you are ready to start working on the
exam.
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Question 1 (45 points). For each of the following statements, say whether it is true or false, and
prove your assertion. You can consider as true all the assumption given in class as mentioned in
the instructions on the first page. For example, if the statement is that there exists an object with
some properties, then either prove that such an object exists by giving a construction based on the
assumptions together with a proof that the construction satisfies the properties, or prove that such
an object cannot exist.

1. There exists a pseudorandom generator G = {Gn} where for every n, Gn : {0, 1}n → {0, 1}2n

such that for every x ∈ {0, 1}n, the first n/3 bits of Gn(x) are zero.

2. There exists a pseudorandom generator G = {Gn} where for every n, Gn : {0, 1}n → {0, 1}2n

such that for every x ∈ {0, 1}n, there exist n/3 bits of Gn(x) that are zero.

3. There exists a pseudorandom generator G = {Gn} where for every n, Gn : {0, 1}n → {0, 1}2n

such that for every x ∈ {0, 1}n, if the first n/3 bits of x are zero then all the bits of Gn(x)
are zero (i.e., Gn(x) = 02n).

4. There exists a pseudorandom function collection {fs}s∈{0,1}∗ where, letting n = |s|, fs :
{0, 1}n → {0, 1}n that satisfies the following: for every x ∈ {0, 1}n, f0n(x) = 0n (i.e., f0n(·)
is the constant zero function).

5. There exists a pseudorandom function collection {fs}s∈{0,1}∗ where, letting n = |s|, fs :
{0, 1}n → {0, 1}n that satisfies the following: for every s ∈ {0, 1}n, fs(0n) = 0n.

6. For ` ≥ 2 and a string x ∈ {0, 1}`, let cnot : {0, 1}` → {0, 1}` be the following function:
cnot(x1, . . . , x`) = x1, x2 ⊕ x1, x3, . . . , x`. (That is, cnot flips the second bit of x according to
whether or not the first bit is one.) There exists a CPA-secure public key encryption scheme
(Gen,E,D) and a polynomial time algorithm A, such that for every n, if (e, d) = Gen(1n)
then for every x ∈ {0, 1}` (where ` is the message size of the encryption scheme for security
parameter n) it holds that

Dd

(
A

(
e,Ee(x)

))
= cnot(x)

7. Same statement as Item 6 but with CPA-secure replaced with CCA-secure.

8. There exists a commitment scheme C : {0, 1} × {0, 1}n → {0, 1}m (i.e., a commitment for
messages of length one bit, where to commit to the bit b, one chooses r ←R {0, 1}n and sends
C(b, r)) and a polynomial time algorithm A : {0, 1}m → {0, 1}, such that for both b = 0 and
b = 1,

Pr
Un

[A
(
C(b, Un)

)
⊕ b = 1] ≥ 2/3

where Un denotes the uniform distribution over {0, 1}n.

9. Same statement as Item 8 but with 2/3 replaced with 1/2.

4



Question 2 (25 points). Recall the definition of a secure coin-tossing protocol: it is a two-party
protocol with the two parties named Alice and Bob. There is a polynomial-time function result that
takes as input the transcript of the protocol (i.e., the sequence of all messages exchanged between
the two parties), and outputs a bit b ∈ {0, 1}. Note that if the two parties are probabilistic, the
transcript trans = trans〈A(1n), B(1n)〉 of the execution of the protocol (where both Alice and Bob
are given as input the security parameter n) is a random variable. We require that as long as at
least one party follows the protocol, for every b ∈ {0, 1}, the probability that result(trans) = b
is between 1

2 − ε(n) and 1
2 + ε(n) where n is the security parameter for the protocol, and ε(·) is a

function such that ε(n) = n−ω(1).
A private coin tossing protocol is the following variant of a coin tossing protocol. Intuitively,

it supposed to be a protocol where only Alice actually knows the result of the coin toss, but Bob
is still guaranteed that this result is random. (You can think that Alice learns the output b while
the transcript only contains a commitment to b.)

More formally, again, there are two parties Alice and Bob and a function result on the transcript
of the protocol, but this time result is not a polynomial-time function. We require the following
properties of the protocol:

• As before, if at least one of the parties is honest, for every b ∈ {0, 1},

1
2 − n−ω(1) < Pr[result(trans) = b] < 1

2 + n−ω(1)

• If Alice is honest, then she knows the result: there is a polynomial-time algorithm RES that
on input the private randomness and view that Alice used, outputs the same output as result.
That is, no matter what algorithm B∗ Bob uses RES(viewA〈A,B∗〉) = result(trans〈A,B∗〉)
where 〈A,B∗〉 in both sides of the equation denotes an execution between the honest Alice
algorithm A and a possibly cheating (but polynomial-time Bob algorithm B∗).

• Bob does not know the result. That is, consider the following attack: Bob participates in the
protocol using an arbitrary algorithm B∗ where Alice uses the honest algorithm A, and at the
end Bob outputs a guess b′ for result(trans), where trans is the transcript of the execution.
Then the probability that b′ = result(trans) is at most 1/2 + n−ω(1).

Note that if Alice and Bob participated in an execution of a private coin-tossing protocol
with transcript trans, and Alice knows b = result(trans) = RES(view) (where view is her view
including the random tape she used) then Alice can prove to Bob that result(trans) = b by simply
sending to Bob the random tape she used (using this random tape and trans Bob can reconstruct
Alice’s view view in the execution and then compute result(trans) = RES(view)).
The question: Construct a private coin-tossing protocol and prove its security under the assump-
tions we learned in class.
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Question 3 (40 points). In this question, you will construct a protocol to allow Alice and Bob to
play (a simplified version of) Black-Jack over the phone or net, without access to any physical deck
of cards, and without needing to trust one another to follow the protocol.

We’ll use the following version of Black Jack:

• There is a deck of 44 cards, with each card having value c between 1 and 11 and a type t
which is a number between 1 and 4. That is, a card is a pair 〈t, c〉 ∈ [11]× [4].

• There are two players Alice and Bob.

• The deck is shuffled randomly, and each player gets one card that is public and another card
that only he/she can see.

• Based on that information, each player decides whether to ask for another card or not.

• At this point each player has either two or three cards. Each player reveals his/her cards and
the total values of the cards for each player is computed, where for each player if this total
is more than 21 then it is considered to be zero. The player with higher total value wins. If
both totals are equal then it is a draw.

A strategy for a player in this game is a function s : ([11]× [4])3 → [0, 1] that is interpreted as
follows: if the two public cards are 〈c1, t1〉 and 〈c2, t2〉 and the secret card that only the player sees
is 〈c3, t3〉 then the player will ask for a third card with probability s(c1, t1, c2, t2, c3, t3). For two
strategies sA, sB, we denote by a real blackjack game the result of running the process above where
Alice uses strategy sA and Bob uses strategy sB.

We define a secure blackjack protocol to be a triplet (A,B, result) where A,B are polynomial-
time interactive algorithms and result : {0, 1}∗ → {Awins,Bwins, draw} is a polynomial-time com-
putable function satisfying the following:

Inputs Each of the algorithms A,B takes as input a strategy s : ([11]× [4])3 → [0, 1] for the
blackjack game. (You can assume that the output of s is always an integer multiple of 1/100,
so this strategy can be represented by a string of constant size.) Each algorithm also takes
as input a string 1n which we refer to as the security parameter.

Honest output If Alice and Bob both run the prescribed algorithms A and B with inputs sA, sB

respectively and 1n for every n, then for every r ∈ {Awins,Bwins, draw} the probability pr

that result(trans) = r is equal to the probability that the corresponding outcome happens
in a real blackjack game where Alice uses sA and Bob uses sB (where trans is the random
variable representing the transcript of an execution between A(sA, 1n) and B(sB, 1n).1

Bob can’t win by cheating Suppose that Alice runs the honest algorithm A with strategy sA,
and suppose that Bob runs an arbitrary polynomial-sized computable strategy B∗. Denote by
p the probability that result(trans〈A(sA, 1n), B∗〉) 6= Awins (where we assume n is sufficiently
large). Then, there exists a strategy sB for Bob such that with probability at least p− 10−6,
Alice does not win in a real blackjack game where she uses sA and Bob uses sB. That is, Bob
could have done just as well in a real blackjack game, and hence Alice did not suffer any loss
in the probability of winning because of Bob’s not following the protocol.2

1If it makes your life easier, you can relax the requirement that these probabilities are equal to the requirement
that the absolute value of their difference is at most 10−6 for large enough n.

2For simplicity we didn’t add the requirement that the probability of a draw will also be similar.
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Alice can’t win by cheating This is exactly the symmetric requirement for Bob. Suppose that
Bob runs the honest algorithm A with strategy sB, and suppose that Alice runs an arbitrary
polynomial-sized computable strategy A∗. Denote by p the probability that result(trans〈A∗, B(sB, 1n)〉)
6= Bwins (where we assume n is sufficiently large). Then, there exists a strategy sA for Alice
such that with probability at least p− 10−6, Bob does not win in a real blackjack game with
strategies sA and sB.

The question: Construct a blackjack protocol and prove its security under the assumptions we
learned in class.

If it makes your life easier, you may allow the result function to have an additional output fail.
However, we require that in all cases (both honest, Alice cheating, Bob cheating) the probability that
the output is fail is at most 1/3. In all the requirements, we consider the conditional probabilities
conditioned on the result different than fail. That is, in the case where both parties are honest we
let pr denote the probability that the result is r conditioned on the result different from fail. In the
cases where Bob is cheating we let p denote the probability that the result is not Awins conditioned
on the result different from fail, and we change in a similar way the requirement in the case that
Alice is cheating.
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