
Lecture 19: Quantum computing and
cryptography I

Boaz Barak

“I think I can safely say that nobody understands quantum mechanics.”
, Richard Feynman, 1965

“The only difference between a probabilistic classical world and the
equations of the quantum world is that somehow or other it appears
as if the probabilities would have to go negative”, Richard Feynman,
1982

For much of the history of mankind, people believed that the ultimate “theory
of everything” would be of the “billiard ball” type. That is, at the end of the
day, everything is composed of some elementary particles and adjacent particles
interact with one another according to some well specified laws. The types of
particles and laws might differ, but not the general shape of the theory. Note
that this in particular means that a system of N particles can be simulated by a
computer with poly(N) memory and time.

Alas, in the beginning of the 20th century, several experimental results were
calling into question the “billiard ball” theory of the world. One such experiment
is the famous “double slit” experiment. Suppose we shoot an electron at a wall
that has a single slit at position i and put somewhere behind this slit a detector.
If we let pi be the probability that the electron goes through the slit and let qi
be the probability that conditioned on this event, the electron hits this detector,
then the fraction of times the electron hits our detector should be (and indeed
is) α = piqi. Similarly, if we close this slit and open a second slit at position j
then the new fraction of times the electron hits our detector will be β = pjqj .
Now if we open both slits then it seems that the fraction should be α+ β and in
particular, “obviously” the probability that the electron hits our detector should
only increase if we open a second slit. However, this is not what actually happens
when we run this experiment. It can be that the detector is hit a smaller number
of times when two slits are open than when only a single one hits. It’s almost as
if the electron checks whether two slits are open, and if they are, it changes the
path it takes. If we try to “catch the electron in the act” and place a detector
right next to each slit so we can count which electron went through which slit
then something even more bizzare happened. The mere fact that we measured
the electron path changes the actual path it takes, and now this “destructive
interference” pattern is gone and the detector will be hit α+ β fraction of the

1

time.

Figure 1: The setup of the double slit experiment

Figure 2: In the double slit experiment, opening two slits can actually cause
some positions to receive fewer electrons than before.

Quantum mechanics is a mathematical theory that allows us to calculate and
predict the results of this and many other examples. If you think of quantum as
an explanation as to what “really” goes on in the world, it can be rather confusing.
However, if you simply “shut up and calculate” then it works amazingly well at
predicting the results of a great many experiments.

In the double slit experiment, quantum mechanics still allows to compute numbers
α and β that denote “probabilities” that the first and second electrons hit the
detector. The only difference that in quantum mechanics these probabilities
might be negative numbers. However, probabilities can only be negative when
no one is looking at them. When we actually measure what happened to the
detector, we make the probabilities positive by squaring them. So, if only the
first slit is open, the detector will be hit α2 fraction of the time. If only the
second slit is open, the detector will be hit β2 fraction of the time. And if both
slits are open, the detector will be hit (α+ β)2 fraction of the time. Note that it
can well be that (α + β)2 < α2 + β2 and so this calculation explains why the
number of times a detector is hit when two slits are open might be smaller than
the number of times it is hit when either slit is open. If you haven’t seen it before,
it may seem like complete nonsense and at this point I’ll have to politely point

2

you back to the part where I said we should not question quantum mechanics
but simply “shut up and calculate”.1

Some of the counterintuitive properties that arise from these negative probabilities
include:

• Interference - As we see here, probabilities can “cancel each other out”.
• Measurement - The idea that probabilities are negative as long as “no

one is looking” and “collapse” to positive probabilities when they are
measured is deeply disturbing. Indeed, people have shown that it can yield
to various strange outcomes such as “spooky actions at a distance”, where
we can measure an object at one place and instantaously (faster than the
speed of light) cause a difference in the results of a measurements in a
place far removed. Unfortunately (or fortunately?) these strange outcomes
have been confirmed experimentally.

• Entanglement - The notion that two parts of the system could be con-
nected in this weird way where measuring one will affect the other is known
as quantum entanglement.

Again, as counter-intuitive as these concepts are, they have been experimentally
confirmed, so we just have to live with them.

Quantum computing and computation - an executive summary.

One of the strange aspects of the quantum-mechanical picture of the world is
that unlike in the billiard ball example, there is no obvious algorithm to simulate
the evolution of n particles over t time periods in poly(n, t) steps. In fact, the
natural way to simulate n quantum particles will require a number of steps that
is exponential in n. This is a huge headache for scientists that actually need to
do these calculations in practice.

In the 1981, physicist Richard Feynman proposed to “turn this lemon to lemonade”
by making the following almost tautological observation:

1If you have seen quantum mechanics before, I should warn that I am making here many
simplifications. In particular in quantunm mechanics the “probabilities” can actually be
complex numbers, though one gets most of the qualitative understanding by considering them
as potentially negative real numbers. I will also be focusing throughout this presentation on
so called “pure” quantum states, and ignore the fact that generally the states of a quantum
subsystem are mixed states that are a convex combination of pure states and can be described
by a so called density matrix. This issue does not arise as much in quantum algorithms
precisely because the goal is for a quantum computer is to be an isolated system that can
evolve to continue to be in a pure state; in real world quantum computers however there will be
interference from the outside world that causes the state to become mixed and increase its so
called “von Neumann entropy”- fighting this interference and the second law of thermodynamics
is much of what the challenge of building quantum computers is all about . More generally, this
lecture is not meant to be a complete or accurate description of quantum mechanics, quantum
information theory, or quantum computing, but rather just give a sense of the main points
that are different about it from classical computing and how they relate to cryptography.

3

If a physical system cannot be simulated by a computer in T steps,
the system can be considered as performing a computation that would
take more than T steps

So, he asked whether one could design a quantum system such that its outcome
y based on the initial condition x would be some function y = f(x) such that (a)
we don’t know how to efficiently compute in any other way, and (b) is actually
useful for something.2 In 1985, David Deutsch formally suggested the notion of
a quantum Turing machine, and the model has been since refined in works of
Detusch and Josza and Bernstein and Vazirani. Such a system is now known as
a quantum computer.

For a while these hypothetical quantum computers seemed useful for one of two
things. First, to provide a general-purpose mechanism to simulate a variety of
the real quantum systems that people care about. Second, as a challenge to
the theory of computation’s approach to model efficient computation by Turing
machines, though a challenge that has little bearing to practice, given that this
theoretical “extra power” of quantum computer seemed to offer little advantage
in the problems people actually want to solve such as combinatorial optimization,
machine learning, data structures, etc..

To a significant extent, this is still true today. We have no real evidence that
quantum computers, if built, will offer truly significant3 advantage in 99%
of the applications of computing.4 However, there is one cryptography-sized
exception: In 1994 Peter Shor showed that quantum computers can solve the
integer factoring and discrete logarithm in polynomial time. This result has
captured the imagination of a great many people, and completely energized
research into quantum computing.
This is both because the hardness of these particular problems provides the
foundations for securing such a huge part of our communications (and these
days, our economy), as well as it was a powerful demonstration that quantum
computers could turn out to be useful for problems that a-priori seemd to have
nothing to do with quantum physics. As we’ll discuss later, at the moment there

2As its title suggests, Feynman’s lecture was actually focused on the other side of simulating
physics with a computer, but he mentioned that as a “side remark” one could wonder if it’s
possible to simulate physics with a new kind of computer - a “quantum computer” which would
“not [be] a Turing machine, but a machine of a different kind”. As far as I know, Feynman
did not suggest that such a computer could be useful for computations completely outside
the domain of quantum simulation, and in fact he found the question of whether quantum
mechanics could be simulated by a classical computer to be more interesting.

3I am using the theorist’ definition of conflating “significant” with “super-polynomial”. As
we’ll see, Grover’s algorithm does offer a very generic quadratic advantage in computation.
Whether that quadratic advantage will ever be good enough to offset in practice the significant
overhead in building a quantum computer remains an open question. We also don’t have
evidence that super-polynomial speedups can’t be achieved for some problems outside the
Factoring/Dlog or quantum simulation domains, and there is at least one company banking on
such speedups actually being feasible.

4This “99%” is a figure of speech, but not completely so. It seems that for many web
servers, the TLS protocol (which based on the current non-lattice based systems would be
completely broken by quantum computing) is responsible for about 1% of the CPU usage.

4

https://www.cs.berkeley.edu/~christos/classics/Feynman.pdf
http://www.dwavesys.com/
http://chimera.labs.oreilly.com/books/1230000000545/ch04.html#TLS_COMPUTATIONAL_COSTS

are several intensive efforts to construct large scale quantum computers. It seems
safe to say that, as far as we know, in the next five years or so there will not be
a quantum computer large enough to factor, say, a 1024 bit number, but there
it is quite possible that some quantum computer will be built that is strong
enough to achieve some task that is too inefficient to achieve with a non-quantum
or “classical” computer (or at least requires more resources classically than it
would for this computer). When and if such a computer is built that can break
reasonable parameters of Diffie Hellman, RSA and elliptic curve cryptography
is anybody’s guess. It could also be a “self destroying prophecy” whereby the
existence of a small-scale quantum computer would cause everyone to shift away
to lattice-based crypto which in turn will diminish the motivation to invest the
huge resources needed to build a large scale quantum computer.5

The above summary might be all that you need to know as a cryptographer, and
enough motivation to study lattice-based cryptography as we do in this course.
However, because quantum computing is such a beautiful and (like cryptography)
counter-intuitive concept, we will try to give at least a hint of what is it about
and how does Shor’s algorithm work.

Quantum 101

We now present some of the basic notions in quantum information. It is very
useful to contrast these notions to the setting of probabilistic systems and see
how “negative probabilities” make a difference. This discussion is somewhat
brief. The chapter on quantum computation in my book with Arora (see draft
here) is one relatively short resource that contains essentially everything we
discuss here. See also this blog post of Aaronson for a high level explanation of
Shor’s algorithm which ends with links to several more detailed expositions. See
also this lecture of Aaronson for a great discussion of the feasibility of quantum
computing (Aaronson’s course lecture notes and the book that they spawned
are fantastic reads as well).

States: We will consider a simple quantum system that includes n objects (e.g.,
electrons/photons/transistors/etc..) each of which can be in either an “on” or “off”
state - i.e., each of them can encode a single bit of information, but to emphasize
the “quantumness” we will call it a qubit. A probability distribution over such a
system can be described as a 2n dimensional vector v with non-negative entries
summing up to 1, where for every x ∈ {0, 1}n, vx denotes the probability that
the system is in state x. As we mentioned, quantum mechanics allows negative
(in fact even complex) probabilities and so a quantum state of the system can be
described as a 2n dimensional vector v such that ‖v‖2 =

∑
x |vx|2 = 1.

Measurement: Suppose that we were in the classical probabilistic setting, and
5Of course, given that we’re still hearing of attacks exploiting “export grade” cryptography

that was supposed to disappear with 1990’s, I imagine that we’ll still have products running
1024 bit RSA when everyone has a quantum laptop.

5

http://theory.cs.princeton.edu/complexity/
http://theory.cs.princeton.edu/complexity/ab_quantumchap.pdf
http://theory.cs.princeton.edu/complexity/ab_quantumchap.pdf
http://www.scottaaronson.com/blog/?p=208
http://www.scottaaronson.com/democritus/lec14.html
http://www.scottaaronson.com/democritus/default.html
http://www.amazon.com/Quantum-Computing-since-Democritus-Aaronson/dp/0521199565
http://blog.cryptographyengineering.com/2016/03/attack-of-week-drown.html

that the n bits are simply random coins. Thus we can describe the state of
the system by the 2n-dimensional vector v such that vx = 2−n for all x. If we
measure the system and see what the coins came out, we will get the value x
with probability vx. Naturally, if we measure the system twice we will get the
same result. Thus, after we see that the coin is x, the new state of the system
collapses to a vector v such that vy = 1 if y = x and vy = 0 if y 6= x. In a
quantum state, we do the same thing: if we measure a vector v corresponds to
turning it with probability |vx|2 into a vector that has 1 on coordinate x and
zero on all the other coordinates.

Operations: In the classical probabilistic setting, if we have a system in state
v and we apply some function f : {0, 1}n → {0, 1}n then this transforms v to
the state w such that wy =

∑
x:f(x)=y vx.

Another way to state this, is that w = Mf where Mf is the matrix such that
Mf(x),x = 1 for all x and all other entries are 0. If we toss a coin and decide with
probability 1/2 to apply f and with probability 1/2 to apply g, this corresponds
to the matrix (1/2)Mf + (1/2)Mg. More generally, the set of operations that we
can apply can be captured as the set of convex combinations of all such matrices-
this is simply the set of non-negative matrices whose columns all sum up to 1-
the stochastic matrices. In the quantum case, the operations we can apply to a
quantum state are encoded as a unitary matrix, which is a matrix M such that
‖Mv‖ = ‖v‖ for all vectors v.

Elementary operations: Of course, even in the probabilistic setting, not every
function f : {0, 1}n → {0, 1}n is efficiently computable. We think of a function
as efficiently computable if it is composed of polynomially many elementary
operations, that involve at most 2 or 3 bits or so (i.e., Boolean gates). That is,
we say that a matrix M is elementary if it only modifies three bits. That is,
M is obtained by “lifting” some 8 × 8 matrix M ′ that operates on three bits
i, j, k, leaving all the rest of the bits intact. Formally, given an 8× 8 matrix M ′
(indexed by strings in {0, 1}3) and three distinct indices i < j < k ∈ {1, . . . , n}
we define the n-lift of M ′ with indices i, j, k to be the 2n × 2n matrix M such
that for every strings x and y that agree with each other on all coordinates
except possibly i, j, k, Mx,y = M ′xixjxk,yiyjyk

and otherwise Mx,y = 0. Note that
if M ′ is of the form M ′f for some function f : {0, 1}3 → {0, 1}3 then M = Mg

where g : {0, 1}n → {0, 1}n is defined as g(x) = f(xixjxk). We define M as an
elementary stochastic matrix or a probabilistic gate if M is equal to an n lift of
some stochastic 8× 8 matrix M ′. The quantum case is similar: a quantum gate
is a 2n × 2n matrix that is an N lift of some unitary 8× 8 matrix M ′. It is an
exercise to prove that lifting preserves stochasticity and unitarity. That is, every
probabilistic gate is a stochastic matrix and every quantum gate is a unitary
matrix.

Complexity: For every stochastic matrix M we can define its randomized
complexity, denoted as R(M) to be the minimum number T such that M is
can be (approximately) obtained by combining T elemntary probabilistic gates.
To be concrete, we can define R(M) to be the minimum T such that there

6

exists T elementary matrices M1, . . . ,MT such that for every x,
∑
y |My,x −

(MT · · ·M1)y,x| < 0.1. (It can be shown that R(M) is finite and in fact at most
10n for every M ; we can do so by writing M as a convex combination of function
and writing every function as a composition of functions that map a single string
x to y, keeping all other inputs intact.) We will say that a probabilistic process
M mapping distributions on {0, 1}n to distributions on {0, 1}n is efficiently
classically computable if R(M) ≤ poly(n). If M is a unitary matrix, then we
define the quantum complexity of M , denoted as Q(M), to be the minimum
number T such that there are quantum gates M1, . . . ,MT satisfying that for
every x,

∑
y |My,x − (MT · · ·M1)y,x|2 < 0.1.

We say that M is efficiently quantumly computable if Q(M) ≤ poly(n).

Computing functions: We have defined what it means for an operator to
be probabilistically or quantumly efficiently computable, but we typically are
interested in computing some function f : {0, 1}m → {0, 1}`. The idea is that
we say that f is efficiently computable if the corresponding operator is efficiently
computable, except that we also allow to use extra memory and so to embed
f in some n = poly(m). We define f to be efficiently classically computable if
there is some n = poly(m) such that the operator Mg is efficiently classically
computable where g : {0, 1}n → {0, 1}n is defined such that g(x1, . . . , xn) =
f(x1, . . . , xm). In the quantum case we have a slight twist since the operator
Mg is not necessarily a unitary matrix.6 Therefore we say that f is efficiently
quantumly computable if there is n = poly(m) such that the operator Mq is
efficiently quantumly computable where g : {0, 1}n → {0, 1}n is defined as
g(x1, . . . , xn) = x1 · · ·xm‖(f(x1 · · ·xm)0n−m−` ⊕ xm+1 · · ·xn).

Quantum and classical computation: The way we defined what it means
for a function to be efficiently quantumly computable, it might not be clear
that if f : {0, 1}m → {0, 1}` is a function that we can compute by a polynomial
size Boolean circuit (e.g., combining polynomially many AND, OR and NOT
gates) then it is also quantumly efficiently computable. The idea is that for
every gate g : {0, 1}2 → {0, 1} we can define an 8 × 8 unitary matrix Mh

where h : {0, 1}3 → {0, 1}3 have the form h(a, b, c) = a, b, c ⊕ g(a, b). So, if
f has a circuit of s gates, then we can dedicate an extra bit for every one
of these gates and then run the corresponding s unitary operations one by
one, at the end of which we will get an operator that computes the mapping
x1, . . . , xm+`+s = x1 · · ·xm‖xm+1 · · ·xm+s ⊕ f(x1, . . . , xm)‖g(x1 . . . xm) where
the the `+ ith bit of g(x1, . . . , xn) is the result of applying the ith gate in the
calculation of f(x1, . . . , xm). So this is “almost” what we wanted except that we
have this “extra junk” that we need to get rid of. The idea is that we now simply
run the same computation again which will basically we mean we XOR another
copy of g(x1, . . . , xm) to the last s bits, but since g(x)⊕ g(x) = 0s we get that
we compute the map x 7→ x1 · · ·xm‖(f(x1, . . . , xm)0s ⊕ xm+1 · · ·xm+`+s) as
desired.

6It is a good exercise to verify that for every g : {0, 1}n → {0, 1}n, Mg is unitary if and
only if g is a permutation.

7

The “obviously exponential” fallacy: A priori it might seem “obvious” that
quantum computing is exponentially powerful, since to compute a quantum
computation on n bits we need to maintain the 2n dimensional state vector and
apply 2n× 2n matrices to it. Indeed popular descriptions of quantum computing
(too) often say something along the lines that the difference between quantum
and classical computer is that a classic bit can either be zero or one while a
qubit can be in both states at once, and so in many qubits a quantum computer
can perform exponentially many computations at once. Depending on how you
interpret this, this description is either false or would apply equally well to
probabilistic computation. However, for probabilistic computation it is a not too
hard exercise to show that if f : {0, 1}m → {0, 1}n is an efficiently computable
function then it has a polynomial size circuit of AND, OR and NOT gates.7
Moreover, this “obvious” approach for simulating a quantum computation will
take not just exponential time but exponential space as well, while it is not
hard to show that using a simple recursive formula one can calculate the final
quantum state using polynomial space (in physics parlance this is known as
“Feynman path integrals”). So, the exponentially long vector description by itself
does not imply that quantum computers are exponentially powerful. Indeed,
we cannot prove that they are (since in particular we can’t prove that every
polynomial space calculation can be done in polynomial time, in complexity
parlance we don’t know how to rule out that P = PSPACE), but we do have
some problems (integer factoring most prominently) for which they do provide
exponential speedup over the currently best known classical (deterministic or
probabilistic) algorithms.

Physically realizing quantum computation

To realize quantum computation one needs to create a system with n independent
binary states (i.e., “qubits”), and be able to manipulate small subsets of two
or three of these qubits to change their state. While by the way we defined
operations above it might seem that one needs to be able to perform arbitrary
unitary operations on these two or three qubits, it turns out that there several
choices for universal sets - a small constant number of gates that generate all
others. The biggest challenge is how to keep the system from being measured
and collapsing to a single classical combination of states. This is sometimes
known as the coherence time of the system. The threshold theorem says that
there is some absolute constant level of errors τ so that if errors are created at
every gate at rate smaller than τ then we can recover from those and perform
arbitrary long computations. (Of course there are different ways to model the
errors and so there are actually several threshold theorems corresponding to
various noise models).

7It is a good exercise to show that if M is a probabilistic process with R(M) ≤ T then
there exists a probabilistic circuit of size, say, 100T n2 that approximately computes M in the
sense that for every input x,

∑
y∈{0,1}n |Pr[C(x) = y]−Mx,y | < 1/3.

8

https://courses.cs.washington.edu/courses/cse599d/06wi/lecturenotes19.pdf

There have been several proposals to build quantum computers:

• Superconducting quantum computers use super-conducting electric circuits
to do quantum computation. Recent works have shown one can keep these
superconducting qubits fairly robust to the point one can do some error
correction on them (see also here).

• Trapped ion quantum computers Use the states of an ion to simulate
a qubit. People have made some recent advances on these computers
too. While it’s not clear that’s the right measuring yard, the current best
implementation of Shor’s algorithm (for factoring 15) is done using an
ion-trap computer.

• Topological quantum computers use a different technology, which is more
stable by design but arguably harder to manipulate to create quantum
computers.

These approaches are not mutually exclusive and it could be that ultimately
quantum computers are built by combining all of them together. I am not at all
an expert on this matter, but it seems that progress has been slow but steady
and it is quite possible that we’ll see a 20-50 qubit computer sometime in the
next 5-10 years.

Bra-ket notation

Quantum computing is very confusing and counterintuitive for many reasons. But
there is also a “cultural” reason why people sometimes find quantum arguments
hard to follow. Quantum folks follow their own special notation for vectors.
Many non quantum people find it ugly and confusing, while quantum folks
secretly wish they people used it all the time, not just for non-quantum linear
algebra, but also for restaurant bills and elemntary school math classes.

The notation is actually not so confusing. If x ∈ {0, 1}n then |x〉 denotes the xth
standard basis vector in 2n dimension. That is |x〉 2n-dimensional column vector
that has 1 in the xth coordinate and zero everywhere else. So, we can describe
the column vector that has αx in the xth entry as

∑
x∈{0,1}n αx|x〉. One more

piece of notation that is useful is that if x ∈ {0, 1}n and y ∈ {0, 1}m then we
identify |x〉|y〉 with |xy〉 (that is, the 2n+m dimensional vector that has 1 in the
coordinate corresponding to the concatenation of x and y, and zero everywhere
else). This is more or less all you need to know about this notation to follow
this lecture.8

A quantum gate is an operation on at most three bits, and so it can be completely
specified by what it does to the 8 vectors |000〉, . . . , |111〉. Quantum states are

8If you are curious, there is an analog notation for row vectors as 〈x|. Generally if u is
a vector then |u〉 would be its form as a column vector and 〈u| would be its form as a row
product. Hence since u>v = 〈u, v〉 the inner product of u and b can be thought of as 〈u||v〉 .
The outer product (the matrix whose i, j entry is uivj) is denoted as |u〉〈v|.

9

https://en.wikipedia.org/wiki/Superconducting_quantum_computing
http://arxiv.org/abs/1411.7403
http://arxiv.org/abs/1508.05882v2
https://en.wikipedia.org/wiki/Trapped_ion_quantum_computer
http://iontrap.umd.edu/wp-content/uploads/2016/02/1602.02840v1.pdf
http://arxiv.org/abs/1507.08852
http://arxiv.org/abs/1507.08852
https://en.wikipedia.org/wiki/Topological_quantum_computer
https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation

always unit vectors and so we sometimes omit the normalization for convenience;
for example we will identify the state |0〉 + |1〉 with its normalized version

1√
2 |0〉+ 1√

2 |1〉.

Bell’s Inequality

There is something weird about quantum mechanics. In 1935 Einstein, Podolsky
and Rosen (EPR) tried to pinpoint this issue by highlighting a previously unreal-
ized corollary of this theory. It was already realized that the fact that quantum
measurement collapses the state to a definite aspect yields the uncertainty prin-
ciple, whereby if you measure a quantum system in one orthogonal basis, you
will not know how it would have measured in an incohrent basis to it (such
as position vs. momentum). What EPR showed was that quantum mechanics
results in so called “spooky action at a distance” where if you have a system of
two particles then measuring one of them would instantenously effect the state of
the other. Since this “state” is just a mathematical description, as far as I know
the EPR paper was considered to be a thought experiment showing troubling
aspects of quantum mechanics, without bearing on experiment. This changed
when in 1965 John Bell showed an actual experiment to test the predictions of
EPR and hence pit intuitive common sense against the predictions of quantum
mechanics. Quantum mechanics won. Nonetheless, since the results of these
experiments are so obviously wrong to anyone that has ever sat in an armchair,
that there are still a number of Bell denialists arguing that quantum mechanics
is wrong in some way.

So, what is this Bell’s Inequality? Suppose that Alice and Bob try to convince you
they have telepathic ability, and they aim to prove it via the following experiment.
Alice and Bob will be in separate closed rooms.9 You will interrogate Alice and
your associate will interrogate Bob. You choose a random bit x ∈ {0, 1} and your
associate chooses a random y ∈ {0, 1}. We let a be Alice’s response and b be
Bob’s response. We say that Alice and Bob win this experiment if a⊕ b = x ∧ y.

Now if Alice and Bob are not telepathic, then they need to agree in advance on
some strategy. The most general form of such a strategy is that Alice and Bob
agree on some distribution over a pair of functions d, g : {0, 1} → {0, 1}, such
that Alice will set a = f(x) and Bob will set b = g(x). Therefore, the following
claim, which is basically Bell’s Inequality,10 implies that Alice and Bob cannot
succeed in this game with probability higher than 3/4:

Claim: For every two functions f, g : {0, 1} → {0, 1} there exist some x, y ∈
{0, 1} such that f(x)⊕ g(y) 6= x ∧ y.

9If you are extremely paranoid about Alice and Bob communicating with one another, you
can coordinate with your assistant to perform the experiment exactly at the same time, and
make sure that the rooms are so that Alice and Bob couldn’t communicate to each other in
time the results of the coin even if they do so at the speed of light.

10This form of Bell’s game was shown by CHSH

10

http://plato.stanford.edu/entries/qt-epr/
http://plato.stanford.edu/entries/qt-epr/
http://www.scottaaronson.com/blog/?p=2464

Proof: Suppose toward a contradiction that f, g satisfy f(x)⊕ g(y) = x ∧ y (∗)
or f(x) = (x ∧ y) ⊕ g(y) (∗) ;. So if y = 0 it must be that f(x) = 0 for all
x, but on the other hand, if y = 1 then for (∗) to hold then it must be that
f(x) = x⊕ g(1) but that means that f cannot be constant. QED

An amazing experimentally verified fact is that quantum mechanics allows for
telepathy:11

Claim: There is a strategy for Alice and Bob to succeed in this game with
probability at least 0.8.

Proof: The main idea is for Alice and Bob to first prepare a 2-qubit quantum
system in the state (up to normalization) |00〉+ |11〉 (this is known as an EPR
pair). Alice takes the first qubit in this system to her room, and Bob takes the
qubit to his room. Now, when Alice receives x if x = 0 she does nothing and if
x = 1 she applies the unitary map Rπ/8 to her qubit where Rθ =

(
cosθ sin−θ
sin θ cos θ

)
.

When Bob receives y, if y = 0 he does nothing and if y = 1 he applies the unitary
map R−π/8 to his qubit. Then each one of them measures their qubit and sends
this as their response. Recall that to win the game Bob and Alice want their
outputs to be more likely to differ if x = y = 1 and to be more likely to agree
otherwise.

If x = y = 0 then the state does not change and Alice and Bob always output
either both 0 or both 1, and hence in both case a ⊕ b = x ∧ y. If x = 0 and
y = 1 then after Alice measures her bit, if she gets 0 then Bob’s state is equal to
− cos(π/8)|0〉 − sin(π/8)|1〉 which will equal 0 with probability cos2(π/8). The
case that Alice gets 1, or that x = 1 and y = 0, is symmetric, and so in all
the cases where x 6= y (and hence x ∧ y = 0) the probability that a = b will
be cos2(π/8) ≥ 0.85. For the case that x = 1 and y = 1, direct calculation via
trigonomertic identities yields that all four options for (a, b) are equally likely
and hence in this case a = b with probability 0.5. The overall probability of
winning the game is at least 1

4 · 1 + 1
2 · 0.85 + 1

4 · 0.5 = 0.8. QED

Quantum vs probabilistic strategies: It is instructive to under-
stand what is it about quantum mechanics that enabled this gain in
Bell’s Inequality. For this, consider the following analogous proba-
bilistic strategy for Alice and Bob. They agree that each one of them
output 0 if he or she get 0 as input and outputs 1 with probability p
if they get 1 as input. In this case one can see that their success prob-
ability would be 1

4 · 1 + 1
2 (1− p) + 1

4 [2p(1− p)] = 0.75− 0.5p2 ≤ 0.75.
The quantum strategy we described above can be thought of as a
variant of the probabilistic strategy for p is sin2(π/8) = 0.15. But
in the case x = y = 1, instead of disagreeing only with probability
2p(1− p) = 1/4, because we can use these negative probabilities in
the quantum world and rotate the state in opposite directions, the
probability of disagreement ends up being sin2(π/4) = 0.5.

11More accurately, one either has to give up on a “billiard ball type” theory of the universe
or believe in telepathy (believe it or not, some scientists went for the latter option).

11

http://arxiv.org/abs/1508.05949
https://en.wikipedia.org/wiki/Superdeterminism

Grover’s Algorithm

Shor’s Algorithm, which we’ll see in the next lecture, is an amazing achievement,
but it only applies to very particular problems. It does not seem to be relevant to
breaking AES, lattice based cryptography, or problems not related to quantum
computing at all such as scheduling, constraint satisfaction, traveling salesperson
etc.. etc.. Indeed, for the most general form of these search problems, classically
we don’t how to do anything much better than brute force search, which takes
2n time over an n-bit domain. Lev Grover showed that quantum computers can
obtain a quadratic improvement over this brute force search, solving SAT in
2n/2 time. The effect of Grover’s algorithm on cryptography is fairly mild: one
essentially needs to double the key lengths of symmetric primitives. But beyond
cryptography, if large scale quantum computers end up being built, Grover search
and its variants might end up being some of the most useful computational
problems they will tackle. Grover’s theorem is the following:

Theorem (Grover search , 1996): There is a quantum O(2n/2poly(n))-time
algorithm that given a poly(n)-sized circuit computing a function f : {0, 1}n →
{0, 1} outputs a string x∗ ∈ {0, 1}n such that f(x∗) = 1.

Proof sketch: The proof is not hard but we only sketch it here. The general idea
can be illustrated in the case that there exists a single x∗ satisfying f(x∗) = 1.
(There is a classical reduction from the general case to this problem.) As in
Simon’s algorithm, we can efficiently initialize an n-qubit system to the uniform
state u = 2−n/2∑

x∈{0,1}n |x〉 which has 2−n/2 dot product with |x∗〉. Of course
if we measure u, we only have probability (2−n/2)2 = 2−n of obtaining the value
x∗. Our goal would be to use O(2n/2) calls to the oracle to transform the system
to a state v with dot product at least some constant ε > 0 with the state |x∗〉.

It is an exercise to show that using Had gets we can efficiently compute the
unitary operator U such that Uu = u and Uv = −v for every v orthogonal to
u. Also, using the circuit for f , we can efficiently compute the unitary operator
U∗ such that U∗|x〉 = |x〉 for all x 6= x∗ and U∗|x∗〉 = −|x∗〉. It turns out
that O(2n/2) applications of UU∗ to u yield a vector v with Ω(1) inner product
with |x∗〉. To see why, consider what these operators do in the two dimensional
linear subspace spanned by u and |x∗〉. (Note that the initial state u is in this
subspace and all our operators preserve this property.) Let u⊥ be the unit vector
orthogonal to u in this subspace and let x∗⊥ be the unit vector orthogonal to
|x∗〉 in this subspace. Restricted to this subspace, U∗ is a reflection along the
axis x∗⊥ and U is a reflection along the axis u.

Now, let θ be the angle between u and x∗⊥. These vectors are very close to each
other and so θ is very small but not zero - it is equal to sin−1 2−n/2 which is
roughly 2−n/2. Now if our state v has angle α ≥ 0 with u, then as long as α is
not too large (say α < π/8) then this means that v has angle u + θ with x∗⊥.
That means taht U∗v will have angle −α− θ with x∗⊥ or −α− 2θ with u, and
hence UU∗v will have angle α+ 2θ with u. Hence in one application from UU∗

12

we move 2θ radians away from u, and in O(2−n/2) steps the angle between u
and our state will be at least some constant ε > 0. Since we live in the two
dimensional space spanned by u and |x〉, it would mean that the dot product of
our state and |x〉 will be at least some constant as well. QED

13

	Quantum computing and computation - an executive summary.
	Quantum 101
	Physically realizing quantum computation
	Bra-ket notation
	Bell's Inequality

	Grover's Algorithm

