
Lecture 16: Fully homomorphic encryption :
Construction

Boaz Barak

In the last lecture we defined fully homomorphic encryption, and showed the
“bootstrapping theorem” that transforms a partially homomorphic encryption
scheme into a fully homomorphic encryption, as long as the original scheme can
homomorphically evaluate its own decryption circuit. In this lecture we will
show an encryption scheme (due to Gentry, Sahai and Waters, henceforth GSW)
meeting the latter property. That is, this lecture is devoted to proving1 the
following theorem:

Theorem: Assuming the LWE conjecture, there exists a partially homomorphic
public key encryption (G,E,D,EV AL) that fits the conditions of the boot-
strapping theorem. That is, for every two ciphertexts c and c′, the function
d 7→ Dd(c) NAND Dd(c′) is can be homomorphically evaluated by EV AL.

Prelude: from vectors to matrices

In the linear homomorphic scheme we saw in the last lecture, the ciphertexts
were vectors c ∈ Zn

q such that 〈c, s〉 was equal (up to scaling by b q
2c) to the

plaintext bit. We saw that adding two ciphertexts modulo q corresponded to
XOR’ing (i.e., adding modulo 2) the corresponding two plaintexts. That is, if
we defined c ⊕ c′ as c + c′ (mod q) then performing the ⊕ operation on the
ciphertexts corresponded to adding modulo 2 the plaintexts. However, to get to
a fully, or even partially, homomorphic scheme, we need to find a way to perform
the NAND operation on the two plaintexts. The challenge is that it seems that
to do that we need to find a way to evaluate multiplications: find a way to define
some operation ⊗ on ciphertexts that corresponds to multiplying the plaintexts.
Alas, a priori, there doesn’t seem to be a natural way to multiply two vectors.

1This theorem as stated was proven by Brakerski and Vaikuntanathan (ITCS 2014) building
a line of work initiated by Gentry’s original STOC 2009 work. We will actually prove a weaker
version of this theorem, due to Brakerski and Vaikuntanathan (FOCS 2011), which assumes a
quantitative strengthening of LWE. However, we will not follow the proof of Brakerski and
Vaikuntanathan but rather a scheme of Gentry, Sahai and Waters (CRYPTO 2013). Also
note that, as noted in the previous lecture, all of these results require the extra assumption
of circular security on top of LWE to achieve a non-leveled fully homomorphic encryption
scheme.

1

The GSW approach to handle this is to move from vectors to matrices. As usual,
it is instructive to first consider the cryptographer’s dream world where Gaussian
elimination doesn’t exist. In this case, the GSW ciphertext encrypting b ∈ {0, 1}
would be an n×n matrix C over Zq such that Cs = bs where s ∈ Zn

q is the secret
key. (Note here that s is a vector in Rn

q while b is a number in {0, 1}.) That is,
the encryption of a bit b is a matrix C such that the secret key is an eigenvector
(modulo q) of C with corresponding eigenvalue b. (Let us defer discussion of how
the encrypting party generates such a ciphertext, since this is in any case only
a “dream” toy example.) Clearly, given C and s we can recover b. The scheme
trivially allows homomorphic evaluation of both addition and multiplication,
since if Cs = bs and C ′s = b′s then we can define C ⊕ C ′ = C + C ′ (where on
the righthand side, addition is simply done in Zq) and C ⊗ C ′ = CC ′ (where
again this refers to matrix multiplication in Zq). Now,

(C + C ′)s = (b+ b′)s

and

CC ′s = bb′s.

Since if b, b′ ∈ {0, 1}, then b NAND b′ = 1− bb′ and in particular this equation
holds modulo q, we would be able to take an encryption C of b and an encryption
C ′ of b′ and transform it to the encryption (I −CC ′) of b NAND b′ (where I is
the identity matrix).

Thus in a world without Gaussian elimination it is not hard to get a fully
homomorphic encryption.2

Real world partially homomorphic encryption

We now discuss how we can obtain an encryption in the real world where, as
much as we’d like to ignore it, there are people who walk among us (not to
mention some computer programs) that can actually do eigenvalue computations.
As usual, the idea is to “fool Gaussian elimination with noise” but we will see
that we have to be much more careful about “noise management”, otherwise
even for the party holding the secret key the noise will overwhelm the signal.3

The main idea is that we can expect the following problem to be hard for a
random secret s ∈ Zn

q : distinguish between samples of random matrices C and
matrices where Cs = bs+e for some b ∈ {0, 1} and “short” e satisfying |ei| ≤

√
q

2Strictly speaking, we only showed in this world how to get a private key fully homomorphic
encryption. Our “real world” scheme will be a full fledged public key FHE. However, we note
that private key homomorphic encryption is already very interesting and in fact sufficient for
many of the “cloud computing” applications. Moreover, Rothblum gave a generic transformation
from a private key homomorphic encryption to a public key homomorphic encryption.

3For this reason, Craig Gentry called his highly recommended survey on fully homomorphic
encryption and other advanced constructions computing on the edge of chaos.

2

http://eccc.hpi-web.de/report/2010/146/
https://eprint.iacr.org/2014/610

for all i. This yields a natural candidate for an encryption scheme where we
encrypt b by a matrix C satisfying Cs = bs+ e where e is a “short” vector.4

We can now see what adding and multiplying two matrices does to the noise. If
Cs = bs+ e and C ′s = b′s+ e′ then

(C + C ′)s = (b+ b′)s+ (e+ e′)

and

CC ′s = C(b′s+ e′) + e = bb′s+ (b′e+ Ce′).

We would have loved to say that we can define as above C ⊕ C ′ = C + C ′(
mod q) and C ⊗ C ′ = CC ′(mod q). For this we would need that (C + C ′)s
equals (b+ b′)s plus a “short” vector and CC ′s equals bb′s plus a “short” vector.
The former statement indeed holds: if e, e′ are “short” then e+ e′ is not too long
either. That is, if |ei| < δq and |e′i| < δq for every i then |ei + e′i| < 2δq. So we
can at least handle a significant number of additions before the noise gets out of
hand. Similarly, if e is small then so is b′e. Unfortunately, we can’t really say
that CC ′s− bb′s is “short” since Ce could be a very large vector. Indeed, since
C looks like a random matrix in Zq, no matter how small the entries of e, many
of the entries of Ce are quite likely to be of magnitude at least, say, q/2 and so
multiplying e by C takes us “beyond the edge of chaos”.

Noise management via encoding

The problem we had above is that the entries of C are elements in Zq that can
be very large, while we would have loved them to be small numbers such as 0 or
1. At this point one could say

“If only there was some way to encode numbers between 0 and q − 1
using only 0 and 1”

If you think about it hard enough, it turns out that there is something known
as the “binary basis” that allows us to encode a number x ∈ Zq as a vector
x̂ ∈ {0, 1}log q.5 What’s even more surprising is that this seemingly trivial trick
turns out to be immensely useful. Let us denote by ŝ the encoding of s as a
vector in {0, 1}n log q and by Ĉ the encoding of an m × n C as an m × n log q
matrix with 0, 1 entries by encoding each row separately. (We still think of the
entries of these vectors and matrices as elements of Zq and so all calculations
are still done modulo q.) We let Q be the n× (n log q) “decoding” matrix where
for every i ∈ [n] and j ∈ [log q], Qi,ij = 2j−1 and all other entries are zero. It’s
a good exercise to verify that for every vector v and matrix C, Qv̂ = v and
ĈQ> = C.

4We deliberately leave some flexibility in the definition of “short”. While initially “short”
might mean that |ei| <

√
q for every i, decryption will succeed as long as long as |ei| is, say, at

most q/100.
5If we were being pedantic the length of the vector (and other constant below) should be

the integer dlog qe but I omit the ceiling symbols for simplicity of notation.

3

In our final scheme the ciphertext encrypting b will be a (n log q)× (n× log q)
matrix C such that Cv = bv + e for a “short” e ∈ Zn log q

q and v = Q>s for
s ∈ Zn

q .

Now given ciphertexts C,C ′ that encrypt b, b′ respectively, we will define C⊕C ′ =
C+C ′ (mod q) and C⊗C ′ = ĈQ>C ′. Since we have Cs = bv+e and C ′ = b′v+e′
we get that

(C ⊕ C ′)s = (C + C ′)s = (b+ b′)v + (e+ e′)

and

(C⊗C ′)s = ĈQ>C ′s = ĈQ>(b′Q>s+e′) = b′CQ>s+ĈQ>e′ = b′bv+(b′e+Ĉe′).

Combining this we can see that if we define

C∧C ′ = (I − C ⊗ C ′)

then if C encrypts b and C ′ encrypts b′ with noise parameters µ and µ′ respectively
then C∧C ′ encrypts b NANDb′ with noise parameter at most µ+ n log qµ′.

Putting it all together

We now describe the full scheme. We are going to use the q(n)-dLWE assumption
for q(n) = 2

√
n. It is not hard to show that we can relax our assumption to

q(n)-LWE q(n) = 2polylog(n) and Brakerski and Vaikuntanathan showed how to
relax the assumption to standard (i.e. q(n) = poly(n)) LWE though we will not
present this here.

• Key generation: As in the scheme of last lecture the secret key is s ∈ Zn
s

with s1 = b q
2c and the public key is a generator Gs such that samples from

Gs(1n) are indistinguishable from independent random samples from Zn
q

but if c is output by Gs then |〈c, s〉| < √q, where the inner product (as all
other computations) is done modulo q and for every x ∈ Zq = {0, . . . , q−1}
we define |x| = min{x, q − x}.

• Encryption: To encrypt b ∈ {0, 1}, let c1, . . . , c(n log q) ←R G(1n)
output C = ̂bQ> +D where D is the matrix whose rows are c1, . . . , cn log q

and I is the (n log q)× (n log q) identity matrix.

• Decryption: To decrypt the ciphertext C, we output 0 if |(CQ>s)1| <
0.1q and 1 if 0.6q > |(CQ>s)1| > 0.4q. (It doesn’t matter what we output
on other cases.)

• NAND evaluation: Given ciphertexts C,C ′, we define C∧C ′ as I −
ĈQ>C ′.

4

Analysis of our scheme

To show that that this scheme is a valid partially homomorphic scheme we need
to show the following properties:

1. Correctness: The decryption of an encryption of b ∈ {0, 1} equals b.

2. CPA security: An encryption of 0 is computationally indistinguishable
from an encryption of 1 to someone that got the public key.

3. Homomrphism: If C encrypts b and C ′ encrypts b′ then C∧C ′ encrypts
b NAND b′ (with a higher amount of noise). The growth of the noise
will be the reason that we will not get immediately a fully homomorphic
encryption.

4. Shallow decryption circuit: To plug this scheme into the bootstrapping
theorem we will need to show that its decryption algorithm (or more
accurately, the function in the statement of the bootstrapping theorem) can
be evaluated in depth polylog(n) (independently of q), and that moreover,
the noise grows slowly enough that our scheme is homomorphic with respect
to such circuits.

Once we obtain 1-4 above, we have proven the existence of a fully homomorphic
encryption scheme. We now address those points one by one.

Correctness

To ensure correctness, it suffices to show that for every bit b, if C is the encryption
of b then it is an (n log q)× (n log q) matrix satisfying

CQ>s = bQ>s+ e

where max |ei| � q.

For starters, let us see that the dimensions make sense: the encryption of b
is computed by C = ̂bQ> +D where D is an (n log q) × n matrix satisfying
|Ds|i ≤

√
q for every i and I is the (n log q) × (n log q). Since Q> is also an

(n log q)× n matrix, adding bQ> +D makes sense and applying the ·̂ operation
will transform every row to length n log q and hence C is indeed a square
(n log q)× (n log q) matrix.

Let us now see what this matrix does to the vector v = Q>s. Using the fact
that M̂Q> = M for every matrix m, we get that

Cv = (bQ> +D)s = bv +Ds

But by construction |(Ds)i| ≤
√
q for every i, hence completing the proof of

correctness.

5

CPA Security

To show CPA security we need to show that an encryption of 0 is indistinguishable
from an encryption of 1. However, by the security of the pseudorandom generator,
an encryption of b computed according to our algorithm will be indistinguishable
from an encryption of b obtained when the matrix D is a random (q logn)× n
matrix. Now in this case the encryption is obtained by applying the ·̂ operation
to bQ> +D but if D is uniformly random then for every choice of b, bQ> +D
is uniformly random (since a fixed number plus a random number modulo q
yields a random number) and hence the matrix bQ> + D (and so also the
matrix ̂bQ> +D) contains no information about b. This completes the proof
of CPA security (can you see why?). If we want to plug in this scheme in the
bootstrapping theorem, then we will also assume that it is circular secure. It
seems a reasonable assumption though unfortuantely at the moment we do not
know how to derive it from LWE. (If we don’t want to make this assumption we
can still obtained a leveled fully homomorphic encryption as discussed in the
previous lecture.)

Homomorphism

Let v = Qs, b ∈ {0, 1} and C be a ciphertext such that Cv = bv + e. We
define the noise of C, denoted as noise(C) to be the maximum of |ei| over all
i ∈ [n log q]. We make the following claim:

Lemma (noisy homomorphism): Let C,C ′ be ciphertexts encrypting b, b′
respectively with noise(C), noise(C ′) ≤ q/4. Then C ′′ = C∧C ′ encrypts
b NAND b′ with

noise(C ′′) ≤ (2n log q) max{noise(C), noise(C ′)}

Proof: This follows from the calculations we have done before. We get that

ĈQ>C ′v = ĈQ>(b′v + e′) = b′ĈQ>Q>s + ĈQ>e′ = b′(Cv) + ĈQ>e′ = bb′v +
b′e+ ĈQ>e′

But since ĈQ> is a 0/1 matrix with every row of length n log q, for every i

(ĈQ>e′)i ≤ (n log q) maxj |ej |. QED

Shallow decryption circuit

Recall that to plug in our homomorphic encryption scheme into the bootstrapping
theorem, we needed to show that for every ciphertexts C,C ′ (generated by the
encryption algorithm) the function

f(d) = Dd(C) NAND Dd(C ′)

6

can be homomorphically evaluated where d is the secret key and Dd(C) denotes
the decryption algorithm applied to C.

In our case the secret key is the descrption ŝ of our vector s as a bit string of
length n log q. Given a ciphertext C, the decryption algorithm takes the dot
product modulo q of s with the first row of CQ> and outputs 0 (respectively 1)
if the resulting number is small (respectively large). By repeatedly applying the
noisy homomorphism lemma, we can show that can homorphically evaluate every
circuit of NAND gates whose depth ` satisfies (2n log q)` � q. If q = 2

√
n then

(assuming n is sufficiently large) then as long as ` < n0.49 this will be satisfied. In
particular to show that f(·) can be homomorphically evaluated it will suffice to
show that for every fixed vector c ∈ Zn log q

q there is a polylog(n)� n0.49 depth
circuit F that on input a string ŝ ∈ {0, 1}n log q will output 0 if |〈c, ŝ〉| < q/10
and output 1 if |〈c, ŝ〉| > q/5. (We don’t care what F does otherwise. The above
suffices since given a ciphertext C we can use f with the vector c being the top
row of CQ>Q, and hence 〈c, ŝ〉 would correspond to the first entry of CQ>s.
Note that if F has depth ` then the function f() above has depth at most `+ 1.)

If c = (c1, . . . , cn log q) is a vector then to compute its inner product with a 0/1
vector s we simply need to sum up the numbers ci where si = 1. Summing
up n′ numbers can be done via the obvious recursion in depth that is logn′
times the depth for a single addition of two numbers. However, the naive way
to add two numbers in Zq will have depth poly(log q) which is too much for us.
Fortunately, because we only care about accuracy up to q/10, we can drop all
but the first 100 log(n′) most significant digits of our numbers, since including
them can change the sum of the n numbers by at most n′(q/(n′)100)� q. Hence
we can easily do this work in poly(logn′ = poly(logn) depth.

Let us now show this more formally:

Lemma: For every c ∈ Zm
q there exists some function f : {0, 1}m → {0, 1} such

that (1) f(ŝ) = 0 if |〈ŝ, c〉| < 0.1q (2) f(ŝ) = 1 if 0.4q < |〈ŝ, c〉| < 0.6q and (3)
there is a circuit computing f of depth at most 100(logm)3.

Proof: For every number x ∈ Zq, write x̃ to be the number that is obtained
by writing x in the binary basis and setting all digits except the 10 logm most
significant ones to zero.
Note that x̃ ≤ x ≤ x̃ + x + q/m10. We define f(ŝ) to equal 1 if |

∑
ŝic̃i(

mod q̃)| ≥ 0.3q̃ and to equal 0 otherwise (where as usual the absolute value of
x modulo q̃ is the minimum of x and q̃ − x.) Note that all numbers involved
have zeroes in all but the 10 logm most significant digits and so these less
significant digits can be ignored. Hence we can add any pair of such numbers
modulo q̃ in depth O(logm)2 using the standard elementary school algorithm
to add two `-digit numbers in O(`2) steps. Now we can add the m numbers
by adding pairs, and then adding up the results, and this way in a binary
tree of depth logm to get a total depth of O(logm)3. So, all that is left to
prove is that this function f satisfies the conditions (1) and (2). Note that
|
∑
ŝic̃i −

∑
ŝici| < mq/m10 = q/m9 so now we want to show that the effect of

7

taking modulo q̃ is not much different from taking modulo q. Indeed, note that
this sum (before a modular reduction) is an integer between 0 and qm. If x is such
an integer and we divide x by q to write x = kq+ r for r < q, then since x < qm,
k < m, and so we can write x = kq̃+k(q−q̃)+r so the difference between k mod q
and k mod q̃ will be (in our standard modular metric) at most mq/m10 = q/m9.
Overall we get that if

∑
ŝici mod q is in the interval [0.4q, 0.6q] then

∑
ŝic̃i(

mod q̃) will be in the interval [0.4q−100q/m9, 0.6q+100q/m9] which is contained
in [0.3q̃, 0.7q̃]. QED

This completes the proof that our scheme can fit into the bootstrapping theorem,
hence completing the description of the fully homomorphic encryption scheme.

QED

Example application: Private information retrieval

To be completed

8

	Prelude: from vectors to matrices
	Real world partially homomorphic encryption
	Noise management via encoding
	Putting it all together
	Analysis of our scheme
	Correctness
	CPA Security
	Homomorphism
	Shallow decryption circuit

	QED
	Example application: Private information retrieval

