Lecture 15: Fully homomorphic encryption :
Introduction and bootstrapping

Boaz Barak

In today’s era of “cloud computing”, much of individual’s and businesses’ data is
stored and computed on by third parties such as Google, Microsoft, Apple, Ama-
zon, Facebook, Dropbox and many others. Classically, cryptography provided
solutions to protecting data in motion from point A to point B. But these are not
always sufficient to protect data at rest and particularly data in use. For example,
suppose that Alice has some data z € {0,1}" (where in modern applications x
would well be terabytes in length or larger) that she wishes to store with the
cloud service Bob, but is afraid that Bob will be hacked, subpoenaed or simply
does not completely trust Bob.

Encryption does not seem to immediately solve the problem. Alice could
store at Bob an encrypted version of the data and keep the secret key for
herself. But then she would be at a loss if she wanted to do with the data
anything more than retrieving particular blocks of it. If she wanted to outsource
computation to Bob as well, and compute f(x) for some function f, then she
would need to share the secret key with Bob, thus defeating the purpose of
encrypting the data in the first place. For example, after the computing systems
of Office of Personell Management (OPM) were discovered to be hacked in
June of 2015, revealing sensitive information, including fingerprints and all
data gathered during security clearance checks of up to 18 million people, DHS
assistant secretary for cybersecurity and communications Andy Ozment said
that encryption wouldn’t have helped preventing it since “if an adversary has
the credentials of a user on the network, then they can access data even if it’s
encrypted, just as the users on the network have to access data”. So, can we
encrypt data in a way that still allows some access and computing on it?

Already in 1978, Rivest, Adleman and Dertouzos considered this problem of
a business that wishes to use a “commercial time-sharing service” to store
some sensitive data. They envisioned a potential solution for this task which
they called a privacy homomorphism. This notion later became known as fully
homomorphic encryption which is an encryption that allows a user that does
not know the secret key to modify a ciphertext ¢ encrypting x to a ciphertext ¢’
encrypting f(x) for every efficiently computable f(). In particular in our scenario
above, such a scheme will allow Bob, given an encryption of x, to compute the
encryption of f(x) and send it to Alice without ever getting the secret key and

https://www.schneier.com/blog/archives/2010/06/data_at_rest_vs.html
https://en.wikipedia.org/wiki/Data_at_rest
https://en.wikipedia.org/wiki/Data_in_use
https://www.lawfareblog.com/why-opm-hack-far-worse-you-imagine
http://www.federaltimes.com/story/government/omr/opm-cyber-report/2015/06/19/opm-breach-encryption/28985237/
http://luca-giuzzi.unibs.it/corsi/Support/papers-cryptography/RAD78.pdf
https://en.wikipedia.org/wiki/Time-sharing

so without ever learning anything about = (or f(z) for that matter).

Unlike the case of a trapdoor function, for more than 30 years cryptographers
had no constructions achieving this goal. In fact, some people suspected that
there is something inherently incompatible between the security of an encryption
scheme and the ability of a user to perform all these operations on ciphertexts.
Stanford cryptogapher Dan Boneh used to joke to incoming graduate students
that he will immediately sign the thesis of anyone who came up with a fully
homomorphic encryption. But never expected that he will actually encounter
such a thesis, until in 2009, Boneh’s student Craig Gentry released a paper doing
just that. Gentry’s paper shook the world of cryptography, and instigated a flurry
of research results making his scheme more efficient, reducing the assumptions it
relied on, extending and applying it, and much more. In particular, Brakerski
and Vaikuntanathan managed to obtain a fully homomorphic encryption scheme
based only on the Learning with Error (LWE) assumption we have seen before.

Although there is open source library, as well as other implementations, there is
still much work to be done on the implementation front in order to turn FHE
from theory to practice. For a comparable level of security, the encryption and
decryption operations of a fully homomorphic encryption scheme are several
orders of magnitude slower than a conventional public key system, and (depending
on its complexity) homomorphically evaluating a circuit can be significantly more
taxing. However, this is a fast evolving field, and already since 2009 significant
optimizations have been discovered that reduced the computational and storage
overhead by many orders of magnitudes. As in public key encryption, one would
imagine that for larger data one would use a “hybrid” approach of combining
FHE with symmetric encryption, though one might need to come up with tailor-
made symmetric encryption schemes that can be efficiently evaluated (see here
for the state of art on homomorphically evaluating AES which currently has is
about six orders of magnitude slower than non-homomorphic AES computation).
In these two lectures we will focus on the homorphically encryption schemes
that are easiest to describe, rather than the ones that are most efficient (though
the efficient schemes share many similarities with the ones we will talk about).
As is generally the case for lattice based encryption, the current most efficient
schemes are based on ideal lattices and on assumptions such as ring LWE or the
security of the NTRU cryptosystem.!

Aside: verifiying computation: To take the distance between
theory and practice in perspective, it might be useful to consider
the case of verifying computation. In the early 1990’s researchers
(motivated initially by zero knowledge proofs) came up with the no-

1 As we mentioned before in lecture 12, as a general rule of thumb, the difference between
the ideal schemes and the one that we describe is that in the ideal setting one deals with
structured matrices that have a compact representation as a single vector and also enable
fast FFT-like matrix-vector multiplication. This saves a factor of about n in the storage and
computation requirements (where n is the dimension of the subspace/lattice). However, there
can be some subtle security implications for ideal lattices as well, see e.g., here , here, here,
and here.

https://crypto.stanford.edu/craig/
http://shaih.github.io/HElib/
https://www.dcsec.uni-hannover.de/fileadmin/ful/mitarbeiter/brenner/wahc14_RC.pdf
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2012/099.pdf
https://eprint.iacr.org/2016/127
https://eprint.iacr.org/2015/313
https://eprint.iacr.org/2016/139
https://eprint.iacr.org/2015/676

tion of probabilistically checkable proofs which could yield in principle
extremely succinct ways to check correctness of computation. These
proofs can be thought of as “souped up” versions of NP complete-
ness reductions and like these reductions, have been mostly used for
negative results, especially since the initial proofs were extremely
complicated and also included enormous hidden constants. However,
with time people have slowly understood these better and made them
more efficient (e.g., see this survey) and it has now reached the point
where these results, if not fully practical, are at least nearly practical.
Overall, constructions for verifying computation have improved by at
least 20 orders of magnitude over the last two decades. (We will talk
about some of these constructions later in this course.) If progress
on fully homomorphic encryption is similar, then we can expect the
road to practical utility to be very long, but there is some hope that
it’s not a “bridge to nowhere”.

Defining fully homomorphic encryption

We start by defining partially homomorphic encryption. We focus on encryption
for single bits. This is without loss of generality for CPA security (CCA security
is anyway ruled out for homomorphic encryption- can you see why?), though
there are more efficient constructions that encrypt several bits at a time.

Definition (Partially homomorphic encryption): Let 7 = UF; be a class
of functions where every f € F, maps {0,1}¢ to {0,1}.

An F-homomorphic public key encryption scheme is a CPA secure public
key encryption scheme (G, FE,D) such that there exists a polynomial-
time algorithm FEV AL such that for every (e,d) = G(1"), ¢ = poly(n),
Z1,...,x¢ € {0,1}, and f € Fy of description size |f| at most poly(¢):
¢ = EVAL.(1", f, Ec(x1),..., Ec(x¢)) has length at most n and Dg(c) =
fx1, ... zp).

The requirement that |c| < n is to rule out some trivial constructions where the
ciphertext grows with the description of f (can you see why it’s needed?). Note
that by artificially increasing the randomness for the key generation algorithm,
this is equivalent to the requiring that |¢| < p(n) as long as p(-) is a fixed
polynomial that does not grow with ¢ or |f].

A fully homomomorphic encryption is simply a partially homomorphic encryption
scheme for the family F of all functions, where the description of a function is
as a circuit (say composed of NAND gates, which are known to be complete).

Example: An XOR homomorphic encryption

It turns out that Regev’s LWE-based encryption we saw in Lecture 12 (lattice
based crypto) is homomorphic with respect to the class of linear (mod 2) functions.

http://madhu.seas.harvard.edu/papers/2009/pcpcacm.pdf
http://m.cacm.acm.org/magazines/2015/2/182636-verifying-computations-without-reexecuting-them/fulltext
http://cacm.acm.org/magazines/2016/2/197429-pinocchio/abstract
https://en.wikipedia.org/wiki/NAND_gate

Let us recall the LWE assumption and the encryption scheme based on it.

Definition: Let ¢ = ¢(n) be some function mapping the natural numbers to
primes. The q(n)-decision learning with error (q(n)-dLWE) conjecture is the
following: for every m = poly(n) there is a distribution LW E, over pairs (4, s)
such that:

o Aisanm xn matrix over Z, and s € Z} satisfies s; = [2] and |As]; < /g
for every i € {1,...,m}.

o The distribution A where (A, s) is sampled from LW E, is computationally
indistinguishable from the uniform distribution of m x n matrices over Z,.

The LWE conjecture is that ¢(n)-dLWE holds for every g(n) that is at most
poly(n). This is not exactly the same phrasing we used before, but can be shown
to be essentially equivalent to it. Before we phrased the conjecture as recovering
s from a pair (A’,y) where y = A’s’+e and |e;| < dq for every i. We then showed
a search to decision reduction demonstrating that this is equivalent to the task
of distinguishing between this case and the case that y is a random vector. If we
now let @ =[] and 8 = a~'(mod ¢), and consider the matrix A = (—Sy|A4’)
and the column vector s = (?,) we see that As = e. Note that if y is a random
vector in Zg" then so is —fy and so the current form of the conjecture follows
from the previous one. (To reduce the number of free parameters, we fixed § to
equal 1/,/g; in this form the conjecture becomes stronger as q grows.)

A linearly-homomorphic encryption scheme: We can describe the encryp-
tion scheme presented in class as:

o Key generation: Choose (A,s) from LWE, where m satisfies ¢t <
mlogq > n.

« To encrypt b € {0,1}, choose w € {0,1}™ and output w' A + (b,0,...,0)

« To decrypt ¢ € Zy, output 0 iff [(c, s)| < ¢/10, where for = € Z, we defined

|z] = min{x, ¢ — x}.
Note that decryption succeeds since it amounts to w ' As + syb and |w' As| <
m,/q < g. It turns out that this scheme is scheme above is homomorphic with
respect to the class of linear functions modulo 2. Specifically we make the
following claim:

Claim: For every ¢ < ¢*/*, there is an algorithm EV AL, that on input ¢y, . . ., ¢

encrypting bits by, ..., b, € {0,1}, outputs a ciphertext ¢ encrypying by & - - - S by.

Proof: The proof is quite simple. EV AL will simply add the ciphertexts as
vectors in Zg. If ¢ =) ¢; then (c,s) will equal) b;|Z](mod ¢) up to noise
which is at most ¢m,/q < ¢. Since |[Z] — Z| < 1 this equals (up to small noise)
to [(D bi)2] which would be 0 if > b; is even and | 2] if >~ b; is odd. QED

Several other encryption schemes are also homomorphic with respect to linear
functions, and over the years people have managed to go above it (e.g., to
quadratic functions by Boneh, Goh and Nissim) but not significantly so.

Abstraction: A trapdoor pseudorandom generator.

It is instructive to consider the following abstraction (which we’ll use in the next
lecture) of the above encryption scheme. On input 1" key generation algorithm
outputs a vector s € Zg" with s; = | 2] and a probabilistic algorithm G such
that the following holds:

o Any polynomial number of samples from the distribution G4(1™) is com-
putationally indistinguishable from independent samples from the uniform
distribution over Zy

o If ¢ is output by G4(1") then |(c, s)| < n./q.

Thus s can be thought of a “trapdoor” for the generator that allows to distinguish
between a random vector ¢ € Zy (that with high probability would satisfy
[{c,s)| > ¢/10) and an output of the generator. We use G, to encrypt a bit
b by letting ¢ +—r G,(1™) and outputting ¢ + (b,0,...,0)T. In the particular
instantiation above we obtain G, by sampling the matrix A from the LWE
assumption and having G output w' A for a random w € {0, 1}", but we can
ignore this particular implementation detail in the forgoing.

Note that this trapdoor generator satisfies the following stronger property: we
can generate an alternative generator G’ such that the description of G’ is
indistinguishable from the description of G, but such that G’ actually does
produce (up to exponentially small statistical error) the uniform distribution
over Zg.

Aside: trapdoor generators in real life: In the above we use
the notion of a “trapdoor” in the pseudorandom generator as a
mathematical abstraction, but generators with actual trapdoors have
arisen in practice. In 2007 the National Institute of Standards (NIST)
released standards for pseudorandom generators. Pseudorandom
generators are the quintessential private key primitive, typically built
out of hash functions, block ciphers, and such and so it was surprising
that NIST included in the list a pseudorandom generator based on
public key tools - the Dual EC DRBG generator based on elliptic
curve cryptography. This was already strange but became even
more worrying when Microsoft researchers Dan Shumow and Niels
Ferguson showed that this generator could have a trapdoor in the
sense that it contained some hardwired constants that if generated in
a particular way, there would be some information that (just like in
G above) allows to distinguish the generator from random (see here
for a 2007 blog post on this issue). We learned more about this when
leaks from the Snowden document showed that the NSA secretly paid
$10 million to RSA to make this generator the default option in their
Bsafe software. You’d think that this generator is long dead but it
turns out to be the “gift that keeps on giving”. In December of 2015,
Juniper systems announced that they have discovered a malicious

https://en.wikipedia.org/wiki/Dual_EC_DRBG
http://rump2007.cr.yp.to/15-shumow.pdf
https://www.schneier.com/blog/archives/2007/11/the_strange_sto.html
http://www.reuters.com/article/us-usa-security-rsa-idUSBRE9BJ1C220131220
http://www.wired.com/2015/12/juniper-networks-hidden-backdoors-show-the-risk-of-government-backdoors/

code in their system, dating back to at least 2012 (possibly 2008),
that would allow an attacker to surreptitiously decrypt all VPN
traffic through their firewalls. The issue is that Juniper has been
using the Dual EC DRBG and someone has managed to replace the
constant they were using with another one, one that they presumably
knew the trapdoor for (see here and here for more). Apparently, as
surprising as it is, inserting back doors into cryptographic primitives
might end up making them less secure.

From linear homomorphism to full homomorphism

Gentry’s breakthrough had two components:

o First, he gave a scheme that is homomorphic with respect to arithmetic
circuits (involving not just addition but also multiplications) of logarithmic
depth.

e Second, he showed the amazing “bootstrapping theorem” that if a scheme
is homomorphic enough to evaluate its own decryption circuit, then it
can be turned into a fully homomorphic encryption that can evaluate any
function.

Combining these two insights led to his fully homomorphic encryption.?

In this lecture we will focus on the second component - the bootstrapping
theorem. We will show a “partially homomorphic encryption” (based on a later
work of Gentry, Sahai and Waters) that can fit that theorem in the next lecture.

Bootstrapping

We now show the following theorem:

Theorem (Bootstrapping Theorem, Gentry ’09): Suppose that (G, E, D)
is a CPA circular® secure partially homomorphic encryption scheme for the
family F and suppose that for every pair of ciphertexts c,¢’ the map d —
Dy(c) NAND Dy(c') isin F. Then (G, E, D) can be turned a fully homomorphic
encryption scheme.

2The story is a bit more complex than that. Frustratingly, the decryption circuit of Gentry’s
basic scheme was just a little bit too deep for the bootstrapping theorem to apply. A lesser
man, such as yours truly, would at this point surmise that fully homomprphic encryption was
just not meant to be, and perhaps take up knitting or playing bridge as an alternative hobby.
However, Craig persevered and managed to come up with a way to “squash” the decryption
circuit so it can fit the bootstrapping parameters. Follow up works, and in particular the paper
of Brakerski and Vaikuntanathan, managed to get schemes with much better relation between
the homomorphism depth and decryption circuit, and hence avoid the need for squashing and
also improve the security assumptions.

3You can ignore the condition of circular security in a first read - we will discuss it later.

https://twitter.com/__apf__/status/685224024985567232
https://rpw.sh/blog/2015/12/21/the-backdoored-backdoor/
http://blog.cryptographyengineering.com/2015/12/on-juniper-backdoor.html

Proof: The idea behind the proof is simple but ingenious. Recall that the
NAND gate b, b’ — —(bAb') is a universal gate that allows us to compute any
function f : {0,1}" — {0, 1} that can be efficiently computed. Thus, to obtain a
fully homomorphic encryption it suffices to obtain a function NAND — EV AL
such that Dy(NAND — EVAL(c,c')) = Dg(c) NAND Dy(c’). (Note that this
is stronger than the typical notion of homomorphic evaluation since we require
that NAND — EV AL outputs an encryption of bN AN Db when given any pair
of ciphertexts that decrypt to b and b’ respectively, regardless whether these
ciphertexts were produced by the encryption algorithm or by some other method,
including the NAND — EV AL procedure itself.)

Thus to prove the theorem, we need to modify (G, E, D) into an encryption
scheme supporting the NAND — EV AL operation. Our new scheme will use
the same encryption algorithms F and D but the following modification G’
of the key generation algorithm: after running (d,e) = G(1™), we will append
to the public key an encryption ¢* = E.(d) of the secret key. We habe now
defined the key generation, encryption and decryption. CPA security follows
from the security of the original scheme, where by circular security we refer
exactly to the condition that the scheme is secure even if the adversary gets
a single encryption of the public key.* This latter condition is not known to
be implied by standard CPA security but as far as we know is satisfied by all
natural public key encryptions, including the LWE-based ones we will plug into
this theorem later on.

So, now all that is left is to define the NAND — EV AL operation. On input
two ciphertexts ¢ and ¢/, we will construct the function f : {0,1}"™ — {0,1}
(where n is the length of the secret key) such that f(d) = Dg(c) NAND Dgy(c).
It would be useful to pause at this point and make sure you understand what
are the inputs to f, what are “hardwired constants” and what is its output.
The ciphertexts ¢ and ¢’ are simply treated as fixed strings and are not part
of the input to f. Rather f is a function (depending on the strings ¢, ¢’) that
maps the secret key into a bit. When running NAND — EV AL we of course
do not know the secret key d, but we can still design this function f. Now
NAND — EV AL(e, ') will simply equal EVAL(f,c*). Since ¢* = E,(d), we get
that Dg(EVAL(f,c*)) = Dg(f(d)) = Dag(Da(c) NAND Dy(c’)). Thus indeed
we map any pair of ciphertexts ¢, that decrypt to b,b" into a ciphertext ¢’
that decrypts to b NAND b'. This is all that we needed to prove. QED

Don’t let the short proof fool you. This theorem is quite deep and subtle, and
requires some reading and re-reading to truly “get” it.

4Without this assumption we can still obtained a form of FHE known as a leveled FHE
where the size of the public key grows with the depth of the circuit to be evaluated. We can
do this by having ¢ public keys where £ is the depth we want to evaluate, and encrypt the
private key of the i*" key with the i + 1°¢ public key. However, since circular security seems
quite likely to hold, we ignore this extra complication in the rest of the discussion.

https://en.wikipedia.org/wiki/Circuit_complexity

Playing with radioactive Legos

Here is one analogy for bootstrapping, inspired by Gentry’s survey. Suppose that
you need to construct some complicated object from a highly toxic material. You
are given a supply of sealed bags that are flexible enough so you can manipulate
the object from outside the bag. However, each bag can only hold for 10 seconds
of such manipulations before it leaks. The idea is that if you can open one bag
inside another within 9 seconds then you can perform the manipulations for
arbitrary length. That is, if the object is in the i*” bag then you put this bag
inside the i + 1%¢ bag, spend 9 seconds on opening the i*" bag inside the i + 15¢
bag and then spend another second of whatever manipulations you wanted to
perform. We then continue this process by putting the i + 1% bag inside the
i 4+ 2™ bag and so on and so forth.

https://crypto.stanford.edu/craig/easy-fhe.pdf

	Defining fully homomorphic encryption
	Example: An XOR homomorphic encryption
	Abstraction: A trapdoor pseudorandom generator.

	From linear homomorphism to full homomorphism
	Bootstrapping
	Playing with radioactive Legos

