Lecture 14: Zero knowledge proofs

Boaz Barak

The notion of proof is central to so many fields. In mathematics, we want to
prove that a certain assertion is correct. In other sciences, we often want to
accumulate a preponderance of evidence (or statistical significance) to reject
certain hypothesis. In criminal law the prosecution famously needs to prove its
case “beyond a reasonable doubt”. Cryptography turns out to give some new
twists on this ancient notion.

Typically a proof that some assertion X is true, also reveals some infor-
mation about why X is true. When Hercule Poirot proves that Norman
Gale killed Madame Giselle he does so by showing how Gale committed
the murder by dressing up as a flight attendant and stabbing Madame
Gisselle with a poisoned dart. Could Hercule convince us beyond a rea-
sonable doubt that Gale did the crime without giving any information
on how the crime was committed? Can the Russians prove to the U.S.
that a sealed box contains an authentic nuclear warhead without reveal-
ing anything about its design? Can I prove to you that the number m =
385,608, 108, 395, 369, 363, 400, 501, 273, 594, 475,104, 405, 448, 848, 047, 062, 278,473,983
has a prime factor whose last digit is 7 without giving you any information
about m’s prime factors? We won’t answer the first question, but will show
some insights on the latter two.

Zero knowledge proofs are proofs that fully convince that a statement is true
without yielding any additional knowledge. So, after seeing a zero knowledge
proof that m has a factor ending with 7, you’ll be no closer to knowing m’s
factorization than you were before. Zero knowledge proofs were invented by
Goldasser, Micali and Rackoff in 1982 and have since been used in great many
settings. How would you achieve such a thing, or even define it? And why on
earth would it be useful? This is the topic of this lecture.

Applications for zero knowledge proofs.

Before we talk about how to achieve zero knowledge, let us discuss some of its
potential applications:

Nuclear disarmanent

I think it’s fair to say that Barack Obama and Vladimir Putin don’t see eye to
eye on too many topics. However, one point they do agree on is the need for
both the U.S. and Russia to reduce their nuclear arsenal. Obama has called in
2009 to set as a long term goal a “world without nuclear weapons” and in 2012
talked about concretely talking to Russia about reducing “not only our strategic
nuclear warheads, but also tactical weapons and warheads in reserve”. Putin has
said already in 2000 that he sees “no obstacles that could hamper future deep
cuts of strategic offensive armaments” (though lately has been talking about
developing new missiles). This is not surprising. The two countries have reached
a dangerous and expensive equilibrium by which each has about 7000 nuclear
warheads, much more than is needed to wipe out human civilization many times
over.! This not only increases the chance of “leakage” of weapons, but also
threatens the delicate balance of the Non-Proliferation Treaty which at its core
is a bargain where non-weapons states agree not to pursue nuclear weapons and
the five nuclear weapon states agree to make progress on nuclear disarmament.
These weapons are also very expensive to maintain. There are many reasons
why progress on nuclear disarmanent has been so slow, and most of them have
nothing to do with zero knowledge or any other piece of technology. But there
are some technical hurdles as well. One of those hurdles is that for the U.S. and
Russia to go beyond restricting the number of deployed weapons to significantly
reducing the stockpiles, they need to find a way for one country to verifiably
prove that it has dismantled warheads. As mentioned in my work with Glaser
and Goldston (see also this page), a key stumbling block is that the design of
a nuclear warhard is of course highly classified and about the last thing in the
world that the U.S. would like to share with Russia and vice versa. So, how can
the U.S. convince the Russian that it has destroyed a warhead, when it cannot
let Russian experts anywhere near it?

Voting

Electronic voting has been of great interest for many reasons. One potential
advantaghe is that it could allow completely transparent vote counting, where
every citizen could verify that the votes were counted correctly. For example,
Chaum suggested an approach to do so by publishing an encryption of every vote
and then having the central authority prove that the final outcome corresponds
to the counts of all the plaintexts. But of course to maintain voter privacy, we
need to prove this without actually revealing those plaintexts. Can we do so?

ITo be fair, “only” about 170 million americans live in the 50 largest metropolitan areas
and so arguably many people will survive at least the initial impact of a nuclear war, though
it had been estimated that even a “small” nuclear war involving detonation of 100 not too
large warheads could have devastating global consequences.

https://www.armscontrol.org/factsheets/Nuclearweaponswhohaswhat
https://www.armscontrol.org/factsheets/Nuclearweaponswhohaswhat
https://en.wikipedia.org/wiki/Treaty_on_the_Non-Proliferation_of_Nuclear_Weapons
http://www.nature.com/nature/journal/v510/n7506/full/nature13457.html
http://www.nature.com/nature/journal/v510/n7506/full/nature13457.html
http://nuclearfutures.princeton.edu/warhead-verification/
https://www.currentresults.com/Weather-Extremes/US/largest-cities-list.php
http://onlinelibrary.wiley.com/doi/10.1002/2013EF000205/full

More applications

I chose these two examples above exactly because they are hardly the first that
come to mind when thinking about zero knowledge. Zero knowledge has been
used for many cryptographic applications. One such application (originating
from work of Fiat and Shamir) is the use for identification protocols. Here Alice
knows a solution z to a puzzle P, and proves her identity to Bob by, for example,
providing an encryption ¢ of x and proving in zero knowledge that c is indeed
an encryption of a solution for P.?> Bob can verify the proof, but because it is
zero knowledge, learns nothing about the solution of the puzzle and will not
be able to impersonate Alice. An alternative approach to such identification
protocols is through using digital signatures; this connection goes both ways
and zero knowledge proofs have been used by Schnorr and others as a basis for
signature schemes.

Another very generic application is for “compiling protocols”. As we’ve seen
time and again, it is often much easier to handle passive adversaries than active
ones. Thus it would be wonderful if we could “compile” a protocol that is secure
with respect to passive attacks into one that is secure with respect to active ones.
As was first shown by Goldreich, Micali, and Wigderson, zero knowledge proofs
yield a very general such compiler. The idea is that all parties prove in zero
knowledge that they follow the protocol’s specifications. Normally, such proofs
might require the parties to reveal their secret inputs, hence violating security,
but zero knowledge precisely guarantees that we can verify correct behaviour
without access to these inputs.

Defining and constructing zero knowledge proofs

So, zero knowledge proofs are wondeful objects, but how do we get them? In
fact, we haven’t answered the even more basic question of how do we define zero
knowledge? We have to start by the most basic task of defining what we mean
by a proof.

A proof system can be thought of as an algorithm II that takes as input a
statement which is some string z and another string = known as the proof and
outputs 1 if and only if 7 is a valid proof that the statement x is correct. For
example:

e In Fuclidean geometry, statements are geometric facts such as “in any
triangle the degrees sum to 180 degrees” and the proofs are step by step
derivations of the statements from the five basic postulates.

e In Zermalo-Frankel + Aziom of Choice (ZFC) a statement is some pur-

2As we'll see, technically what Alice needs to do in such a scenario is use a zero knowledge
proof of knowledge of a solution for P.

https://en.wikipedia.org/wiki/Euclidean_geometry
https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory

ported fact about sets (e.g., the Reimann Hypothesis®), and a proof is a
step by step derivation of it from the axioms.

e« We can many define other “theories”. For example, a theory where the
statements are pairs (z,m) such that z is a quadratic residue modulo m
and a proof for x is the number s such that x = s (mod m), or a theory
where the theorems are Hamlitonian graphs G (graphs on n vertices that
contain an n-long cycle) and the proofs are the description of the cycle.

All these proof systems have the property that the verifying algorithm IT is
efficient. Indeed, that’s the whole point of a proof - it’s a sequence of symbols
that makes it easy to verify that the statement is true.

To achieve the notion of zero knowledge proofs, Goldwasser and Micali had to
consider a generalization of proofs from static sequences of symbols to interactive
probabilistic protocols between a prover and a verifier. Lets start with an informal
example:

Suppose that Alice is a tetrachormat and can distinguish between
the color of two pieces of plastic that are otherwise identical. How
can she prove this to Bob? Here is one protocol. They will repeat
the following experiment: Alice turns her back and Bob tosses a
coin and with probability 1/2 leaves the pieces as they are, and
with probability 1/2 switches the right piece with the left piece.
Alice needs to guess whether Bob switched the pieces or not. If she
is always successful after n repetition then Bob will have 1 — 27"
confidence that the pieces are truly different.

Now consider a more “mathematical” example along similar lines. Recall that
if x and m are numbers then we say that x is a quadratic residue modulo m if
there is some s such that x = s (mod m). It is very easy to prove that x is
a quadratic residue, but can Alice, even if she can do arbitrary computations,
prove to Bob that z is not a residue? Here is one way to do this. Given z and
m, Bob will pick some random s € Z}, (e.g., by picking a random number in
{1,...,m — 1} and discarding it if it has nontrivial g.c.d. with m) and toss a
coin b € {0,1}. If b = 0 then Bob will send s? (mod m) to Alice and otherwise
he will send xs? (mod m) to Alice. Alice will respond with &' = 0 if Bob sent a
quadratic residue and with b’ = 1 otherwise. Now note that if z is a non-residue
then xs? will have to be a non-residue as well (since if it had a root s’ then s’s~!
would be a root of z). Hence it will always be the case that b’ = b. Moreover,
if 2 was a quadratic residue of the form z = s> (mod m) for some s, then
rs% = (s's)? is simply a random quadratic residue, which means that in this case
Bob’s message is distributed the same regardless of whether b =0 or b =1, and
no matter what she does, Alice has probability at most 1/2 of guessing b. Hence
if Alice is always successful than after n repetitions Bob would have 1 — 27"
confidence that z is indeed a non-residue modulo m.

3Integers can be coded as sets in various ways. For example, one can encode 0 as () and if
N is the set encoding n, we can encode n + 1 using the set |[N| + 1 cardinality set {N} U N.

https://en.wikipedia.org/wiki/Tetrachromacy

Let us now make the formal definition:

Definition: Let L be some subset of {0,1}*. A probabilistic proof for L is a
pair of interactive algorithms (P, V') such that V runs in polynomial time and:

e« Completeness: If z € L then on input «, if P and V are given input z
and interact, then at the end of the interaction V' will output Accept with
probability at least 0.9.

e Soundness: If If x ¢ L then for any arbitrary (efficient or non efficient)
algorithm P*, if P* and V are given input = and interact then at the end
V' will output Accept with probability at most 0.1

Note that we don’t necessarily require the prover to be efficient (and indeed, in
examples such as the graph non-isomorphism question, it might not be). On
the other hand, our soundness condition holds even if the prover uses a non
efficient strategy.* We say that a proof system has an efficient prover if there
is an NP-type proof system II for L (that is some efficient algorithm IT such
that there exists m with II(z,7) = 1 iff # € L and such that II(z,7) = 1 implies
that |7| < poly(|x])), such that the strategy for P can be implemented efficiently
given any static proof 7 for = in this system.

Notation for strategies: Up until now, we always considered
cryptographic protocols where Alice and Bob trusted one another, but
were worries about some adversary controlling the channel between
them. Now we are in a somewhat more “suspicious” setting where
the parties do not fully trust one another. In such protocols there
is always a “prescribed” or honest strategy that a particular party
should follow, but we generally don’t want the other parties’ security
to rely on some else’s good intention, and hence analyze also the case
where a party uses an arbitrary malicious strategy. We sometimes
also consider the honest but curious case where the adversary is
passive and only collects information, but does not deviate from the
prescribed strategy. Note that protocols typically only guarantee
security for party A when it behaves honestly - a party can always
chose to violate its own security and there is not much we can (or
should?) do about it.

Defining zero knowledge

So far we merely defined the notion of an interactive proof system, but we need
to define what it means for a proof to be zero knowledge. Before we attempt a
definition, let us consider an example. Going back to the notion of quadratic
residuosity, suppose that 2 and m are public and Alice knows s such that z = s2
(mod m). She wants to convince Bob that this is the case. However she prefers

4People have considered the notions of zero knowledge systems where soundness holds only
with respect to efficient provers; these are known as argument systems.

not to reveal s. Can she convince Bob that such an s exist without revealing
any information about it? Here is a way to do so:

Protocol ZK-QR:

0. Public input for Alice and Bob: z, m; Alice’s private input is s such that
xr = 5% (mod m).

1. Alice will pick a random s’ and send to Bob 2’ = zs’* (mod m).

Bob will pick a random bit b € {0,1} and send b to Alice.

3. If b = 0 then Alice reveals ss’, hence giving out a root for z’; if b = 1 then
Alice reveals ', hence showing a root for 2’z 1.

4. Bob checks that the value s” revealed by Alice is indeed a root of 2’2 ~?, if

so then it “accepts” this round.

12

N

If © was not a quadratic residue then no matter how z’ was chosen, either x’ or
2’x~! is not a residue and hence Bob will reject each round eith probability at
least 1/2. On the other hand, we claim that we didn’t really reveal anything
about s. Indeed, if Bob chooses 0, then the two messages he sees can be thought
of as a random quadratic residue =’ and its root, while if Bob chooses 1, then the
two messages he sees are x times a random quadratic residue, and the root of
that residue. In both cases, the distribution of these two messages is completely
independent of s, and hence intuitively yields no additional information about it
beyond whatever Bob knew before.

To define zero knowledge mathematically we follow the following intuition:

A proof system is zero knowledge if the verifier did not learn anything
after the interaction that he could not have learned on his own.

Here is how we formally define this:

Definition: A proof system (P, V) for L is zero knowledge if for every efficient
verifier strategy V* there exists an efficient probabilistic algorithm S* (known
as the simulator) such that for every x € L, the following random variables are
computationally indistinguishable:

e The output of V* after interacting with P on input =x.
e The output of S* on input =z.

That is, we can show the verifier does not gain anything from the interaction,
because no matter what algorithm V* he uses, whatever he learned as a result
of interacting with the prover, he could have just as equally learned by simply
running the standalone algorithm S* on the same input. Bernard Chazelle once
put it more colorfully:

Zero knowledge is masturbation masquerading as sex.

The simulation paradigm: The natural way to define security is
to say that a system is secure if some “laundry list” of bad outcomes
X,Y,Z can’t happen. The definition of zero knowledge is different.
Rather than giving a list of the events that are not allowed to occur,

it gives a maximalist simulation condition. That is, at its heart the
definition of zero knowledge says the following: clearly, we cannot
prevent the verifier from running an efficient algorithm S* on the
public input, but we want to ensure that this is the most he can
learn from the interaction. This simulation paradigm has become
the standard way to define security of a great many cryptographic
applications. That is, we bound what an adversary Eve can learn by
postulating some hypothetical adversary Lilith that is under much
harsher conditions (e.g., does not get to interact with the prover) and
ensuring that Eve cannot learn anything that Lilith couldn’t have
learned either. This has an advantage of being the most conservative
definition possible, and also phrasing security in positive terms- there
exists a simulation - as opposed to the typical negative terms - events
X,Y,Z can’t happen. Since it’s often easier for us to think of positive
terms, paradoxically sometimes this stronger security condition is
easier to prove. Zero knowledge is in some sense the simplest setting
of the simulation paradigm and we’ll see it time and again in dealing
with more advanced notions.

The definition of zero knowledge is confusing since intuitively one thing that if
the verifier gained confidence that the statement is true than surely he must
have learned something. This is another one of those cases where cryptography
is counterintuitive. To understand it better, it is worthwhile to see the formal
proof that the protocol above for quadratic residousity is zero knowledge:

Theorem: Protocol ZK-QR above is a zero knowledge protocol.

Proof: Let V* be an arbitrary efficient strategy for Bob. Since Bob only sends
a single bit, we can think of this strategy as composed of two functions:

o Vi(xz,m,2’) outputs the bit b that Bob chooses on input z, m and after
Alice’s first message is z’.

o Va(z,m,x’,s"”) is whatevery Bob outputs after seeing Alice’s response s”
to the bit b.

Both V; and V5 are efficiently computable. We now need to come up with an
efficient simulator S* that is a standalone algorithm that on input z,m will
output a distribution indistinguishable from the output V*. The simulator S*
will work as follows:

1. Pick V' < {0,1}.

2. Pick s” at random in Z,. If b= 0 then let 2/ = s”* (mod m). Otherwise
output ' = z5”* (mod m).

3. Let b =Vi(xz,m,z'). If b # b then go back to step 1.

4. Output Va(z,m,z’,s").

The correctness of the simulator follows from the following claims (all of which
assume that x is actually a quadratic residue, since otherwise we don’t need to

make any guarantees and in any case Alice’s behaviour is not well defined):

Claim 1: The distribution of ' computed by S* is identical to the distribution
of &’ chosen by Alice.

Claim 2: With probability at least 1/2, b’ = b.

Claim 3: Conditioned on b = b’ and the value 2’ computed in step 2, the value
s” computed by S* is identical to the value that Alice sends when her first
message is X’ and Bob’s response is b.

Together these two claims imply that in expectation S* only invokes V; and V5 a
constant number of times (since every time it goes back to step 1 with probability
at most 1/2). They also imply that the output of S* is in fact identical to the
output of V* in a true interaction with Alice. Thus, we only need to prove the
claims, which is actually quite easy:

Proof of Claim 1: In both cases, 2’ is a random quadratic residue. QED

Proof of Claim 2: This is a corollary of Claim 1; since the distribution of
z’ is identical to the distribution chosen by Alice, in particular z’ gives out no
information about the choice of ¥'. QED

Proof of Claim 3: This follows from a direct calculation. The value s” sent by
Alice is a square root of 2’ if b = 0 and of 2’z~! if 2 = 1. But this is identical to
what happens for S* if b =¥. QED

Together these complete the proof of the theorem.

This is not enough since the protocol that we really need to show is zero knowledge
is the one where we repeat this procedure n times. This is a general theorem
that if a protocol is zero knowledge then repeating it polynomially many times
one after the other (so called “sequential repetition”) preserves zero knowledge.
You can think of this as cryptography’s version of the equality “0 4+ 0 = 07, but
as usual, intuitive things are not always correct and so this theorem does require
(a not super trivial) proof. It is a good exercise to try to prove it on your own.
There are known ways to achieve zero knowledge with negligible soundness error
and a constant number of communication rounds, see Goldreich’s book (Vol 1,
Sec 4.9).

Zero knowledge proof for Hamiltonicity.

We now show a proof for another language. Suppose that Alice and Bob know
an n-vertex graph G and Alice knows a Hamiltonian cycle C' in this graph (i.e..
a legth n simple cycle- one that traverses all vertices exactly once). Here is how
Alice can prove that such a cycle exists without revealing any information about
it:

Protocol ZK-Ham:

0. Common input: graph H (in the form of an n x n adjacency matrix);
Alice’s private input: a Hamiltonian cycle C = (Cy,...,C,) which are
distinct vertices such that (Cy, Cj4+1) isanedgein H forall € {1,...,n—1}
and (Cy, C1) is an edge as well.

1. Bob chooses a random string 2 € {0, 1}

2. Alice chooses a random permutation = on {1,...,n} and let M be the
m-permuted adjacency matrix of H (i.e., My () ;) = 1 iff (i,7) is an edge
in H). For every 1, j, Alice chooses a random string x; ; € {0,1}" and let
vi; = Gz ;) ® M, jz, where G : {0,1}" — {0,1}3" is a pseudorandom
generator. She sends {y; j}i je[n) to Bob.

3. Bob chooses a bit b € {0,1}.

4. If b = 0 then Alice sends out 7 and the strings {x; ;} for all ¢, j; If b =1
then Alice sends out the n strings zr(c,),r(co)» - +Tr(Cy),m(cy) tOgether
with their indices.

5. If b = 0 then Bob computes M to be the m-permuted adjacency matrix of H
and verifies that all the y; ;’s were computed from the z; ;’s appropriately.
If b = 1 then verify that the indices of the strings {; ;} sent by Alice form
a cycle and that indeed y; j = G(z;,;) @ z for every string z; ; that was
sent by Alice.

Theorem®: Protocol ZK-Ham is a zero knowledge proof system for the language
of Hamiltonian graphs.

Proof: We need to prove completeness, soundness, and zero knowledge.
Completeness can be easily verified, and so we leave this to the reader.

For soundness, we recall that (as we’ve seen before) with extremely high
probability the sets Sy = {G(x) : z € {0,1}"} and S1 = {G(z)®z: z € {0,1}"}
will be disjoint (this probability is over the choice of z that is done by the
verifier). Now, assuming this is the case, given the messages {y; ;} sent by the
prover in the first step, define an n x n matrix M’ with entries in {0,1, 7} as
follows: M, =0ify;; € So, M]; =1ify;; € S1 and M]; =7 otherwise. We
split into two cases. The first case is that there exists some permutation 7 such
that (i) M’ is a w-permuted version of the input graph G and (ii) M’ contains
a Hamiltonian cycle. Clearly in this case G contains a Hamiltonian cycle as well,
and hence we don’t need to consider it when analyzing soundness. In the other
case we claim that with probability at least 1/2 the verifier will reject the proof.
Indeed, if (i) is violated then the proof will be rejected if Bob chooses b = 0 and
if (ii) is violated then the proof will be rejected if Bob chooses b = 1.

We now turn to showing zero knowledge. For this we need to build a simulator
S* for an arbitrary efficient strategy V* of Bob. Recall that S* gets as input
the graph H (but not the Hamiltonian cycle C') and needs to produce an output
that is indistinguishable from the output of V*. It will do so as follows:

5Goldreich, Micali and Wigderson were the first to come up with a zero knowledge proof
for an NP complete problem, though the Hamiltoncity protocol here is from a later work by
Blum. We use Naor’s commitment scheme.

0. Pick v’ € {0,1}.

Let z € {0,1}3" be the first message computed by V* on input H.

2. If b/ = 0 then S* computes the second message as Alice does: chooses
a random permutation 7 on {1,...,n} and let M be the m-permuted
adjacency matrix of H (i.e., My ;) = 1 iff (4,7) is an edge in H). In
contrast, if & = 1 then S* lets M be the all 1’ matrix. For every 1,7,
S* chooses a random string x; ; € {0,1}" and let y; ; = G(z;,;) ® M, ;z,
where G : {0,1}" — {0,1}3" is a pseudorandom generator.

3. Let b be the output of V* when given the input H and the first message
{yi,;} computed as above. If b # b’ then go back to step 0.

4. We compute the fourth message of the protocol similarly to how Alice does
it: if b = 0 then it consists of 7 and the strings {x; ;} for all 4,5; If b =1
then we pick a random length-n cycle C’ and the message consists of the
n strings zco/ ¢y, - Ty, o) together with their indices.

5. Output whatever V* outputs when given the prior message.

—

We prove the output of the simulator is indistinguishable from the output of V*
in an actual interaction by the following claims:

Claim 1: The message {y; ;} computed by S* is computationally indistinguish-
able from the first message computed by Alice.

Claim 2: The probability that b =¥’ is at least 1/3.

Claim 3: The fourth message computed by S* is computationally indistinguish-
able from the fourth message computed by Alice.

We will simply sketch here the proofs (again see Goldreich’s book for full proofs):

For Claim 1, note that if ¥ = 0 then the message is identical to the way Alice
computes it. If &’ = 1 then the difference is that S* computes some strings y; ;
of the form G(z; ;) + z where Alice would compute the corresponding strings as
G(z;,;) this is indistinguishable because G is a pseudorandom generator (and
the distribution Us,, @ z is the same as Us,,).

Claim 2 is a corolloary of Claim 1. If V* managed to pick a message b such that
Pr[b = b'] < 1/2 — negl(n) then in particular it could distinguish between the
first message of Alice (that is computed independently of b’ and hence contains
no information about it) from the first message of V*.

For Claim 3, note that again if b = 0 then the message is computed in a way
identical to what Alice does. If b = 1 then this message is also computed in a
way identical to Alice, since it does not matter if instead of picking C” at random,
we picked a random permutation 7 and let C’ be the image of the Hamiltonian
cycle under this permutation.

This completes the proof of the theorem. QED

10

Why is this interesting?

The reason that a protocol for Hamiltonicity is more interesting than a protocol
for Quadratic residuosity is that Hamiltonicity is an NP-complete question. This
means that for every other NP language L, we can use the reduction from L to
Hamiltonicity combined with protocol ZK-Ham to give a zero knowledge proof
system for L. In particular this means that we can have zero knowledge proofs
for the following languages:

e The language of numbers m such that there exists a prime p dividing m
whose remainder modulo 10 is 7>

e The language of tuples X, e, cy,...,c, such that ¢; is an encryption of a
number z; with Y 2; = X. (This is essentially what we needed in the
voting example above).

e For every efficient function F', the language of pairs z,y such that there
exists some input r satisfying y = F'(z||r). (This is what we often need in
the “protocol compiling” applications to show that a particular output was
produced by the correct program F on public input x and private input r.)

b

IouL(rc 'hmiw/

ptear Ceooe) oy Guna... B4 Gl
§€C(?L “SSEJHW\‘A\H{ \;}V
N
><:(\J0/\)\/,,,0) <

b

}k *HOM(‘—’;)

Figure 1: Using a zero knowledge protocol for Hamiltonicity we can obtain a
zero knowledge protocol for any language L in NP. For example, if the public
input is a SAT formula ¢ and the Prover’s secret input is a satisfying assignment
x for ¢ then the verifier can run the reduction on ¢ to obtain a graph H and
the prover can run the same reduction to obtain from x a Hamiltonian cycle
C' in H. They can then run the ZK-Ham protocol to prove that indeed H is
Hamiltonian (and hence the original formula was satisfiable) without revealing
any information the verifier could not have obtain on his own.

11

Parallel repetition and turning zero knowledge proofs to
signatures.

While we talked about amplifying zero knowledge proofs by running them n
times one after the other, one could also imagine running the n copies in parallel.
It is not trivial that we get the same benefit of reducing the error to 2= but it
turns out that we do in the cases we are interested in here. Unfortunately, zero
knowledge is not necessarily preserved. It’s an important open problem whether
zero knowledge is preserved for the ZK-Ham protocol mentioned above.
However, Fiat and Shamir showed that in protocols (such as the ones we showed
here) where the verifier only sends random bits, then if we replaced this verifier
by a random function, then both soundness and zero knowledge are preserved.
This suggests a non-interactive version of these protocols in the random oracle
model, and this is indeed widely used. Schnorr designed signatures based on this
non interactive version.

“Bonus features” of zero knowledge

e Proof of knowledge
o Deniability / non-transferability

12

	Applications for zero knowledge proofs.
	Nuclear disarmanent
	Voting
	More applications

	Defining and constructing zero knowledge proofs
	Defining zero knowledge
	Zero knowledge proof for Hamiltonicity.
	Why is this interesting?

	Parallel repetition and turning zero knowledge proofs to signatures.
	Bonus features of zero knowledge

