
Lecture 7: Hash functions and random oracles

Boaz Barak

We have seen pseudorandom generators, functions and permutations, as well as
Message Authentication codes, CPA and CCA secure encryptions. This week we
will talk about cryptographic hash functions and some of their magical properties.
We motivate this by the bitcoin cryptocurrency. As usual our discussion will
be highly abstract and idealized, and any resemblance to real cryptocurrencies,
living or dead, is purely coincidental.

The “bitcoin” problem

Using cryptography to create a centralized digital-currency is fairly straight-
forward, and indeed this is what is done by Visa, Mastercard etc.. The main
challenge with bitcoin is that it is decentralized. There is no trusted server, and
there are also no “user accounts” but rather this is a collection of anonymous
and autonomous parties that somehow need to agree on what is a valid payment.
The basic unit in the system is a coin. Each coin has a unique identifier, and a
current owner .1 Transactions in the system have either the form of “mint coin
with identifier ID and owner P” or “transfer the coin ID from P to Q”.

Since there are no user accounts in bitcoin, the “entities” P and Q are not
identifier of any person or account. Rather one could think of them as simply
“computational puzzles”. A computational puzzle can be thought of as a string α
that specifies some “problem” such that it’s easy to verify whether some other
string β is a “solution” for α, but it is hard to find such a solution on your
own. (Students with complexity background will recognize here the class NP.)
For example α can encode some large integer N , and a solution β will encode
a pair of numbers A,B such that N = A · B. Another more generic example
(that you can keep in mind as a potential implementation for the puzzles we use
here) is that α will be a string in {0, 1}2n while β will be a string in {0, 1}n such
that α = G(β) where G : {0, 1}n → {0, 1}2n is some pseudorandom generator.2

1This is one of the places where we simplify and deviate from the actual Bitcoin system. In
the actual Bitcoin system, the atomic unit is known as a satoshi and one bitcoin (abberviated
BTC) is 108 satoshis. For reasons of efficiency, not every satoshi has an individual identifier
and transactions can involve transfer and creation of multiple satoshis.

2There are reasons why Bitcoin uses digital signatures and not these puzzles. The main issue
is that we want to bind the puzzle not just to the coin but also to the particular transaction,
so that if you know the solution to the puzzle P corresponding to the coin ID and want to use
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The real Bitcoin system typically uses puzzles based on digital signatures, a
concept we will learn about later in this course, but you can simply think of P
as specifying some abstract puzzle and every person that can solve P perform
transactions on the coins owned by P . In particular if you lost the solution to
the puzzle then you have no access to the coin, and if someone stole the solution
from you, then you have no recourse or way to get your coin back. People have
managed to lose millions of dollars in this way.

The bitcoin ledger

The main idea behind bitcoin is that there is a public ledger that contains an
ordered list of all the transactions that were ever performed and are considered
as valid in the system. Given such a ledger, it is easy to answer the question
of who owns any particular coin. The main problem is how does a collection
of anonymous parties without any central authority agree on this ledger? This
is an instance of the consensus problem in distributed computing. This seems
quite scary, as there are very strong negative results known for this problem; for
example the famous Fischer, Lynch Patterson (FLP) result showed that if there
is even one party that has a benign failure (i.e., it halts and stop responding) then
it is impossible to guarantee consensus in an asynchronuous network. Things are
better if we assume synrhonicity (i.e., a global clock and some bounds on the
latency of messages) as well as that a majority or supermajority of the parties
behave correctly. The former assumption is typically fine on the Internet, but
the latter seems quite suspicious. What does it mean a “majority of parties” in
an anonymous network where a single person can create multiple “entities” and
cause them to behave arbitrarily (“byzantine” faults in distributed- parlance)?
Also, why would we assume that even one party would behave honestly- if it
pays to cheat then they would, wouldn’t they?

Perhaps the main idea behind bitcoin is that “majority” will correspond to a
“majority of computing power”, or as the original bitcoin paper says “one CPU
one vote” (or perhaps more accurately, “one cycle one vote”). It might not be
immediately clear how to implement this, but at least it means that creating
fictitious new entities (sometimes known as a “Sybill” attack after the movie
about multiple-personality disorder) cannot help. To implement it we turn to a
cryptographic concept known as “proof of work” which was originally suggested
by Dwork and Naor in 1991 as a way to combat mass mail email.3

Consider a pseudorandom function {fk} mapping n bits to ` bits. On average,
it will take a party Alice 2` queries to obtain an input x such that fk(x) = 0`.

that to transfer it to Q, it won’t be possible for someone to take your solution and use that to
transfer the coin to Q′ before your transaction is added to the public ledger. We will come
back to this issue after we learn about digital signatures.

3This was a rather visionary paper in that it foresaw this issue before the term “spam” was
introduced and indeed when email itself was hardly widespread.
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Figure 1: The bitcoin ledger consists of an ordered list of transactions. At any
given point in time there might be several “forks” that continue the ledger, and
different parties do not necessarily have to agree on them. However, the bitcoin
architecture is designed to ensure that the parties corresponding to a majority
of computing pwoers will reach consensus on a single ledger.

So, if we’re not too careful, we might think of such an input x as a proof that
Alice spent 2` time. . .

However, the question is who is holding the key k for the pseudorandom function?
If there is a trusted server holding the key, then sure, such an input x would
take on average 2` queries, but the whole point of bitcoin is to not have a
trusted server. If we give k to Alice, then can we guarantee that she can’t find
a “shortcut” to find such an input without running 2` queries? The answer, in
general, is no:

Exercise: Show (under the PRF conjecture) that there exists a PRF {fk}
mapping n bits to n bits and an efficient algorithm A such that A(k) = x such
that fk(x) = 0`.

However, suppose that {fk} was somehow a “super-strong PRF” that would
behave like a random function even to a party that holds the key. In this case,
we would imagine that it would not be feasible to obtain x such that fk(x) = 0`

using less than 2` cycles, and so sucn an x would serve as a “proof of work” that
you’ve spent 2` cycles. By adjusting ` we would obtain a proof of spending T
cycles for a value T of our choice. Now if things would go as usual in this course
then I would state a result like the following:

Theorem: Under the PRG conjecture, there exist super strong PRF.

Unfortunately this result is not known to be true, and for a very good reason.
Most natural ways to define “super strong PRF” will result in properties that
can be shown to be impossible to achieve. Nevertheless, the intuition behind it
still seems useful and so we have the following heuristic:

The random oracle heuristic (aka “Random oracle model”, Bellare-
Rogaway 1993): If a “natural” protocol is secure when all parties have access
to a random function H : {0, 1}n → {0, 1}`, then it remains secure even when
we give the parties the description of a cryptographic hash function with the
same input and outuput lengths.
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We don’t have a good characterization as to what makes a protocol “natural”
and we do have fairly strong counterexamples to this heuristic (though they are
arguably “unnatural”). That said, it still seems useful as a way to get intuition
for security, and in particular to analyze bitcoin (and many other practical
protocols) we do need to assume it, at least given current knowledge.

Important caveat: The random oracle heuristic is very different
from all the conjectures we considered before. It is not a formal
conjecture since we don’t have any good way to define “natural” and
we do have examples of protocols that are secure when all parties have
access to a random function but are insecure whenever we replace
this random function by any efficiently computable function (see the
homework exercises).

We can now specify the “proof of work” protocol for bitcoin. Given some identifier
ID ∈ {0, 1}n an integer T � 2n and a hash function H : {0, 1}2n → {0, 1}n, the
proof of work corresponding to ID and T will be some x ∈ {0, 1}∗ such that the
first dlog T e bits of H(ID‖x) are zero.4

From proof of work to consensus on ledger

How does proof of work help us in achieving consensus? The idea is that every
transaction ti comes up with a proof of work of some Ti time with respect to
some identifier that is unique to ti. The length of a ledger (t1, . . . , tn) is the
sum of the corresponding Ti’s which correspond to the total number of cycles
invested in creating this ledger.

An honest party in the bitcoin network will accept the longest valid ledger it is
aware of (where a ledger is valid if every transaction in it of the form “transfer
the coin ID from P to Q” is preceded by a valid transaction that transferred or
minted the coin ID to P ). Now you can see that if a ledger L corresponds to
the majority of the cycles that were available in this network, then every honest
party would accept it, as any alternative ledger would be necessarily shorter.
The question is then how do we get to that happy state given that many parties
might be non malicious but still selfish and might not want to volunteer their
computing power for the goal of creating a consensus ledger. Bitcoin achieves
this by giving some incentive, in the form of the ability to mint new coins, to
any party that adds to the ledger. This means that if we are already in the
situation where there is a consensus ledger L, then every party has an interest
in continuing this ledger L, and not any alternative, as they want their minting
transaction to be part of the new consensus ledger. In contrast if they “fork”
the consensus ledger then their work will be for vain. Thus one can hope that
the consensus ledger will continue to grow. (This is a rather hand-wavy and

4The actual bitcoin protocol is slightly more general, where the proof is some x such that
H(ID‖x), when interpreted as a number in [2n], is at most T . There are also other issues
about how exactly x is placed and ID is computed from past history etc.. that we ignore here.
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imprecise argument, see this paper for a more in depth analysis; this is also
related to the phenomenon known as preferential attachment.)

Cost to mine, mining pools: Generally, if you know that completing a T -
cycle proof will get you a single coin, then making a single query (which will
succeed with probability 1/T ) is akin to buying a lottery ticket that costs you a
single cycle and has probability 1/T to win a single coin. One difference over
the actual lottery is that there is also some probability that you’re working on
the wrong fork of the ledger, but this incentivizes people to avoid this as much
as possible. Another, perhaps even more major difference, is that things are
setup so that this is a profitable enterprise and the cost of a cycle is smaller
than the value of 1/T coins. Just like in the lottery, people can and do gather in
groups (known as “mining pools”) where they pool together all their computing
resources, and then split the award if they win it. Joining a pool doesn’t change
your expectation of winning but reduces the variance. In the extreme case, if
everyone is in the same pool, then for every cycle you spend you get exactly 1/T
coins. The way these pools work in practice is that someone that spent C cycles
looking for an output with all zeroes, only has probability C/T of getting it, but
is very likely to get an output that begins with logC zeroes. This output can
serve as their own “proof of work” that they spent C cycles and they can send it
to the pool management so they get an appropriate share of the reward.

The real bitcoin: There are several aspects in which the protocol
described above differs from the real bitcoin protocol. Some of them
were already discussed above: Bitcoin typically uses digital signatures
for puzzles (though it has a more general scripting language to specify
them), and transactions involve a number of satoshis (and the user
interface typically displayes currency is in units of BTC which are 108

satoshis). The Bitcoin protocol also has a formula designed to factor
in the decrease in dollar cost per cycle so that bitcoins become more
expensive to mine with time. There is also a fee mechanism apart
from the minining to incentivize parties to add to the ledger. (The
issue of incentives in bitcoin is quite subtle and interesting and not
fully resolved, and it is possible that parties behavior will change with
time.) The ledger does not grow by a single transaction at a time
but rather by a block of transactions, and there is also some timing
synchronization mechanism (which is needed, as per the consensus
impossiblity results). There are other differences as well; see the
Bonneau et al paper as well as the Tschorsch and Scheuermann survey
for more.

Collision resistance and creating short “unique” identifiers

Another issue we “brushed under the carpet” is how do we come up with these
unique identifiers per transaction. We want each transaction ti to be bound to
the ledger state (t1, . . . , ti−1), and so the ID of ti should contain also the ID’s all
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the prior transactions. But yet we want this ID to be only n bits long. Ideally,
we would like to find a one to one mapping H from {0, 1}N to {0, 1}n for some
very large N � n. Then the ID corresponding to the task of appending ti to
(t1, . . . , ti−1) would simply be H(t1‖ · · · ‖ti). The only problem is that this is of
course clearly impossible- 2N is much bigger than 2n and there is no one to one
map from a large set to a smaller set. Luckily we are in the magical world of
crypto where the impossible is routine and the unimaginable is occasional. So,
we can actually find a function H that is “essentially” one to one.

Figure 2: A collision-resistant hash function is a map that from a large universe
to a small one that is “practically one to one” in the sense that collisions for the
function do exist but are hard to find.

The main idea is the following simple result:

Lemma (One side of birthday bound): If H is a random function from
some domain S to {0, 1}n, then the probabilisty that after T queries an attacker
finds x 6= x′ such that H(x) = H(x′) is at most T 2/2n.

Proof: Let us think of H in the “lazy evaluation” mode where for every query
the adversary makes, we choose a random answer in {0, 1}n at the time it is
made. (We can assume the adversary never makes the same query twice since
a repeat query can be simulated by repeating the same answer.) For i < j in
[T ] let Ei,j be the event that H(xi) = H(xj). Since H(xj) is chosen at random
and independently from the prior choice of H(xi), the probability of Ei,j is 2−n.
Thus the probability of the union of Ei,j over all i, j’s is less than T 2/2n, but
this probability is exactly what we needed to calculate. QED

This means that a random function H is collision resistant in the sense that it is
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hard for an efficient adversary to find two inputs that collide. Thus the random
oracle heuristic would suggest that a cryptographic hash function can be used
to obtain the following object:

Definition: A collection {hk} of functions where hk : {0, 1}∗ → {0, 1}n for
k ∈ {0, 1}n is a collision resistant hash function (CRH) collection if the map
(k, x) 7→ hk(x) is efficienty computable and for every efficient adversary A, the
probability over k that A(k) = (x, x′) such that x 6= x′ and hk(x) = hk(x′) is
negligible.5

Once more we do not know a theorem saying that under the PRG conjecture there
exists a collision resistant hash function collection, even though this property is
considered as one of the desiderata for cryptographic hash functions. Moreover,
we do know how to obtain collections satisfying this condition under various
assumptions that we will see later in the course such as the learning with error
problem and the factoring and discrete logarithm problems. Furthermore if we
consider the weaker notion of security under a second preimage attack (also
known as being a “universal one way hash function” or UOWHF) then it is
known how to derive such a function from the PRG assumption.

Practical constructions of cryptographic hash functions

While we discussed hash functions as keyed collections, in practice people often
think of a hash function as having being a fixed keyless function. However, this
is because most practical constructions involve some hardwired standardized
constants (often known as IV) that can be thought of as a choice of the key.

Practical constructions of cryptographic hash functions start with a basic
block which is known as a compression function h : {0, 1}2n → {0, 1}n.
The function H : {0, 1}∗ → {0, 1}n is defined as H(m1, . . . ,mt) =
h(h(h(m1, IV ),m2), · · · ,mt) when the message is composed of t blocks
(and we can pad it otherwise).

This construction is known as the Merkle-Damgard construction and we know
that it does preserve collision resistance:

Theorem: From two messages m 6= m′ ∈ {0, 1}tn such that H(m) = H(m′) we
can find two messages x 6= x′ ∈ {0, 1}2n such that h(x) = h(x′).

Proof: The intuition behind the proof is that if h was invertible then we could
invert H by simply going backwards. Thus in principle if a collision for H exists
then so does a collision for h. Now of course this is a vacuous statement since
both h and H shrink their inputs and hence clearly have collisions. But we
want to show a constructive proof for this statement that allows to transform a

5Note that the other side of the birthday bound shows that you can always find a collision
in hk using roughly 2n/2 queries. For this reason we typically want the output length of hash
functions to be longer than standard cryptographic key length (e.g., 256 bits as opposed to
128 bits).
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Figure 3: The Merkle-Damgard construction converts a compression function
h : {0, 1}2n → {0, 1}n into a hash function that maps strings of arbitrary length
into {0, 1}n. The transformation preserves collision resistance but does not yield
a PRF even if h was pseudorandom. Hence for many applications it should not
be used directly but rather composed with a transformation such as HMAC.

collision in H to a collision in h. This is very simple. We look at the computation
of H(m) and H(m′) and at the first block in which the inputs differ but the
output is the same (there must be such a block). This block will yield a collision
for h. QED

Unfortunately, the Merkle-Damgard construction is not a PRF even when IV is
random and secret. This is because we can perform a length extension attack on
it. Even if we don’t know IV , given y = HIV (m1, . . . ,mt) and a block mt+1 we
can compute y′ = h(y,mt+1) which equals HIV (m1, . . . ,mt+1). One fix for this
is to use a different IV ′ in the end of the encryption. That is, we define:

HIV,IV ′(m1, . . . ,mt) = h(IV ′, HIV (m1, . . . ,mt))

A variant of this construction (where IV ′ is obtained as some simple function of
IV ) is known as HMAC and it can be shown to be a pseudorandom function
under some pseudorandomness assumptions on the compression function h. It is
very widely implemented. In many cases where I say “use a cryptographic hash
function” in this course I actually mean to use an HMAC like construction that
can be conjectured to give at least a PRF if not stronger “random oracle”-like
properties.

The simplest implementation for a compression function is to take a block cipher
with an n bit key and an n bit message and then simply define h(x1, . . . , x2n) =
Exn+1,...,x2n(x1, . . . , xn). A more common variant is known as Davies-Meyer
where we also XOR the output with xn+1, . . . x2n. In practice people often
use tailor made block ciphers that are designed for some efficiency or security
concerns.
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Some history

Almost all practically used hash functions are based on the Merkle-Damgard
paradigm. Hash functions are designed to be extremely efficient6 which also
means that they are often at the “edge of insecurity” and indeed have fallen over
the edge.

In 1990 Ron Rivest proposed MD4, which was already shown weaknesses in 1991,
and a full collision has been found in 1995. Even faster attacks have been since
found and this is considered completely insecure.

In response to these weaknesses, Rivest designed MD5 in 1991. A weakness was
shown for it in 1996 and a full collision was shown in 2004. Hence it is now also
considered insecure.

In 1993 the National Institute of Standards proposed a standard for a hash
function known as the Secure Hash Algorithm (SHA), which has quite a few
similarities with the MD4 and MD5 functions. This function is known as SHA-
0, and the standard was replaced in 1995 with SHA-1 that includes an extra
“mixing” (i.e., bit rotation) operation. At the time no explanation was given for
this change but SHA-0 was later found to be insecure. In 2002 a variant with
longer output, known as SHA-256, was added (as well as some others). In 2005,
following the MD5 collision, significant weaknesses were shown in SHA-1 and as
a result it is considered insecure and SHA-256 is recommended.

Given these results, NIST started in 2006 a competition for a new hashing
standard, based on functions that seem sufficiently different from the MD5/SHA-
0/SHA-1 family. (SHA-256 is unbroken but it seems sufficiently close to those
other systems.) The hash function Keccak was selected as the new standard
SHA-3 in August of 2015.

The NSA and hash functions.

The NSA is the world’s largest employer of mathematicians, and is very heavily
invested in cryptographic research. It seems quite possible that they devote far
more resources to analyzing symmetric primitives such as block ciphers and hash
functions than the open research community. Indeed, the history above suggests
that the NSA has consistently discovered attacks on hash functions before the
cryptographic community (and the same holds for the differential cryptanalysis
technique for block ciphers). That said, despite the “mythic” powers that are
sometimes ascribed to the NSA, this history suggests that they are ahead of the
open community but not so much ahead, discovering attacks on hash functions
about 5 years or so ahead.

6For example, the Boneh-Shoup book quotes processing times of up to 255MB/sec on a 1.83
Ghz Intel Core 2 processor, which is more than enough to handle not just Harvard’s network
but even Lamar college’s.
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There are a few ways we can get “insider views” to the NSA’s thinking. Some
such insights can be obtained from the Snowden documents. The Flame malware
has been discovered in Iran in 2012 after operating since at least 2010. It used
an MD5 collision to achieve its goals. Such a collision was known in the open
literature since 2008, but Flame used a different variant that was unknown in
the literature. For this reason it is suspected that it was designed by a western
intelligence agency.

Another insight into NSA’s thoughts can be found in pages 12-19 of NSA’s
internal Cryptolog magazine which has been recently declassified; one can find
there a rather entertaining and opinionated (or obnoxious, depending on your
point of view) review of the CRYPTO 1992 conference. In page 14 the author
remarks that certain weaknesses of MD5 demonstrated in the conference are
unlikely to be extended to the full version, which suggests that the NSA (or at
least the author) was not aware of the MD5 collisions at the time.

Cryptographic vs non cryptographic hash functions:

Hash functions are of course also widely used for non cryptographic applications
such as building hash tables and load balancing. For these applications people
often use linear hash functions known as cyclic redundancy codes (CRC). Note
however that even in those seemingly non cryptographic applications, an adver-
sary might cause significant slowdown to the system if he can generate many
collisions. This can and has been used to obtain denial of service attacks. As a
rule of thumb, if the inputs to your system might be generated by someone who
does not have your best interests at heart, you’re better off using a cryptographic
hash function.
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