
Lecture 6: Chosen Ciphertext Security

Boaz Barak

Short recap

Let’s start by reviewing what we have learned so far:

• We can mathematically define security for encryption schemes. A natural
definition is perfect secrecy: no matter what Eve does, she can’t learn
anything about the plaintext that she didn’t know before. Unfortunately
this requires the key to be as long as the message, thus placing a severe
limitation on the usability of it.

• To get around this, we need to consider computational considerations. A
basic object is a pseudorandom generator and we considered The PRG
Conjecture which stipulates the existence of an efficiently computable
function G : {0, 1}n → {0, 1}n+1 such that G(Un) ≈ Un+1 (where Um

denotes the uniform distribution on {0, 1}m and ≈ denotes computational
indistinguishability).

• We showed that the PRG conjecture implies a pseudorandom generator of
any polynomial output length which in particular via the stream cipher
construction implies a computationally secure encryption with plaintext
arbitrarily larger than the key. (The only restriction is that the plaintext
is of polynomial size which is anyway needed if we want to actually be able
to read and write it.)

• We then showed that the PRG conjecture actually implies a stronger object
known as a pseudorandom function (PRF) function collection: this is a
collection {fs} of functions such that if we choose s at random and fix it,
and give an adversary a black box computing i 7→ fs(i) then she can’t tell
the difference between this and a blackbox computing a random function.

• Pseudorandom functions turn out to be useful for identification protocols,
message authentication codes and this strong notion of security of encryp-
tion known as chosen plaintext attack (CPA) security where we allow to
encrypt many messages of Eve’s choice and still require that the next
message hides all information except for what Eve already knew before.

1



Going beyond CPA

It may seem that we have finally nailed down the security definition for encryption.
After all, what could be stronger than allowing Eve unfettered access to the
encryption function. Clearly an encryption satisfying this property will hide the
contents of the message in all practical circumstances, or will it?

Example: The Wired Equivalence Protocol (WEP) The WEP is perhaps
one of the most inaccurately named protocols there are. It was invented in 1999
for the purpose was of securing Wi-Fi networks so that they would have virtually
the same level of security as wired networks, but already early on several security
flaws were pointed out, and in particular 2001, Fluhrer, Mantin, and Shamir
showed how the RC4 flaws we mentioned in lecture 3 can be used to completely
break WEP in less than one minute. Yet, the protocol lingered on and for many
years after was still the most widely used WiFi encryption protocol as many
routers had it as the default option. In 2007 it was blamed for a hack stealing 45
million credit card numbers from T.J. Maxx. In 2012 (after 11 years of attacks!)
it was estimated that it is still used in about a quarter of encrypted wireless
networks. (I don’t know of more recent surveys.) Here we will talk about a
different flaw of WEP that is in fact shared by many other protocols, including
the first versions of the secure socket layer (SSL) protocol that is used to protect
all encrypted web traffic.

To avoid superfluous details we will considered a highly abstract (and somewhat
inaccurate) version of WEP that still demonstrates our main point. In this
protocol Alice (user) sends to Bob (access point) an IP packet that she wants
routed somewhere to the internet. So we can think of the message as a string
m ∈ {0, 1}` of the form m = (m1,m2) where m1 is the IP address this packet
needs to be routed to and m2 is the actual message that needs to be delivered. In
the protocol Alice sends to Bob Ek(m‖CRC(m)) (where ‖ denotes concatenation
and CRC(m) is some cyclic redunduncy code. The actual encryption WEP
used was RC4, but for us it doesn’t really matter. What matters is that the
encryption has the form Ek(m′) = pad ⊕m′ where pad is computed as some
function of the key. In particular the attack we will describe works even if we
use our stronger CPA secure PRF-based scheme where pad = fk(r) for some
random (or counter) r that is sent out separately.

Now the security of the encryption means that an adversary seeing the ciphertext
c = Ek(m‖crc(m)) will not be able to know m, but since this is traveling over
the air, the adversary could “spoof” the signal and send a different ciphertext c′
to Bob. In particular, if the adversay knows the IP address m1 that Alice was
using (e.g., if she guesses it’s some popular website) then she can convert the
ciphertext c = pad⊕(m1,m2, CRC(m1,m2)) into the ciphertext c′ = c⊕x where
x = (x1, x2, x3) is computed so that x1oplusm1 is equal to the adversary’s own
IP address! So, the adversary doesn’t need to decrypt the message- by spoofind
the ciphertext she can ensure that Bob (who is an access point, whose job is to
decrypt and then deliver packets) simply delivers it unencrypted straight into

2



her hands. One issue is that Eve modifies m1 then it is unlikely that the CRC
code will still check out, and hence Bob would reject the packet. However, this
CRC (as most are) is linear modulo 2, which means that if the adversary sets
x2 to be the all zero string and x3 = CRC(x1, x2) then it will be the case that
CRC(m1 ⊕ x1,m2 ⊕m2) = CRC(m1,m2) ⊕ CRC(x1, x2) and so c′ will be a
valid encryption of the message (m1⊕x1, 0, CRC(m1⊕x1, 0)) which means that
Bob will deliver the message m2 to the IP address m1 ⊕ x1 of the adversary’s
choice.

Figure 1: The attack on the WEP protocol allowing the adversary Mallory to
read encrypted messages even when Alice uses a CPA secure encryption.

This is not an isolated example but in fact an instance of a general pattern of
many breaks in practical protocols. The point is that often our adversaries can
be active and modify the communication between sender and receiver, which in
effect gives them access not just to choose plaintexts of their choice to encrypt but
even to have some impact on the ciphertexts that are decrypted. This motivates
the following notion of security:

Definition: An encryption scheme (E,D) is chosen ciphertext attack (CCA)
secure if every efficient Mallory wins in the following game with probability at
most 1/2 + negl(n):

• Mallory gets 1n where n is the length of the key

• For poly(n) rounds, Mallory gets access to the functions m 7→ Ek(m) and
c 7→ Dk(c).

• Mallory chooses a pair of messages {m0,m1}, a secret b is chosen at random
in {0, 1}, and Mallory gets c∗ = Ek(mb).

• Mallory now gets another poly(n) rounds of access to the functions m 7→
Ek(m) and c 7→ Dk(c) except that she is not allowed to query c∗ to her

3



second oracle.

• Mallory outputs b′ and wins if b′ = b.

Figure 2: the CCA security game

This might seems a rather strange definition so let’s try to digest it slowly. Most
people, once they understand what the definition says, don’t like it that much
initially. There are two natural objections to it:

• This definition seems to be too strong: There is no way we would
let Mallory play with a decryption box - that basically amounts to letting
her break the encryption scheme. Sure, she could have some impact on the
ciphertexts that Bob decrypts and observe some resulting side effects, but
there is a long way from that to giving her oracle access to the decryption
algorithm.

The response to this is that it is very hard to model what is the “realistic”
information Mallory might get about the ciphertexts she might cause Bob to
decrypt. The goal of a security definition is not to capture exactly the attack
scenarios that occur in real life but rather to be sufficiently conservative so that
these real life attacks could be modeled in our game. Therefore, having a too
strong definition is not a bad thing (as long as it can be achieved!). The WEP
example shows that the definition does capture a practical issue in security and
similar attacks on practical protocols have been shown time and again (see for
example the discussion of “padding attacks” in Section 3.7.2 of the Katz Lindell
book.)

4



• This definition seems to be too weak: What justification do we have
for not allowing Mallory to make the query c∗ to the decryption box? After
all she is an adversary so she could do whatever she wants. The answer is
that the definition would be clearly impossible to achieve if Mallory could
simply get the decryption of c∗ and learn whether it was an encryption
of m0 or m1. So this restriction is the absolutely minimal one we could
make without causing the notion to be obviously impossible. Perhaps
surprisingly, it turns out that once we make this minimal restriction, we
can in fact construct CCA-secure encryptions.

What does CCA has to do with WEP? The CCA security game is somewhat
strange, and it might not be immediately clear whether it has anything to do
with the attack we described on the WEP protocol. However, it turns out that
using a CCA secure encryption would have prevented that attack. The key is
the following claim:

Claim: Suppose that (E,D) is a CCA secure encryption, then there is no efficient
algorithm that given an encryption c of (m1,m2,m3) outputs an encryption c′
of (m′1,m2,m

′
3) where m′1 6= m1.

(Note that this in particular rules out the attack of transforming c that encrypts
a message starting with a particular address IP to a ciphertext that starts with
a different address IP ′.)

Proof: We’ll show that such if we had an adversary M ′ that violates the
conclusion of the claim, then there is an adversary M that can win in the CCA
game. The proof is simple and relies on the crucial fact that the CCA game
allows M to query the decrpyption box on any ciphertext of her choice, as long
as it’s not exactly identical to the challenge cipertext c∗. In particular, if M ′
is able to morph an encryption c of m to some encryption c′ of some different
m′ that agrees with m on some set of bits, then M can do the following: in the
security game, use m0 to be some random message and m1 to be this plaintext
m. Then, when receiving c∗, apply M ′ to it to obtain a ciphertext c′ (note that
if the plaintext differs then the ciphertext must differ also; can you see why?)
ask the decryption box to decrypt it and output 1 if the resulting message agrees
with m in the corresponding set of bits (otherwise output a random bit). If M ′
was successful with probability ε, then M would win in the CCA game with
probability at least 1/2 + ε/10 or so. QED

Constructing CCA secure encryption

The definition of CCA seems extremely strong, so perhaps it is not surprising
that it is useful, but can we actually construct it? The WEP attack shows
that the CPA secure encryption we saw before (i.e., Ek(m) = (r, fk(r)⊕m)) is
not CCA secure. We will see other examples of non CCA secure encryptions
in the exercises. So, how do we construct such a scheme? The WEP attack

5



actually already hints of the crux of CCA security. We want to ensure that
Mallory is not able to modify the challenge ciphertext c∗ to some related c′.
Another way to say it is that we need to ensure the integrity of messages to
ensure their confidentiality if we want to handle active adversaries that might
modify messages on the channel. Since in in a great many practical scenarios,
an adversary might be able to do so, this is an important message that deserves
to be repeated:

To ensure confidentiality, you need authentication.

This is a lesson that has been time and again been shown and many protocols
have been broken due to the mistaken belief that if we only care about secrecy,
it is enough to use only encryption (and one that is only CPA secure) and there
is no need for authentication. Matthew Green writes this more provocatively as

Nearly all of the symmetric encryption modes you learned about in
school, textbooks, and Wikipedia are (potentially) insecure.1

exactly because these basic modes only ensure security for passive eavesdropping
adversaries and do not ensure chosen ciphertext security which is the “gold
standard” for online applications. (For symmetric encryption people often use
the name “authenticated encryption” in practice rather than CCA security; those
are not identical but extremely related notions.)

All of this suggests that Message Authentication Codes might help us get CCA
security. This turns out to be the case. But one needs to take some care exactly
how to use MAC’s to get CCA security. At this point, you might want to stop
and think how you would do this. . .

OK, so now that you had a chance to think about this on your own, we will
now describe one way that works to achieve CCA security from MACs. We will
explore other approaches that may or may not work in the exercises.

Theorem: Let (E,D) be CPA-secure encryption scheme and (S, V ) be a CMA-
secure MAC with n bit keys. Then the following encryption (E′, D′) with keys
2n bits is CCA secure:

1I also like the part where Green says about a block cipher mode that “if OCB was your
kid, he’d play three sports and be on his way to Harvard.” We will have an exercise about a
simplified version of the GCM mode (which perhaps only plays a single sport and is on its way
to . . . ). You can read about OCB in Exercise 9.14 in the Boneh-Shoup book; it uses the notion
of a “tweakable block cipher” which simply means that given a single key k, you actually get
a set {pk,1, . . . , pk,t} of permutations that are indistinguishable from t independent random
permuation (the set {1, . . . , t} is called the set of “tweaks” and we sometimes index it using
strings instead of numbers).

6

http://blog.cryptographyengineering.com/2012/05/how-to-choose-authenticated-encryption.html


• E′k1,k2
(m) is obtained by computing c = Ek1(m) , σ = Sk2(c) and out-

putting (c, σ).

• D′k1,k2
(c, σ) outputs nothing (e.g., an error message) if Vk2(c, σ) 6= 1, and

otherwise outputs Dk1(c).

Proof: Suppose, for the sake of contradiction, that there exists an adversary
M ′ that wins the CCA game for the scheme (E′, D′) with probability at least
1/2 + ε. We consider the following two cases:

Case I: With probability at least ε/10, at some point during the CCA game,
M ′ sends to its decryption box a ciphertext (c, σ) that is not identical to one of
the ciphertexts it previous obtained from its decryption box, and obtains from it
a non-error response.

Case II: The event above happens with probability smaller than ε/10.

We will derive a contradiction in either case. In the first case, we will use M ′ to
obtain an adversary that breaks the MAC (S, V ), while in the second case, we
will use M ′ to obtain an adversary that breaks the CPA-security of (E,D).

Let’s start with Case I: When this case holds, we will build an adversary F (for
“forger”) for the MAC (S, V ), we can assume the adversary F has access to the
both signing and verification algorithms as black boxes (as per the exercise in
HW2) for some fixed unknown key k2 that is chosen at random and fixed. F
will choose k1 on its own, and will also choose at random a number i0 from 1 to
T , where T is the total number of queries that M ′ makes to the decryption box.
F will run the entire CCA game with M ′, using k1 and its access to the black
boxes to execute the decryption and decryption boxes, all the way until just
before M ′ makes the ith

0 query (c, σ) to its decryption box. At that point, F will
output (c, σ). Now, because we are in Case 1, with probability ε/10, in this game
some query that M ′ makes will be one that was not asked before and hence was
not queried by F to its signing oracle, and moreover, the returned message is
not an error message, and hence the signature passes verification. Since i0 is
random, with probability ε/(10T ) this query will be at the ith

0 round. Hence,
with probability at least ε/(10T ) the forger F succeeds in the chosen-message
attack game for the signature scheme, obtaining a contradiction to its security.

Now for Case II: In this case, we will build an adversary Eve for CPA-game
in the original scheme (E,D). As you might expect, the adversary Eve will
choose by herself the key k2 for the MAC scheme, and attempt to play the CCA
security game with M ′. When M ′ makes encryption queries this should not
be a problem- Eve can forward the plaintext m to its encryption oracle to get
c = Ek1(m) and then compute σ = Sk2(c) since she knows the signing key k2.

However, what does Eve do whenM ′ makes decryption queries? That is, suppose
that M ′ sends a query of the form (c, σ) to its decryption box. To simulate the
algorithm D′, Eve will need access to a decryption box for D, but she doesn’t
get such a box in the CPA game! (This is a subtle point- please pause here and
reflect on it until you are sure you understand it!)

7



Eve’s will follow the common approach of “winging it and hoping for the best”.
When M ′ sends a query of the form (c, σ), Eve will first check if it happens to be
the case that (c, σ) was returned before as an answer to an encryption querty m
then Eve will breathe a sigh of relief and simply return m as the answer. (This
is obviously correct: if (c, σ) is the encryption of m then m is the decryption of
(c, σ).) However, if the query (c, σ) has not been returned before as an answer,
then Eve is in a bit of a pickle. The way out of it is for her to simply return
“error” and hope that everything will work out. But the crucial observation is
that because we are in case II things will work out. After all, the only way Eve
makes a mistake is if she returns an error message where the original decryption
box would not have done so, but this happens with probability at most ε/10.
Hence, if M ′ has success 1/2 + ε in the CCA game, then even if it’s the case
that M ′ always outputs the wrong answer when Eve makes this mistake, we
will still get success at least 1/2 + 0.8ε, hence contradicting the CPA security of
(E,D) and concluding the proof of the theorem. QED

(Simplified) GCM encryption

The construction above works as a generic construction, but it is somewhat
costly in the sense that we need to evaluate both the block cipher and the
MAC. In particular, if messages have t blocks, then we would need to invoke two
cryptographic operations (a block cipher encryption and a MAC computation)
per block. The GCM (Galois Counter Mode) is a way around this. We are
going to describe a simplified version of this mode. For simplicity, assume that
the number of blocks t is fixed and known (though many of the annoying but
important details in block cipher modes of operations involves dealing with
padding to multiple of blocks and dealing with variable block size).

We recall that a universal hash function collection is a family of functions
{h : {0, 1}` → {0, 1}n} such that for every x 6= x′ ∈ {0, 1}`, the random variables
h(x) and h(x′) (taken over the choice of the same random h from this family) are
pairwise independent in {0, 1}2n. Universal hash functions have rather efficient
constructions, and in particular if we relax the definition to allow almost universal
hash functions then the constructions become extremely efficient and the size of
the description of h is only related to n, no matter how big ` is.2

Our encryption scheme is defined as follow. The key is (k, h) where k is an
index to a pseudorandom permutation {pk} and h is the key for a universal hash
function.3 To encrypt a message m = (m1, . . . ,mt) ∈ {0, 1}nt do the following:

• Choose IV at random in [2n].
2In ε-almost universal hash functions we require that for every y, y′ ∈ {0, 1}n, and x 6= x′ ∈

{0, 1}`, the probability that h(x) = y ∧ h(x′) = y′ is at most (1 + ε)2−2n. It can be easily
shown that the analysis below extends to almost universal hash functions, but we will leave
verifying this to the reader.

3In practice the key h is derived from the key k by applying the PRP to some particular
input.

8



• Let zi = E(k, IV + i) for i = 1, . . . , t+ 1.

• Let ci = zi ⊕mi.

• Let ct+1 = h(c1, . . . , ct)⊕ zt+1.

• Output (IV, c1, . . . , ct+1).

The communication overhead includes one additional output block plus the
IV (whose transmission can often be avoided or reduced, depending on the
settings; see the notion of “nonce based encryption”). This is fairly minimal.
The additional computational cost on top of t block-cipher evaluation is the
application of h(·). For the particular choice of h used in Galois Counter
Mode, this function h can be evaluated very efficiently- at a cost of a single
multiplication in the Galois field of size 2128 (one can think of it as some very
particular operation that maps two 128 bit strings to a single one, and can be
carried out quite efficiently).

The exercise asks you to prove that this is CCA secure.

Padding, chopping and their pitfalls: the “buffer overflow”
of cryptography

In this course we typically focus on the simplest case where messages have a fixed
size. But in fact, in real life we often need to chop long messages into blocks, or
pad messages so that their length becomes an integral multiple of the block size.
Moreover, there are several subtle ways to get this wrong, and these have been
used in several practical attacks.

Chopping into blocks: A block cipher a-priori provides a way to encrypt a
message of length n, but we often have much longer messages and need to “chop”
them into blocks. This is where the block cipher modes discussed in the previous
lecture come in. However, the basic popular modes such as CBC and OFB do
not provide security against chosen ciphertext attack, and in fact typically make
it easy to extend a ciphertext with an additional block or to remove the last
block from a ciphertext, both being operations which should not be feasible in a
CCA secure encryption.

Padding: Oftentimes messages are not an integer multiple of the block size
and hence need to be padded. The padding is typically a map that takes the
last partial block of the message (i.e., a string m of length in {0, . . . , n − 1})
and maps it into a full block (i.e., a string m ∈ {0, 1}n). The map needs to be
invertible which in particular means that if the message is already an integer
multiple of the block size we will need to add an extra block. (Since we have
to map all the 1 + 2 + . . . + 2n−1 messages of length 1, . . . , n − 1 into the 2n

messages of length n in a one-to-one fashion.) One approach for doing so is to
pad an n′ < n length message with the string 10n−n′−1. Sometimes people use
a different padding which involves encoding the length of the pad.

9



References: (incomplete)

The notion of CCA and non malleability was first suggested by Dolev, Dwork
and Naor in 1991. The order of encryption and authentication was studied by
Hugo Krawczyk in 2001.

10


	Short recap
	Going beyond CPA
	Constructing CCA secure encryption
	(Simplified) GCM encryption
	Padding, chopping and their pitfalls: the buffer overflow of cryptography
	References: (incomplete)



