
~ MathDefs ~

CS 127: Cryptography / Boaz Barak

Pseudorandomness

Reading: Katz-Lindell Section 3.3, Boneh-Shoup Chapter 3

The nature of randomness has troubled philosophers, scientists, statisticians and
laypeople for many years.1 Over the years people have given different answers
to the question of what does it mean for data to be random, and what is the
nature of probability. The movements of the planets initially looked random
and arbitrary, but then the early astronomers managed to find order and make
some predictions on them. Similarly we have made great advances in predicting
the weather, and probably will continue to do so in the future. So, while these
days it seems as if the event of whether or not it will rain a week from today
is random, we could imagine that in some future we will be able to perfectly
predict it. Even the canonical notion of a random experiment- tossing a coin
- turns out that it might not be as random as you’d think, with about a 51%
chance that the second toss will have the same result as the first one. (Though
see also this experiment.) It is conceivable that at some point someone would
discover some function F that given the first 100 coin tosses by any given person
can predict the value of the 101th.2 Note that in all these examples, the physics
underlying the event, whether it’s the planets’ movement, the weather, or coin
tosses, did not change but only our powers to predict them. So to a large extent,
randomness is a function of the observer, or in other words

If a quantity is hard to compute, it might as well be random.

Much of cryptography is about trying to make this intuition more formal, and
harnessing it to build secure systems. The basic object we want is the following:

Definition (Pseudo random generator): An efficiently computable function
G : {0, 1}n → {0, 1}` is a pseudorandom generator if ` > n and G(Un) ≈ U`

where Ut denotes the uniform distribution on {0, 1}t.

Note that the requirement that ` > n is crucial to make this notion non-trivial,
as for ` = n the function G(x) = x clearly satisfies that G(Un) is identical to
(and hence indistinguishable from) the distribution Un. (Make sure that you
understand this last statement!) However, for ` > n this is no longer trivial at
all, and in particular if we didn’t restrict the running time of Eve then no such
pseudo-random generator would exist:

1Even lawyers grapple with this question, with a recent example being the debate of whether
fantasy football is a game of chance or of skill.

2In fact such a function must exist in some sense since in the entire history of the world,
presumably no sequence of 100 fair coin tosses has ever repeated.

1

http://statweb.stanford.edu/~susan/papers/headswithJ.pdf
https://www.stat.berkeley.edu/~aldous/Real-World/coin_tosses.html

Lemma: Suppose that G : {0, 1}n → {0, 1}n+1. Then there exists an (inef-
ficient) algorithm Eve : {0, 1}n+1 → {0, 1} such that E[Eve(G(Un))] = 1 but
E[Eve(Un+1)] ≤ 1/2.

Proof: On input y ∈ {0, 1}n+1, Eve go over all possible x ∈ {0, 1}n and will
output 1 if and only if y = G(x) for some x. Clearly E[Eve(G(Un))] = 1.
However, the set S = {G(x) : x ∈ {0, 1}n} on which Eve outputs 1 has size at
most 2n, and hence a random y←RUn will fall in S with probability at most
1/2. QED

It is not hard to show that if P = NP then the above algorithm Eve can be
made efficient, and hence in particular at the moment we do not know how to
prove the existence of pseudorandom generators. Nevertheless they are widely
believed to exist and hence we make the following conjecture:

Conjecture (The PRG conjecture): For every n, there exists a pseudoran-
dom generator G mapping n bits to n+ 1 bits.

As was the case for the cipher conjecture, and any other conjecture, there are two
natural questions regarding the PRG conjecture: why should we believe it and
why should we care. Fortunately, the answer to the first question is simple: it is
known that the cipher conjecture implies the PRG conjecture, and hence if we
believe the former we should believe the latter. (The proof is highly non trivial
and we may not get to see it in this course.) As for the second question, we
will see that the PRG conjecture implies a great number of useful cryptographic
tools, including the cipher conjecture. We start by showing that once we can get
to an output that is one bit longer than the input, we can in fact obtain any
number of bits.

Theorem (length extension for PRG’s): Suppose that the PRG conjecture
is true. Then for every polynomial t(n), there exists a pseudorandom generator
mapping n bits to t(n) bits.

Proof: The proof of this theorem is very similar to the length extension theorem
for ciphers, and in fact this theorem can be used to give an alternative proof for
the former theorem.
The construction is illustrated in the figure below:

We are given a pseudorandom generator G′ mapping n bits into n+ 1 bits and
need to construct a pseudorandom generator G mapping n bits to t = t(n) bits
for some polynomial t(·). The idea is that we maintain a state of n bits, which
are originally our input seed3 s0, and at the ith step we use G′ to map si−1 to
the n + 1-long bit string (si, yi), output yi and keep si as our new state. To
prove the security of this construction we need to show that the distribution
G(Un) = (y1, . . . , yt) is computationally indistinguishable from the uniform
distribution Ut. As usual, we will use the hybrid argument. For i ∈ {0, . . . , t} we
define Hi to be the distribution where the first i bits chosen at uniform, whereas

3Because we use a small input to grow a large pseudorandom string, the input to a
pseudorandom generator is often known as its seed.

2

Figure 1: Length extension for pseudorandom generators

the last t− i bits are computed as above. Namely, we choose si at random in
{0, 1}n and continue the computation of yi+1, . . . , yt from the state si. Clearly
H0 = G(Un) and Ht = Ut and hence by the triangle inequality it suffices to
prove that Hi ≈ Hi+1 for all i ∈ {0, . . . , t− 1}. We illustrate these two hybrids
in the following figure:

Suppose otherwise, that there exists some adversary Eve such that
|E[Eve(Hi)]− E[Eve(Hi+1)]| ≥ ε for some non-negligible ε. We will
build from Eve an adversary Eve′ breaking the security of the pseudorandom
generator G′.

On input an n+ 1 string y, Eve′ will interpret y as (si+1, yi+1), choose y1, . . . , yi

randomly and compute yi+2, . . . , yt as in our pseudorandom generator’s con-
struction. Eve′ will then feed (y1, . . . , yt) to Eve and output whatever Eve does.
Clearly, Eve′ is efficient if Eve is. Moreover, one can see that if y was random then
Eve′ is feeding Eve with an input distributed according to Hi+1 while if y was for
the form G(s) for a random s then Eve′ will feed Eve with an input distributed
according to Hi. Hence we get that |E[Eve′(G(Un))] − E[Eve′(Un+1)]| ≥ ε
contradicting the security of G′ QED.

Aside: Unpredictablity and indistinguishability- an alternative ap-
proach for proving the length extension theorem. The notion that
being random is the same as being “unpredictable” can be formalized
as follows. One can show that a random variable X over {0, 1}n is
pseudorandom if and only every efficient algorithm A succeeds in
the following experiment with probability at most 1/2 + negl(n): A
is given i chosen at random in {0, . . . , n − 1} and x1, . . . , xi where
(x1, . . . , xn) is drawn from X and wins if it outputs xi+1. It is a good
optional exercise to prove this, and to use that to give an alternative
proof of the length extension theorem.

3

Figure 2: Hybrids Hi and Hi+1— dotted boxes refer to values that are chosen
independently and uniformly at random

4

Figure 3: Building an adversary Eve′ for G′ from an adversary Eve distinguishing
Hi and Hi+1. The boxes marked with questions marks are those that are random
or pseudorandom depending on whether we are in Hi or Hi+1. Everything inside
the dashed red lines is simulated by Eve′ that gets as input the n+ 1-bit string
(si+1, yi+1).

5

Stream ciphers

We now show a connection between our two notions:

Theorem: If the PRG conjecture is true then so is the cipher conjecture.

We note that it turns out that the converse direction is also true, and hence
these two conjectures are equivalent, though we will probably not show the (quite
non-trivial) proof of this fact in this course. (We might show some a weaker
version of this harder direction later in the course.)

Proof: The construction is actually quite simple, recall that the one time pad is
a perfectly secure cipher but its only problem was that to encrypt an n+ 1 long
message it needed an n+ 1 long bit key. Now using a pseudorandom generator,
we can map an n-bit long key into an n+ 1-bit long string that looks random
enough that we could use it as a key for the one-time pad. That is, our cipher
will look as follows:

Ek(m) = G(k)⊕m

and

Dk(c) = G(k)⊕ c

Just like in the one time pad, Dk(Ek(m)) = G(k)⊕G(k)⊕m = m. Moreover,
the encryption and decruption algorithms are clearly efficient and so the only
thing that’s left is to prove security or that for every m,m′EUn(m) ≈ EUn(m′).
We show this by proving the following claim:

Claim: For every m ∈ {0, 1}n+1, EUn(m) ≈ Un+1 ⊕m.

The claim implies the security of the scheme, since it means that EUn
(m) is

indistinguishable from the one-time-pad encryption of m, which is identically
distributed to the one-time pad encryption of m′ which (by another application
of the claim) is indistinguishable from EUn(m′) and so the theorem follows from
the triangle inequality. Thus all that’s left is to prove the claim:

Proof of claim: Suppose that there was an efficient adversary Eve′ such that

|E[Eve′(G(Un)⊕m)]− E[Eve′(Un+1 ⊕m)]| ≥ ε

for some non-negligible ε = ε(n) > 0. Then the adversary Eve defined as
Eve(y) = Eve′(y ⊕m) would be also efficient and would break the security of
the PRG with non-negligible success. QED

Note that if the PRG outputs t(n) bits instead of n+1 then we automatically get
an encryption scheme with t(n) long message length. In fact, in practice if we use
the length extension for PRG’s, we don’t need to decide on the length of messages

6

in advance. Every time we need to encrypt another bit (or another block) mi of
the message, we run the basic PRG to update our state and obtain some new
randomness yi that we can XOR with the message and ouput. Such constructions
are known as stream ciphers in the literature. In fact, in most of the practical
literature the mame stream cipher is used both for the pseudorandom generator
itself, as well as for the encryption scheme that is obtained by combining it with
the one-time pad.

Aside: Using pseudorandom generators for coin tossing
over the phone. The following is a cute application of pseudo-
random generators. Alice and Bob want to toss a fair coin over the
phone. They use a pseudorandom generator G : {0, 1}b → {0, 1}3n.
Alice will send z ←R {0, 1}3n to Bob, Bob picks s ←R {0, 1}n and
with probability 1/2 sends G(s) (case I) and with probability 1/2
sends G(s)⊕ z (case II). Alice then picks a random b←R {0, 1} and
sends it to Bob. Bob then reveals what he sent in the previous stage
and if it was case I, their output is b, and if it was case II, their
output is 1− b.

How do pseudorandom generators actually look like?

So far we have made the conjectures that objects such as ciphers and pseudo-
random generators exist, without giving any hint as to how they would actually
look like. While as mentioned above, we do not know how to prove that any par-
ticular function is a pseudorandom generators, it turns out that there are quite
simple candidates for such functions, though care must be taken in constructing
them. We now consider candidates for functions that maps n bits to n + 1
bits (or more generally n+ c for some constant c) and look at least somewhat
“randomish”. As these constructions are typically used as a basic component for
obtaining a longer length PRG via the length extension theorem, we will think
of these pseudorandom generators as mapping a string s ∈ {0, 1}n representing
the current state into a string s′ ∈ {0, 1}n representing the new state as well
as a string b ∈ {0, 1}c representing the current output. See also Section 6.1 in
Katz-Lindell and (for greater depth) Sections 3.6-3.9 in the Boneh-Shoup book.

Attempt 1: The linear checksum / linear feedback shift register
(LFSR) the mother sick great-uncle of all psuedorandom generators.

One of the simplest ways to generate a “randomish” digit from an n digit number
is to use a checksum - some linear combination of the digits, as is the cyclic
redundancy check or CRC. This motivates the notion of a linear feedback shift
register generator (LFSR): if the current state is s ∈ {0, 1}n then the output is
f(s) where f is a linear function (modulo 2) and the new state is obtained by
right shifting the previous state and putting f(s) at the leftmost location. That

7

is, s′1 = f(s) and s′i = si−1 for i ∈ {2,
ldots, n}.

LFSR’s have several good properties- if the function f(·) is chosen properly
then they can have very long periods (i.e., it takes 2n steps until the state
repeats itself), though that also holds for the simple “counter” generator who
simply treats the state as a number in {0, . . . , 2n − 1} and increments it at
every stage, outputting the least significant digit. They also have the property
that every individual bit is equal to 0 or 1 with probability exactly half (the
counter generator also shares this property) as well as (if the function is selected
properly) that every two bits are independent from one another (the counter
fails badly here - the least significant bits between two consecutive states always
flip). (Showing the last facts is a great optional exercise.)

There is a more general notion of a linear generator where the new state can be
any invertible linear transformation of the previous state. That is, we interpret
the state s as an element of Zt

q for some integers q, t,4 and let s′ = F (s) and
the output b = G(s) where F : Zt

q → Zt
q and G : Zt

q → Zq are some invertible
linear transformation (modulo q). This includes as a special case the linear
congruential generator where t = 1 and the map F (s) corresponds to taking as
(mod q) where a is number co-prime to q.

All these generators are unfortunately insecure due to the great bane of
cryptography- the Gaussian Elimination algorithm. This algorithm (and some
generalizations and related algorithms such as Euclid’s extended g.c.d algorithm
and the LLL lattice reduction algorithm) has been used time and again to break
candidate cryptographic constructions.

The unfortunate theorem for cryptography (Author(s) of the Jiuzhang
Suanshu circa 150 B.C., Gauss 1810): There is an efficient algorithm to solve m
linear equations in n variables (or to certify no solution exists) over any ring.

In particular, if we look at the first n outputs of such a generator b1, . . . , bn

then we can write linear equations in the unknown initial state of the form
f1(s) = b1, . . . , fn(s) = bn where the fi ‘s are known linear functions. Either
those functions are linearly independent, in which case we can solve the equations
to get the unique solution for the original state s and from which point we can
predict all outputs of the generator, or they are dependent, which means that
we can predict some of the outputs even without recovering the original state.
Either way the generator is *#!’ed (where *#$ refers to whatever verb you prefer
to use when your system is broken). See also this 1977 paper of James Reed.

Note: The above means that it is a bad idea to use a linear checksum as
a pseudorandom generator in a cryptographic application, and in fact in any

4A ring is a set of elements where addition and multiplication are defined and obey
the natural rules of associativity and commutativity (though without necessarily having a
multiplicative inverse for every element). For every integer q we define Zq (known as the ring
of integers modulo q) to be the set {0, . . . , q − 1} where addition and multiplication is done
modulo q.

8

http://alumni.cs.ucr.edu/~jsun/random-number.pdf

adversarial setting (e.g., one shouldn’t hope that an attacker would not be able
to figure out the algorithm that computes the control digit of a credit card
number5). However, that does not mean that there are no legitimate cases
where this can be used. In a setting where the application is not adversarial and
you have an ability to test if the generator is actually successful, it might be
reasonable to use such insecure non-cryptographic generators. They tend to be
more efficient (though often not by much) and hence are often the default option
in many programming environments such as the C rand() command. (In fact,
the real bottleneck in using cryptographic pseudorandom generators is often the
generation of entropy for their seed, as discussed in the previous lecture, and
not their actual running time.)

From insecurity to security

It is often the case that we want to “fix” a broken cryptographic primitive, such
as a pseudorandom generator, to make it secure. At the moment this is still more
of an art than a science, but there are some principles that cryptographers have
used to try to make this more principled. The main intuition is that there are
certain properties of computational problems that make them more amenable
to algorithms (i.e., “easier”) and when we want to make the problems useful
for cryptography (i.e., “hard”) we often seek variants that don’t possess these
properties. The following table illustrates some examples of such properties.
(These are not formal statements, but rather is intended to give some intuition)

Easy Hard
Continuous Discrete
Convex Non-convex
Linear Non-linear (degree ≥ 2)
Noiseless Noisy
Local Global
Shallow Deep
Low degree High degree

Manby cryptographic constructions can be thought of as trying to transform an
easy problem into a hard one by moving from the left to the right column of
this table.

The discrete logarithm problem is the discrete version of the continuous real
logarithm problem. The learning with errors problem can be thought of as the
noisy version of the linear equations problem (or the discrete version of least
squares minimization). When constructing block ciphers we often have “mixing”
transformation to ensure that the dependency structure between different bits is

5That number is obtained by applying Luhn’s algorithm which applies a simple map to
each digit of the card and then sums them up modulo 10.

9

global, S-boxes to ensure non-linearity, and many rounds to ensure deep structure
and large algebraic degree.

This also works in the other direction. Many algorithmic and macnine learning
advances work by embedding a discrete problem in a continuous convex one.
Some attacks on cryptographic objects can be thought of as trying to recover
some of the structure (e.g., by embedding modular arithmetic in the real line or
“linearizing” non linear equations).

Attempt 2: Linear Congruential Generators with dropped bits

One approach that is widely used in implementations of pseudorandom generators
is to take a linear generator such as the linear congruential generators described
above, and use for the output a “chopped” version of the linear function and
drop some of the least significant bits. The operation of dropping these bits is
non-linear and hence the attack above does not immediately apply. Nevertheless,
it turns out this attack can be generalized to handle this case, and hence even
with dropped bits Linear Congruential Generators are completely insecure and
should be used (if at all) only in applications such as simulations where there
is no adversary. Section 3.7.1 in the Boneh-Shoup book describes one attack
against such generators that uses the notion of lattice algorithms that we will
encounter later in this course in very different contexts.

Let’s now describe some successful pseudorandom generators:

Case Study 1: Subset Sum Generator

Here is an extremely simple generator that is yet still secure6 as far as we know.

def subset_sum_gen(seed):
modulo = 0x1000000
constants = [0x3D6EA1, 0x1E2795, 0xC802C6, 0xBF742A, 0x45FF31,

0x53A9D4, 0x927F9F, 0x70E09D, 0x56F00A, 0x78B494,
0x9122E7, 0xAFB10C, 0x18C2C8, 0x8FF050, 0x0239A3,
0x02E4E0, 0x779B76, 0x1C4FC2, 0x7C5150, 0x81E05E,
0x154647, 0xB80E68, 0xA042E5, 0xE20269, 0xD3B7F3,
0xCC5FB9, 0x0BFC55, 0x847AE0, 0x8CFDF8, 0xE304B7,
0x869ACE, 0xB4CDAB, 0xC8E31F, 0x00EDC7, 0xC50541,
0x0D6DDD, 0x695A2F, 0xA81062, 0x0123CA, 0xC6C5C3,]

return reduce(lambda x,y: (x+y) % modulo, map(lambda a,b: a*b, constants,seed))

6Actually modern computers will be able to break this generators via brute force, but if
the length and number of the constants were doubled (or even quadrupled) this should be
sufficiently secure, though longer to write down.

10

That is, the seed to this generator is an array seed of 40 bits, there are 40
hardwired constants each of 48 bits long (these constants were generated at
random, but are fixed once and for all, and are not kept secret and hence
are not considered part of the secret random seed), and the output is simply∑40

i=1 seed[i]constants[i] (mod 248) and hence expands the 40 bit input into a
38 bit output.

Case Study 2: RC4

The following is another example of an extremely simple generator known as
RC4 (stands for Rivest Cipher 4, as Ron Rivest invented this in 1987) and is
still fairly widely used today.

def RC4(P,i,j):
i = (i + 1) % 256
j = (j + P[i]) % 256
P[i], P[j] = P[j], P[i]
return (P,i,j,P[(P[i]+P[j]) % 256])

The function RC4 takes as input the current state P,i,j of the generator and
returns the new state together with a single output byte. The state of the
generator consists of an array P of 256 bytes, which can be thought of as a
permutation of the numbers 0, . . . , 255 in the sense that we maintain the invariant
that P[i] 6= P[j] for every i 6= j, and two indices i, j ∈ {0, . . . , 255}. We can
consider the initial state as the case where P is a completely random permutation
and i and j are initialized to zero, although to save on initial seed size, typically
RC4 uses some “pseudorandom” way to generate P from a shorter seed as well.

RC4 has extremely efficient software implementations and hence has been widely
implemented. However, it has several issues with its security. In particular it
was shown by Mantin7 and Shamir that the second bit of RC4 is not random,
even if the initialization vector was random. This and other issues led to a
practical attack on the 802.11b WiFi protocol, see Section 9.9 in Boneh-Shoup.
The initial response to those attacks was to suggest to drop the first 1024 bytes
of the output, but by now they have been sufficiently extended that RC4 is
simply not considered a secure cipher anymore. The ciphers Salsa and ChaCha,
designed by Dan Burnstein, have a similar design to RC4, and are considered
secure and deployed in several standard protocols such as TLS, SSH and QUIC,
see Section 3.6 in Boneh-Shoup.

7I typically do not include references in these lecture notes, and leave them to the texts,
but I make here an exception because Itsik Mantin was a close friend of mine in grad school.

11

	Pseudorandomness
	Stream ciphers
	How do pseudorandom generators actually look like?
	Attempt 1: The linear checksum / linear feedback shift register (LFSR) the mother sick great-uncle of all psuedorandom generators.
	From insecurity to security
	Attempt 2: Linear Congruential Generators with dropped bits
	Case Study 1: Subset Sum Generator
	Case Study 2: RC4

