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1 Abstract

Post-quantum cryptography refers to the search for classical cryptosystems which remain secure in the
presence of a quantum adversary. Most post-quantum cryptographic systems only consider adversaries
which have access to a quantum machine but interact classically with honest parties and oracles. However,
it is important to consider security against adversaries which may make quantum queries to honest parties
and oracles, since these types of cryptographic attacks may become a reality when quantum machines are
widely available in the future. This paper aims to survey recent work on constructing classical cryptographic
primitives which are secure in the presence of these stronger quantum adversaries.

2 Introduction

Although quantum computers are still not a reality, Shor [Shor97] has shown that once fully realized, they
will be able to break most public key cryptosystems, namely those based on classically hard problems such
as the difficulty of factoring large numbers and the discrete log problem. This threat has generated interest
in post-quantum cryptography, the search for classical cryptosystems which remain secure in the presence
of a quantum adversaries.

Most of these post-quantum cryptographic systems only consider adversaries which can perform quantum
computations between queries but can only make classical queries to honest parties or oracles. However in
the future, it is highly likely that these cyrptographic systems will be implemented on quantum machines. In
this case, there is no reason to assume that adversaries will not be able to make quantum queries. Therefore,
in keeping with the conservative approach to cryptosystem design, it is important to consider this stronger
notion of security where adversaries are able to make quantum queries. Thus in this paper, when we mention
quantum security, we will be referring to this stronger notion of security described here.

Allowing an adversary to make quantum queries means that it can query quantum superpositions of inputs
and receive a superpostion of the corresponding outputs in return. This ability means that many classical
proofs and techniques fail to hold under this new notion of security. For example, many classical proofs in
the random oracle model which rely on the fact that any adversary will only get see a polynomial number
of points, fail to hold because quantum adversaries can query exponentially many points in superposition.
Therefore, recent work in this area has been aiming to either tweak these proofs or construct new proofs, in
order to construct classical cryptographic systems which are quantum-secure.

This paper is intended to be a brief introduction into classical cryptographic primitives which are quantum-
secure, which have been constructed so far. We start with a basic introduction to quantum concepts in
section 3. Section 4 describes separation results, which confirm the expectation that quantum security is
a stronger notion than classical security. Section 5 describes the quantum-secure cryptographic primitives
themselves and the techniques used to construct them. Finally, section 6 concludes with open questions in
this area.
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3 Quantum preliminaries

We give a short introduction to the quantum concepts that are used in the constructions described in the
main text of this paper. More detailed discussions on quantum computation can be found in [Mermin07].

3.1 States and superposition

In classical computation, the bit (also called the Cbit) is the fundamental unit of information. The corre-
sponding fundamental unit in quantum computation is called the Qbit, and is represented mathematically
by a vector of unit length in a two-dimensional complex vector space. Vectors representing quantum states
are written using Dirac notation: if the value represented by the quantum state of a Qbit is ψ, then the
state of that Qbit is denoted as |ψ〉. The two states |0〉 and |1〉 form the two orthonormal basis vectors
for the underlying two-dimensional vector space. Therefore, the state of any single Qbit is of the form
|ψ〉 = α|0〉 + β|1〉, where |α|2+|β|2= 1. If α 6= β 6= 0, this state is referred to as a superposition (linear
combination) of the states |0〉 and |1〉. |α〉 and |β〉 are referred to as amplitudes.

The quantum state of two or more Qbits is described by a tensor product. For example, the four basis states
for two Qbits are |0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉 and |1〉 ⊗ |1〉, which are usually abbreviated as |00〉, |01〉, |10〉
and |11〉 respectively. Extending this to n Qbits, we can see that the 2n orthonormal basis states for n Qbits
are |00 · · · 0〉, |00 · · · 1〉, . . . , |11 · · · 1〉. Note that these basis states are exactly the 2n possible Cbits of length
n. It follows that a general n Qbit state is of the form

α0|00 · · · 0〉+ α1|00 · · · 1〉+ · · ·+ α2n−1|11 · · · 1〉,

where
∑2n−1

i=0 |αi|2= 1. This sum is a superposition of the n-Qbit basis vectors.

3.2 Measurement

The process of measuring (or observing) a Qbit |ψ〉 always outputs a classical bit |x〉. If |ψ〉 =
∑n

i=1 αi|xi〉,
where the |xi〉 are basis states, then the measurement process outputs |xi〉 with probability |αi|2. Thus the
measurement process induces a probability distribution over classical states, where the probabilities are given
by the amplitudes squared. In addition to outputting classical bits, the measurement process also collapses
the Qbit into the output it produces. Therefore measuring a quantum state collapses it into a classical one,
and any further measurements will be deterministic.

Although we have described the measurement process with respect to the standard basis above, measurements
can be made with respect to any arbitrary basis. In this case, the probabilities of the outcomes are calculated
by first applying a change of basis, and then applying a standard basis measurement.

4 Separation results

We first present constructions which are secure in the classical case but not in the quantum case. These
separation results confirm the expectation that allowing an adversary to make quantum queries gives it
additional power:

• Zhandry [Zha12b] proves that classical pseudorandom functions may not be as secure as quantum
pseudorandom functions by proving the existence of classically secure pseudorandom functions which
are not quantum-secure.

• Boneh, Dagdelen, Fischlin, Lehmann, Schaffner, and Zhandry [BDF11] separate classical and quantum-
accessible random oracle models. They do this by presenting a two-party protocol which is secure in
the classical random oracle model but not in the quantum-accessible random oracle model.
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• Boneh and Zhandry [BZ13b] show that quantum chosen message queries give an adversary more power
than classical chosen message queries by presenting a signature scheme that is secure under classical
queries but insecure once an adversary can make quantum queries.

• Boneh and Zhandry [BZ13] prove that a pair-wise independent hash family is insufficient for construct-
ing a quantum-secure one-time Message Authentication Code (MAC), although this is sufficient in the
classical case. This proves that quantum security is stronger than classical security for MACs. They
prove that a four-wise independent family is sufficient in the quantum case, however.

5 Quantum-secure constructions

The separation results in the previous section show that many classical systems are not quantum-secure.
However, this does not mean that there do not exist classical systems which are quantum-secure. The
following six subsections provide an overview of the types of quantum-secure classical cryptographic systems
which have been constructed so far, and the techniques used to construct them.

5.1 Quantum random oracles

In the classical random oracle model, adversaries are given oracle access to a random hash function O :
{0, 1}∗ → {0, 1}∗, and learn a value O(x) by querying the value x. This random oracle is replaced with a
hash function H, whenever the scheme is instantiated. A quantum adversary may evaluate this function H
on a superposition of inputs. Thus to model this ability, in the quantum random oracle model, adversaries are
also allowed to query superpositions of states, |ϕ〉 =

∑
αx|x〉, and receive the corresponding superposition

of outputs,
∑
αx|O(x)〉, in return.

One of the many challenges of proving security in the quantum random oracle model is efficiently simulating
the quantum random oracle. In the classical case, random oracles are simulated using a ’lazy’ approach, only
generating randomness when required. However, this approach does not work in the quantum case, since
the adversary is able to query the oracle on an exponential superposition of inputs. Therefore, it seems as
though the quantum adversary making even one query would require having exponential randomness. Thus,
simulating a quantum random oracle would require defining the entire function before making any queries.
Additionally, many classical random oracle techniques, such as Bellare’s and Rogaway’s [BR93] proof of the
security of the Full Domain Hash signature scheme, fail to hold under if the adversary has quantum access
to the oracle.

The first quantum random oracle model was constructed by Boneh, Dagdelen, Fischlin, Lehmann, Schaffner,
and Zhandry [BDF11] in 2011. They did this by specifying conditions under which a classical random oracle
proof implied security for a quantum random oracle. Specifically, they proved that that security was implied
when the classical proof was a history-free reduction (which at a high level means that the reduction answers
oracle queries independent of previous queries).

Zhandry [Zha12a] improved upon these results, demonstrating how to simulate a quantum random oracle
without any additional assumptions at all. His approach involved finding new techniques to argue that
quantum algorithms cannot distinguish between two distributions of oracles. He applied this argument to
show that a new type of distribution of oracles, called semi-constant oracles, could not be distinguished from
random oracles.

5.2 Quantum pseudorandom functions

Quantum pseudorandom functions (QPRFs) are defined in a similar way to quantum random oracles: For
any QPRF P , adversaries may query superpositions of states, |ϕ〉 =

∑
αx|x〉, and receive the corresponding
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superposition of outputs,
∑
αx|P (x)〉 in return.

In the classical world, pseudorandom functions (PRFs) are generally built from pseudorandom generators
(PRGs). One such construction is from length-doubling PRGs, which is known as the GGM construction
[GGM86]. These PRGs are in turn built from one-way functions, as shown by H̊astad et al [HILL99]. H̊astad
et al’s security proof does not make any assumptions about the computational model of the adversary,
meaning that it immediately carries over to the quantum case, as long as the underlying one-way function
is quantum-secure. However, the classical proof of security of the GGM construction does not hold in the
presence of a quantum adversary.

In order to understand why this the GGM construction does not hold in the quantum case, we give a
brief high level overview of the classical security proof of the construction. The GGM construction involves
considering a binary tree with depth n. Each leaf of this tree corresponds to an input / output pair of
the PRF. To evaluate the PRF, we start at the root and travel down a path to the leaf corresponding to
the input. The proof of the security of this construction relies on two hybrid arguments. The first hybrid
argument is across the levels of the tree, and therefore has only polynomially many hybrids, since the depth
of the tree is polynomial. The second hybrid argument is across the nodes in a particular level. Since a
classical adversary only queries the PRF polynomially many times, the paths used to evaluate the PRF only
visit polynomially many nodes on each level. Thus there are also only polynomially many hybrids for the
second argument. These hybrid arguments allow us to conclude that any adversary which breaks the security
of the PRF with probability ε can be reduced to an adversary that breaks the security of the underlying
PRG with probability only polynomially smaller than ε.

The problem with this argument in the quantum case is that an adversary may query the PRF on a superpo-
sition of exponentially many inputs. Then, every level of the tree would have exponentially many nodes, so
the second hybrid argument would require exponentially many hybrids. This would reduce the probability
of the adversary breaking the security of the underlying PRG to only an exponentially small probability. A
similar problem occurs for other classical constructions of PRFs from PRGs.

Zhandry [Zha12b] gives the first construction of quantum-secure PRFs. Although we have seen that classical
constructions of PRFs do not work in the quantum world, Zhandry found that many classically secure PRFs
can also be shown to be quantum-secure using new techniques. In particular, Zhandry showed that the GGM
construction of PRFs described above is in fact quantum-secure, as is a construction based on pseudorandom
synthesizers, and a construction based on the Learning With Errors problem. The general idea of Zhandry’s
new technique was to first define a seemingly stronger definition of security for the underlying cryptographic
primitive. He then showed that any adversary breaking the security of the PRF could be reduced to an
adversary breaking the security of the underlying cryptographic primitive. He then showed the equivalence
of this stronger definition with the standard definition of security in the quantum world.

5.3 Quantum message authentication codes

Building on from the quantum-secure PRFs discussed in the previous subsection, quantum-secure message
authentication codes (MACs) have also been constructed.

Quantum MACs are defined to be secure if they are existentially unforgeable against quantum chosen
message attacks. Such quantum chosen message attacks refer to attacks where the adversary is able to
query superpositions of messages,

∑
m ψm|m〉, and receive a superposition of MAC tags on those messages,∑

m ψm|m,S(k,m)〉, where S(k,m) is the MAC tag on the message m with secret key k. If the adversary
has made q queries by the end of its interaction with the MAC signing oracle, we define the MAC to be
quantum-secure if the adversary cannot produce q + 1 valid message-tag pairs. This definition is due to the
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fact that the adversary can produce q message-tag pairs just by trivially sampling the q superpositions it
received from the MAC signing oracle but cannot produce a q + 1th pair without forgery.

In the classical setting, MACs are built out of PRFs. Since quantum PRFs exist, as described in the section
above, an obvious question is whether secure quantum PRFs give rise to secure quantum MACs. Since a
quantum-secure PRF is indistinguishable from a random function to an adversary by definition, proving that
the quantum MAC is secure is equivalent to proving that if an adversary has made q quantum queries to
a random oracle H : X → Y, the probability that it can produce q + 1 input-output pairs of H must be
negligible. This is trivial in the classical case, since in this case the adversary only learns the value of H
at q distinct points, which gives it no information about the value of H at any other points. However, this
argument fails in the quantum case, since the adversary could query a superposition of all possible inputs,
which would give it information about the all of H.

Using a new proof technique, Boneh and Zhandry [BZ13] show that it is in fact the case that secure quantum
PRFs give rise to secure quantum MACs, thus constructing the first quantum-secure MACs. Their argu-
ment provides tight bounds to the question presented in the paragraph above by: first lower bounding the
probability that an adversary will produce q+ 1 output pairs if q < |X | by using a technique called the rank
method, which bounds the success probability of algorithms that succeed with only a small probability. They
then show that this lower bound is tight by extending a related algorithm presented by van Dam [vD98]
for oracles outputting one bit, to multi-bit oracles. Additionally, Boneh and Zhandry [BZ13] also show the
quantum security of a variant of Carter-Wegman MACs.

5.4 Quantum signatures

Quantum-secure signatures are defined in a similar manner to quantum-secure MACs: a signature is quantum-
secure if it is existentially unforgeable under a quantum chosen message attack, where a quantum chosen
message attack is defined as in 5.3.

Boneh and Zhandry [BZ13b] give the first construction of such quantum-secure signatures, by building
compilers which convert a classically secure signature scheme into a quantum-secure one. Their constructions
are as follows:

• Using a chameleon hash [KR00], they show how to transform any signature scheme that is existentially
unforgeable in the classical world into a signature scheme which is existentially unforgeable in the
quantum world. They then apply this transformation to several existing signature schemes, including
signature schemes which rely on the quantum hardness of lattice problems.

• They also prove that signature schemes which are universally unforgeable in the classical world can be
made existentially unforgeable under a quantum chosen message attack in the random oracle model.
They apply this conversion to a randomized variant of GPV signatures [GPV08].

• Finally, they also show how to build quantum-secure signatures from collision resistant hash functions.
They do this through proving that classical constructions such as Lamport one-time signatures and
Merkle signatures are existentially unforgeable under a quantum chosen message attack.

5.5 Quantum encryption

Boneh and Zhandry [BZ13b] also build the first public-key and symmetric-key encryption schemes which are
secure against quantum chosen ciphertext attacks. They define the chosen ciphertext security game in the
quantum case as follows:

In the classical chosen ciphertext security game, the adversary is given classical access to both the encryp-
tion and decryption oracles. In the quantum case, the quantum adversary is given quantum access to the
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decryption oracle. Thus it is able to query a superposition of ciphertexts and get back a superposition of
the corresponding decryptions: ∑

m

ϕc|c〉 →
∑
c

ϕc|c,D(sk, c)〉,

where D(sk, c) is the decryption of c using secret key sk. It would also be natural to wonder whether we
can give the adversary quantum access to encryption oracle. However, Boneh and Zhandry [BZ13b] showed
that this stronger definition would be insatisfiable.

Boneh’s and Zhandry’s encryption schemes work as follows:

• They construct a quantum-secure symmetric-key system from a quantum-secure PRF using the encrypt-
then-MAC paradigm. Although the classical proof that the encrypt-then-MAC paradigm is secure does
not extend to the quantum case, they give a different proof of security for their specific construction.

• They show that they can use any identity-based encryption scheme that is selectively secure under
a quantum chosen identity attack to construct a quantum-secure public-key system. They also show
that such an identity-based encryption scheme can be built from lattice assumptions.

5.6 Quantum pseudorandom permutations

Finally, also building off of the quantum-secure PRFs discussed in section 5.2, quantum-secure pseudorandom
permutations (PRPs) have also been constructed.

Quantum-secure PRPs are defined in a similar way to quantum-secure PRFs: they must be secure against
an adversary who is able to make quantum superposition queries to the permutation.

In classical cryptography, PRPs can be constructed from one-way functions. This construction is as follows:

1. First, one-way functions can be used to build PRGs, as shown by H̊astad et al [HILL99].

2. Next, PRGs can be used to build PRFs, using the GGM construction [GGM98].

3. Finally, Luby and Rackoff [LR88] showed that a PRP can be obtained by plugging PRFs into a 4-round
Feistel Network.

In section 5.2, we discussed how 1) immediately carries over to the quantum case for quantum immune
one-way functions, and how 2) holds because there exists a different proof which shows the security of the
GGM PRF against quantum adversaries.

The classical proof of 3) involves first replacing the PRF in the Feistel network with a random function. In
the quantum case, we will need the PRF to be quantum-secure, but translating this step to the quantum
case is otherwise relatively simple. However, this is not true of the next step. The next step involves showing
that once we have made this replacement, the Feistel network becomes indistinguishable from a random
function. Since the classical proof of this step relies on the fact that the adversary will only get to see a
polynomial number of points, it breaks down in the quantum case where adversaries can query exponentially
many points.

Zhandry [Zha17] uses a completely different technique to obtain quantum-secure PRPs from quantum-secure
PRFs, thus completing the construction of quantum PRPs from quantum immune one-way functions. The
main crux of Zhandry’s technique involves using an object called a Function-to-Permutation Converter
(FPC). At a high level, this is an algorithm P which makes oracle queries to a function O, and whose inputs
and outputs belong to a domain X . For any function O, PO is a permutation of X , and if O is a random
function, PO is indistinguishable from a random permutation. Clearly, full-domain classical FPCs, where
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PO remains indistinguishable from random even if the adversary can query PO on its entire domain, are
also quantum FPCs secure against up to |X| queries via a simple reduction. Thus given a quantum FPC
adversary, Zhandry proposes to construct a classical FPC adversary that queries the entire domain so that
it knows the entire function, and then answers the quantum FPC adversary’s queries using this knowledge.
Plugging in a quantum PRF as O into this quantum FPC results in a quantum-secure PRP. Such full-domain
classical FPCs can be found in the context of format preserving encryption [BRRS09].

6 Conclusions

The study of classical cryptosystems which are secure against adversaries which can make quantum queries is
still an emerging research area, with most major results coming from within the last 10 years. Thus although
we have presented numerous quantum-secure cryptographic primitives in the previous section, there are still
many major open questions. One of the most general open questions is how to design primitives that remain
secure in the presence of such adversaries, for any cryptographic primitive modeled as an interactive game.
For example, is it possible to design quantum-secure threshold signatures and group signatures? Is it possible
to build a quantum-secure PRF for a large domain out of a quantum-secure PRF for a small domain?
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