Proofs of Sequential Work

Meena Jagadeesan Alec Sun Alex Wei
May 25, 2018

Abstract

We begin with a survey of constructions of proofs of sequential work based on
the work of Mahmoody, Moran, and Vadhan [MMV13] and Cohen and Pietrzak
[CP18]. Proofs of sequential work are now relevant to blockchain design, but were
originally motivated by the study of time-lock puzzles. We discuss one application
of time-lock puzzles, the construction of fair coin flipping protocols. We also detail
existing constructions by Boneh and Naor [BN0O] as well our simplification of this
protocol based on ideas in a work of Jershow and Mauve [JM10]. Unfortunately,
these constructions use non-standard assumptions. If proofs of sequential work
had unique proofs, then they would provide a construction of a fair coin-flipping
protocol with standard assumptions. An open problem posed in [CP18] is to
construct proofs of sequential work with unique proofs. We outline our high-
level ideas on extending the constructions of [CP18] and [MMV13] to give the
guarantee of unique proofs.

1 Introduction

In [MMV13], Mahmoody, Moran, and Vadhan introduce proofs of sequential work
(PoSW), which is a protocol between a prover and a verifier, where the prover must
prove that they have spent at least N sequential computational time for a security
parameter N. In these schemes, the sequential condition is derived from wanting a
proof that cannot be generated in time much less than N even when the adversary has
a large number of processors to perform parallel computations at their disposal. Proofs
of sequential work have also been discussed in the context of time-lock puzzles, which
are puzzles that can be “unlocked” after a certain amount of sequential computational
time has been spent.

The first known protocol for proofs of sequential work relying on standard assump-
tions is due to Mahmoody, Moran, and Vadhan [MMV13]|, who provide a publicly
verifiable protocol in the random oracle model using depth-robust “hash graphs.” Al-
wen et al. [ABP18] improved the construction of depth-robust graphs, improving the
bounds in [MMV13]. In recent work, Cohen and Pietrzak [CP18] give a simpler and
more efficient construction of proofs of sequential work in the random oracle model

using a similar idea of hash graphs, but without the depth-robust requirement. In this
survey, we will approach proofs of sequential work by surveying the constructions given
by the first two papers [MMV13, CP18] in detail.

The study of proofs of sequential work was originally motivated by the study of
time-lock puzzles in [CLSY93, RSW96, BN00, JM10], which are puzzles that require
a certain amount of time to “unlock” while being secure against parallel attack. Cai,
Lipton, Sedgewick, and Yao [CLSY93| apply this idea to CPU benchmarks that cannot
be cheated, since the time required to execute the sequence of computations must be
proportional to CPU speed. Rivest, Shamir, and Wagner [RSW96| consider time-lock
puzzles in the context “of send[ing] messages to the future” and give a construction
relying on an assumption of inherent sequentiality of exponentiation modulo an RSA
modulus. Boneh and Naor [BN0O] show how the same time-lock scheme in [RSW96]
can also be applied to constructing a fair coin flipping scheme, which we will discuss
in greater detail below. Jerschow and Mauve [JM10] discuss how offline submission
of articles can also be achieved with the correct implementation of time-lock puzzle.
Certain forms of time-lock puzzles can be obtained from proofs of sequential work as
described in [MMV13, CP18], but others, e.g., those requiring unique proofs, will need
a different construction. Proofs of sequential work now have even greater relevance
today since they can be applied to blockchain designs, as is discussed by Cohen and
Pietrzak [CP18].

Right now, the proof of work for blockchain is dependent on the world’s current
parallelizable computational power. The difficulty of finding a conforming hash to
continue the evolution of the blockchain is a function of the number of participants and
the speed of the equipment used to calculate the hash. Hence the bitcoin difficulty must
adjust dynamically so that a proper hash is found on average once every ten minutes.
One could imagine that using proofs of sequential work that the time between blocks
would be independent of the total number of computers in the world since finding a
solution is now limited by a sequential queries by one machine. This modification would
make blockchain time more closely correspond to real world time without the need to
dynamically adjust the bitcoin difficulty.

One application of time-lock puzzles [BN0O, JM10], that we will explore in greater
detail, is to the construction of fair coin flipping protocols, in which two parties (without
a third party) want to obtain a shared random bit, with the added caveat that if
one party aborts, the other party can “force open” a commitment to complete the
protocol. For a time-lock puzzle to be used in such a protocol requires it to have a
unique unlocking, or at least be secure against “second preimage attacks.” However,
existing constructions in [BN0OO] use a non-standard assumption, that exponentiation
mod a large prime, is “inherently sequential.” In contrast, the proof of sequential work
constructions in [MMV13] and in [CP18] use standard assumptions but have the caveat
that each puzzle has many possible solutions. The construction of a proof of sequential
work protocol with unique proofs remains an open problem posed in [MMV13]. Such a
construction would lead to a fair coin-flipping protocol based on standard assumptions.

In Section 2, we present a survey of the proof of sequential work protocols in [CP18]

and [MMV13]. We also discuss improvements on the protocol in [MMV13] if the depth-
robust graphs construction is replaced by an improved construction from a recent work
by Alwen, Blocki, and Pietrzak [ABP18]. In Section 3, we discuss the construction in
[BNOO] that uses a number-theoretic assumption to construct a coin-flipping protocol.
We also present our simplification of this protocol using the ideas in [JM10] that relies
on the same non-standard assumption. In Section 4, we discuss our high-level ideas
to adapt the construction of [MMV13] to have unique proofs, which could potentially
provide a coin flipping protocol based on standard assumptions.

2 Survey of Approaches of [CP18] and [MMV13]

We consider constructions of proofs of sequential work by Mahmoody, Moran, and
Vadhan [MMV13] and by Cohen and Pietrzak [CP18]. One issue with the construction
in [MMV13] is that the prover in addition to needing N time steps is also forced to have
O(N) space to generate a proof. The results in [CP18] solve this issue by producing a
simpler and more efficient scheme that reduces the required space to O(log N).

2.1 Assumptions

In [MMV13], Mahmoody et al. introduce “inherently sequential” hash functions and
show that these hash functions, coupled with collision-resistant hash functions, can be
used to instantiate the random oracle in their construction. Although [CP18] focuses on
the random oracle model (in which PoSW are easiest to define), they claim that their
results can be converted to the same assumptions as in [MMV13]. For completeness,
we first sketch a proof for why a random oracle is collision-resistant and sequential.

Lemma 1. Consider any adversary A which is given access to a random function
H:{0,1}" — {0,1}". If A makes at most queries the probability that it will make two
colliding queries x # x', H(x) = H(z') is at most ¢*/2 .

Proof. The probability that the output of the i-th query collides with any of the i — 1
previous queries is at most 12—_1”1 because H is a random oracle. By the union bound, the
probability that any ¢ collides with a previous output is at most

]

Definition 2. An H sequence is a sequence xy,...,xs such that H(x;) equals z;y1 for
every i. Such a sequence is called a hash chain of length s.

Lemma 3. Any adversary A who makes at most s — 1 sequential queries to a random
oracle cannot produce a hash chain of length s with more than negligible probability.
This is equivalent to the random oracle model being sequential.

3

Proof. There are essentially two ways A can output a hash chain x, . .., z, making only
s — 1 sequential queries.

Case 1: Lucky Guess. Then for some ¢ we have H(z;) = ;41 and A did not make
the query H(z;). Because H is a random oracle, the probability is roughly bounded by
a union bound over all 7, which is negligible.

Case 2: Collision. In this case the x; are not computed sequentially. Then it
follows that for some 1 < ¢ < j < s — 1 a query say ¢; is made in round ¢ and g¢; is
made in round j such that H(g;) = ¢;. Again since the query ¢; has never been made
before and H is a random oracle the probability of such an event is union bounded over
all such previous queries ¢; and is hence negligible. O

We emphasize that all of the results in [CP18] and [MMV13] do not need the full
power of the random oracle model, only the collision-resistant and sequential properties.
This will become relevant in our discussion of unique proofs.

2.2 Proofs of Sequential Work

Proofs of sequential work in the random oracle model can be defined more or less as
follows: The prover P and the verifier V' get as common inputs statistical security
parameters w and ¢t and a time parameter /N. Both parties have access to the random
oracle H. The interaction between P and V is defined by the following game, and is
depicted in Figure 1 (borrowed from [CP18]):

e IV samples a random w-bit string x and sends it to P. (Our goal is to force P to
work for N time steps from this point forward.)

P computes a proof (¢, ¢p) := PoSWH(y, N), sends ¢ to V and stores ¢p.

V' gets to challenge the prover, by sampling a random tw-bit string and sending
it to P.

P computes some function open that may require using ¢p and the random string
and sends the output to V.

e 1 verifies that this ¢ and this output are consistent with y, IV, and the challenge
string.

The requirements are:

1. Correctness: V reports accept with probability 1 if interacting with an honest
prover.

2. Soundness: Any P who is accepted by V must have made “close” to N queries
to H.

The constructions achieve the following guarantees given in the next two theorems.

H:{0,1}* — {0,1}*
Prover P(N,t,w) Verifier V(N, t, w)
statement x x + {0,1}*

PoSW ¢
(¢, ¢p) := PoSW(x, N)

‘ challenge ~y
7 :=open(x, N, ¢p,7) answer T

Figure 1: Prover-Verifier Game

v {0,1)""

‘ (u®0 000"

verify(x, N, ¢, 7, 7) € {accept, reject}

Theorem 4. [MMV13] Let d be the in-degree of the depth-robust graph G. (This
construction achieves d = log® n but a new construction achieves d = logn.) The prover
uses N queries to H and the verifier uses at most (d+1)log,(N) queries, excluding the
time needed to construct G.

Theorem 5. [CP18] For any 0 < m < n, there is a correct and sound PoSW such that
the prover uses space n+1+nt+ 2" w and can be done making at most t(2"~™1 —1)
queries to H during the open step. The verifier must only sample a random challenge
of length tw and verification can be done making tn queries to H.

2.3 Constructions

Both the construction in [MMV13] and in [CP18] instantiate the private proof ¢p as
a vertex-labeling of a directed acyclic graph G and the communicated proof ¢ as the
label of the top vertex. Let V' = {0,1,..., N — 1} be the set of vertices. The vertex
labels {/;},., satisfy the following invariant. We say that vertex u is a parent of vertex
v is a direct edge from u to v. If (py,...,ps) are the parents of vertex 7, then

l’i = H(X’ivplap% s apd)‘

Here, x is essentially used to salt the random oracle to prevent precomputation from the
prover. Observe that if the vertices are processed in topological order, then the labels
can be computed in N sequential queries to the hash function. Roughly speaking, we
also want to guarantee that the labels can’t be computed in fewer than N sequential
queries. This poses some conditions of the structure of the graph G. For example, if G
were the full binary tree, then this labeling process could be made highly parallelizable
through a divide-and-conquer type strategy. Both the constructions in [MMV13] and
[CP18] start with the full binary tree in a Merkle-tree-based commitment scheme with
n levels (so that N = 2"™1 — 1) as the base graph, but take different approaches to
augmenting the graph with additional edges. The collision-resistance of H is used to
force the prover to commit to unique labels.

Both constructions require as an assumption the existence of a collision-resistant
and inherently sequential hash function, hence they do not need the full power of a
random oracle model, although one can note a random oracle does satisfy the two
properties. Moreover, in [MMV13] it is shown how to construct a collision-resistant
and inherently sequential has function H from a collision-resistant hash function H;
and an inherently sequential hash function H,. This means that essentially the only
non-standard assumption being used in these graph constructions is the existence of an
inherently sequential hash function.

The tw-bit string corresponding to the verifier’s challenge to the prover corresponds
to t challenge leaves v, ...,7: in V. In the open function, for each 1 <1 < ¢, the prover
sends the label ., the labels of the parents of 7;, as well as the labels of all siblings of
the vertices on the path from ~; to the root. For each 1 <1 < ¢, the verifier has enough
information to confirm that the labels of the parents of ~; satisfy the desired labeling
property, as well as to confirm that the labeling is consistent with the labeling ¢ of the
root.

In both constructions the verification time is very small. If N is the number of
sequential queries to the hash function and n is the security parameter, then both
graphs can be verified publicly in time poly(n) - polylog(N).

2.3.1 Construction in [MMV13]

The key ingredient in [MMV13] is a depth-robust graph. At a high-level, depth robust
graphs satisfy the property that even if many vertices are removed, the graph still has
a long path. This property is useful since even if the prover cheats on a small number
of labels, he will still require a number of sequential queries due to the long path. More
formally, a directed acyclic graph G is (e, d) depth-robust if for any subset S C V' such
that |S| < e, the vertex-induced subgraph on V'\ S has a path of length at least d. While
the complete DAG is (e, |V'| —e) depth-robust for any e, it is insufficient for this setting
where we want the graph to have low in-degree so that the verifier can perform its check
in polylog(n) time for each challenge. Erdos et. al [EGS75] showed the existence of
(O(N),O(N)) depth-robust DAGs with in-degree O(log N). In [MMV13], Mahmoody
et al. give an explicit construction with in-degree O(log® N) with better constants on
the guarantees on the values of e and d. However, a recent paper by Alwen et. al
[ABP18] constructed explicit depth-robust graphs with in-degree O(log V).

The depth-robust graph is used to add edges to the full binary tree. The vertex set
of the depth-robust graph is taken to be the leaves of the full binary tree. Figure 2 (bor-
rowed from [CP18]) shows an example of this. Intuitively, the depth-robust graph serves
to add inter-dependencies between the branches which prevent the divide-and-conquer
strategy from being realizable. The security proof splits into two cases depending on
the number of labels that are inconsistent. Here, inconsistent means that the label is
not correctly computed from the labels of its parent according to H. If § < e (where
e is the parameter of the depth-robust graph), then the prover will be caught in the

N—B\?t

verification step with high probability 1 — (T) . If B < e, then since H is sequential,

o ©)

o
=00 \@

Figure 2: Construction in [MMV13]

the number of sequential queries that the prover has to make is at least the length of
the longest path in V'\ D, which is at least d by the depth-robust guarantees.

One drawback of this construction is the space expense the prover must necessarily
face to label the depth-robust graph. The same paper by [ABP18] shows that if a depth-
robust graph on N vertices is labeled in time 7" using space S, then T'S = Q(N?). This
trade-off stems from the fact that depth-robust graphs are used in a construction of
memory-hard functions, which are functions that require a large amount of memory in
many steps even if the adversary can make parallel queries to the random oracle. The
main technique used in showing the lower bound is the construction of a pebbling game
on the graph which takes advantage of depth-robustness of the graph. The lower bound
implies that the prover operates in O(N) time, linear space is required. Although the
proof of sequential work seeks to give guarantees on the amount of sequential time spent
by the prover, it may not be the case we want to force the prover to use a large amount
of space.

2.3.2 Construction in [CP18]

The construction in [CP18] achieves better space guarantees for the prover. The main
idea is to move away from depth-robust graphs and use a differently structured graph
to give sequential guarantees. This construction adds the following edges to the full
binary tree: edges (v, u) such that u is a leaf vertex and v is a left sibling of a vertex on
the path from the u to the root. Figure 3 (borrowed from [CP18]) shows an example
of this construction. While the graph is not depth-robust, it contains a path of length
2N — 1, if N is the number of leaves.

In fact, the fact that the graph is not depth-robust enables the label processing to
circumvent the lower bounds in [ABP18]. The nodes can be computed in topological
order while keeping only logarithmically many labels in memory at any given point.
This stems from the recursive nature of the construction of the graph. More formally,
it takes w(n + 1) bits of memory to compute the labels. We prove this by induction.
It takes wn bits of memory to compute the left subtree. Then all of the memory is
deleted except the label of the root of the left subtree which takes w bits of memory,

@ 5 o o
@) %@\E\®§\§§K\
S0 B0 i) B0 O

Figure 3: Construction in [CP18]

and the right subtree labels are computed using wn more bits of memory, which adds
up to w(n + 1) bits in total.

However, there is a caveat. If using only logarithmic memory in our construction,
the prover needs to recompute all the labels in the challenge phase, whereas one would
not need any computation (just some lookups) in this phase if all of the labels were
stored as ¢p. This is unfortunate, as it means we get a factor 2 difference in the
sequential computation that is claimed, versus what has to actually be done, but some
applications need this factor to be close to 1. Fortunately, in [CP18], some trade-offs
between memory and challenge phase time are shown. The basic idea to pick some some
0 < m < n where n is the total number of levels of the tree. For ¢p, all of the labels
for the 2+ — 1 vertices in the m up-most levels are stored.With this, one only needs
to compute < 2"~™*! 1 labels per challenge. We consider various parameter settings
for m. If m = 0, then all N labels need to be computed, so an honest prover will
require 2N queries, which is unfortunate. If m = n, then the whole tree is stored and
no additional labels need to be computed; however, this means that O(N) memory is
required. In the middle case where m = n/2, observe that about v/ Nw bits of memory
are used and about v/ Nw additional queries are needed in the challenge phase.

The proof of security in [CP18] makes use of the long paths present in the graph
construction.

Proof. Let S be the set of vertices that are labeled inconsistently (that is these labels
do not match the labels of their parents according to H). Then, we split into two cases
based on the size of a set of vertices closely related to S.

Let Dg be the set of vertices in S or below some vertex in S. Let S* be the minimum
set of vertices such that the set of leaves below S™ is the same as the set of leaves below
S. The set that we will use to gauge the “size” of S in our proof of security is Dg+. First,
it follows from the recursive structure of the graph that the vertex-induced subgraph
on V'\ Dg+ contains a directed path through all of its vertices. Next, we show that Dgx
contains w leaves. Let S* = {vl, e ,v|g|}. Observe that since S* is minimal,

we know that the D,, are distinct. Moreover, each D,, has %

desired result.

Now, we use these properties to prove security. Observe that all of the vertices in
V' \ Dgx are consistent. If |[Dgx| < aN, then since H is sequential, the prover must
have made (1 — a)N sequential queries. If |Dgx| > aN, then we use the fact that | Dgx|
contains a significant number of leaves so the prover will fail the challenge phase with
high probability. This relies on the fact that if a leaf in in Dg+, then it will hit a vertex
in S (an inconsistent vertex) on the path to the root. If this happens, then since H
is sequential, with high probability, the last inconsistent vertex on the path will not
be consistent with respect to the “correct values” of the previous vertices which were
not queried. Thus, this inconsistency will be discovered by the verifier. This implies
that since there are %;'S*' > 2", each challenge succeeds with probability < 1 — a.
Thus, the total failure probability is at least 1 — (1 — «a)". O

leaves, giving the

3 Coin-Flipping Protocol

We now focus on one application of time-lock puzzles, namely constructing a fair coin
flipping protocol between two parties. The problem we consider [BNOO] is that of
defining a coin flipping protocol two parties, Alice and Bob, satisfying:

(i) the value of the coin flip has negligible bias;

(i) even if one of the parties does not follow the protocol, the value of the coin flip is
still well-defined.

A protocol satisfying these properties improves on the standard commitment scheme-
based protocol for fair coin flipping in that in such a protocol, neither party can abort if
they realize the result of the coin flip will come out unfavorably. In [BN0O], a construc-
tion of this protocol using a commitment variant of the time-lock puzzle described in
[RSW96] is given. In Section 3.1, we describe our simplified variant of their construction
based on the work of [JM10].

For this construction, we use a version of a time-lock puzzle known as a timed
commitment. A timed commitment is a commitment from Alice to Bob for a string
S € {0,1}", such that Alice sends a commitment string C' to Bob, and then Alice
can prove later to Bob that she had indeed committed the string S before sending
C. Furthermore, Bob also has the option of a forced opening, where after spending at
least T sequential computational time, Bob is able to force open the commitment and
obtain S. In particular, this protocol should be secure against (i) Alice cheating and
providing a proof for a different string that was not her original commitment and (ii)
Bob cheating by forcing the commitment open in time less than 7. That is, both of
these attacks should succeed with negligible probability. Assuming the existence of a
timed commitment scheme, consider the following protocol:

e Alice chooses a uniformly random bit b4 and sends a timed commitment ¢, to
Bob.

e Bob chooses a uniformly random bit bg and sends it to Alice.

e Alice verifies that bp arrived quickly enough (before T' time has passed), and if
so, she reveals her commitment b4 to Bob.

e The players’ output is by @ bp.

The timed commitment is useful in that if Alice aborts after receiving bg, Bob can
force open her commitment to obtain b, and finish the protocol. Now, observe that
Bob cannot bias the output of the coin flip without forcing the commitment open
early, which succeeds with at most negligible probability. Similarly, Alice cannot bias
the output of the commitment without either (i) cheating in the opening step or (ii)
aborting before the opening the step, the latter of which can be averted by Bob’s forced
opening of the commitment.

3.1 A Timed Commitment Scheme

In addition to describing this protocol, [BNOO] also give a construction of a timed
commitment based off of the time-lock puzzle construction in [RSW96], which relies on
the assumption of exponentiation modulo a RSA modulus being inherently sequential.
However, this construction is somewhat complicated. We describe our similar, but
simpler, construction relying on the same assumption that is based on [JM10]. The
timed commitment scheme for a bit b that Alice knows proceeds as follows:

e First, Alice generates two large primes p and ¢ of equal bit-length. Next, Alice
computes the modulus N = pg and ¢(N) = (p — 1)(¢ — 1). Alice also draws a
function f from a pseudorandom function family mapping strings of |p| to {0, 1}.
Finally, Alice fixes a time parameter ¢ that is proportional to the minimum number
of operations Bob must take to force open her commitment.

e After the generation step, Alice chooses a random e such that f(2¢) = b. Let r be
the remainder of 2 modulo N. Set é = 2" + (¢(N) —r) + e. Alice’s commitment
is then the ordered tuple (N, f,t,¢é).

e To unlock the commitment, Alice simply tells Bob the factorization N = pq.
With this information, Bob can compute ¢(/N) and therefore efficiently compute

f2°) = f(29).

e If instead Bob wants to force open the commitment, he has the option to compute
2¢ in ©(é) rounds of repeated squaring, which takes time ©(t).

For the proof of correctness, note first that this commitment is binding because
f(2°) is well-defined, and this must be exactly the bit that Alice committed. To see that
Bob cannot break this scheme efficiently, we reduce the assumption of [RSW96] that
computing 22" modulo an RSA prime is inherently sequential. Bob is given (N, f,t,é).
Since e is effectively random (since f is indistinguishable from a random function),

10

Bob should only be able to deduce information about ¢(N) — r from é. However,
knowledge of ¢(N) — r would immediately break the assumption in [RSW96], since
2¢(N)=r — 92' " Thus, we have shown that this timed commitment scheme is secure
assuming the original time-lock puzzle of [RSW96] is secure.

Similar to the PoOSW constructions described earlier, the time for Bob to unlock the
commitment given that Alice tells him the correct factorization is fast, only O(logt).
If Alice aborts, Bob still takes a reasonable amount of time ©(t) to unlock Alice’s
commitment. This separation between unlock times in the non-abort and abort cases
is essential for constructing a time-lock puzzle.

3.2 Relationship to Constructions of [MMV13] and [CP18]

Timed commitments highlight one way in which the recent constructions of proofs of
sequential work do not cover all use cases of time-lock puzzles. An important aspect
of timed commitments is that they are binding, i.e., for a commitment S, Alice cannot
give a proof that her commitment is actually S # S. The same binding property
does not hold for proofs of sequential work—for these hash graph constructions, it is
possible to “cheat” on a small number of vertices and not have these be detected in the
verification step. This potential for cheating, however, allows the commitment holder
Alice to change her commitment after the fact. This motivates the question of asking
whether it is possible to have proofs of shared work where the proof is unique, or at
least it is difficult to find a second proof for the same puzzle.

4 Open Problems

4.1 Assumptions

One further exploration could be to see if the assumptions for PoSW and time-lock
puzzles can be relaxed. Currently the instantiation of PoOSW uses a random oracle and
our construction of a coin-flipping protocol using timed commitment schemes uses the
number theoretic assumption that the computation of 22" modulo an RSA modulus is
inherently sequential.

4.2 Sloth Function

The “sloth” function, as discussed in [CP18], is based on the assumption that com-
puting square roots in a field with p elements takes around log p longer than squaring.
This is currently the publicly verifiable function with the largest known gap between
computation and verification, and it is an open problem to find a PoSW with both
unique proofs and an exponential gap between proof generation and proof verification.
However, one of the downsides is that because one cannot sample an input together
with an output, the sloth function does not constitute a time-lock puzzle.

11

4.3 Unique Proofs

In order to make proofs of sequential proof applicable to coin-flipping protocols, it would
be useful to construct proofs of sequential work with unique proofs, as is posed as an
open problem in [CP18]. This would guarantee that not only does constructing the
proof require sequential time, but for every statement and time parameter, it should
be hard to come up with two valid proofs. This property could be useful in blockchain
design and also would be useful in providing another instantiation of the coin-flipping
protocol.

The barrier prohibiting the constructions in [MMV13] and [CP18] from achieving
unique proofs is that due to the recursive labeling protocol, labeling one (or a small
number) of vertices incorrectly will not be detected by the verifier, but will change the
label of the top vertex and thus the proof ¢ sent to the verifier. If the verifier could also
perform N sequential queries, then this problem could be rectified if the verifier also
computed ¢p and ensured the top label matched with the prover’s proof ¢. However,
we do not want to force the verifier to also query the random oracle N times.

One possible approach is for the verifier to have a “trapdoor” method of computing
the ¢ which does not require N sequential queries. This would require moving away
from the random oracle to some sort of structured hash family. Perhaps rather than
the prover using 0" as a seed label in ¢p, the verifier gives a specific binary string s to
the prover for which he knows the corresponding top label ¢ through a trapdoor. Such
trapdoor constructions might also be shortcuts to generating the solutions of time-lock
puzzles.

One potential family of hash functions that may be relevant are chameleon hash
functions [KR97]. These hash functions have a public key and private key. With the
public key, the hash functions can be evaluated and are collision-resistant. With the
private key, however, collisions can be found. One type of hash family that may be
relevant to constructing unique proofs is a hash family that is sequential given a public
key but not sequential given the private key. This could give the verifier the necessary
trapdoor to avoid having to do N sequential work.

12

References

[ABP18]

[BNOO]

[CLSY93]

[CP18§]

[EGST5]

[IM10]

[KR97]
[MMV13]

[RSWO6]

Joél Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Sustained space com-
plexity. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II,
pages 99-130, 2018.

Dan Boneh and Moni Naor. Timed commitments. In Advances in Cryptology
- CRYPTO 2000, 20th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 2000, Proceedings, pages 236—254,
2000.

Jin-yi Cai, Richard J. Lipton, Robert Sedgewick, and Andrew Chi-Chih
Yao. Towards uncheatable benchmarks. In Proceedings of the Eigth Annual
Structure in Complezity Theory Conference, San Diego, CA, USA, May 18-
21, 1993, pages 2-11, 1993.

Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel
A, Israel, April 29 - May 3, 2018 Proceedings, Part II, pages 451-467,
2018.

Paul Erdoes, Ronald L. Graham, and Endre Szemeredi. On sparse graphs
with dense long paths. Technical report, Stanford, CA, USA, 1975.

Yves Igor Jerschow and Martin Mauve. Offline submission with RSA time-
lock puzzles. In 10th IEEFE International Conference on Computer and Infor-
mation Technology, CIT 2010, Bradford, West Yorkshire, UK, June 29-July
1, 2010, pages 1058-1064, 2010.

Hugo Krawczyk and Tal Rabin. Chameleon hashing and signatures, 1997.

Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifiable
proofs of sequential work. In Innovations in Theoretical Computer Science,
ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages 373388, 2013.

R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-
release crypto. Technical report, Cambridge, MA, USA, 1996.

13

