
OpAwesome: The Good, the Bad, and the Fuzzy in
the Secure Database Landscape

Sophie Hilgard, Wilson Qin

May 29, 2018

1 Introduction to Secure Databases

1.1 Why do we need Secure Databases?

Cloud data storage and computation are increasingly important for both personal users
and corporations, driven by a few industry trends: the quantity of data increasing, the
cost of cloud storage falling, and users increasingly expecting to access their data from
anywhere. However, several high profile data breaches over the past few years have made
it apparent that storing data on a vulnerable cloud is no different than handing that
data directly to the adversary. At one extreme, users could securely encrypt the entirety
of the data they would like to store, but this prevents the cloud service provider from
doing any computation other than storing the data and shipping it back to the user - on
this front cryptography systems based on Fully Homomorphic Encryption (FHE) are still
currently performance prohibitive. Secure databases attempt to bridge the gap between
fully functional data storage and fully secure data storage. Current state of the art secure
databases claim to be within 5X latency of commercial plaintext databases on small
datasets with support for most query types [Fuller et al., 2015].

1.2 Design Space Elements for Secure Databases

Threat Model Assumptions Defining the security of protected databases depends
on the assumptions being made about which parties are and are not trusted and the
actions available to the adversary. In many models, including most of the analysis and
discussion that follows, we assume that the client and querier are the same party (the
data owner) and that the server is untrusted. This requires primarily protecting the data
at rest on the server. That is, we assume that the adversary cannot issue queries or see
the results returned from a query but can see all of the data in its current state on the
server at any point in time. We additionally assume that this adversary has access to
some outside resources, such as potential column names or approximate distributional
information, either from a stale version of the database or a related database obtained
elsewhere.

1



In an alternative threat model with a trusted server but untrusted query eavesdropper,
we instead attempt to limit the information that can be gained from data in motion. Even
stronger models assume that the querier can itself be compromised, allowing insertions or
modifications on the database (but typically not arbitrary select/project queries, as we
may often assume that queriers are limited to data for which they have specific keys, an
important topic in database protection which we will not discuss here).

The security of the database is then modeled in terms of leakage, the quantity or type of
information that can be extracted from the database by the adversary. Fuller et al. [2017]
describe the levels of database leakage as structure, identifiers, predicates, equalities, and
order in increasing order of severity. Structure of the database is generally assumed to
be known to the adversary, so structure here refers to the structure of individual entries,
which could be masked with padding if desired. Leakage of data object identifiers reveals
nothing else about the object itself but allows adversaries to recognize when an item
returned by a previous query is queried again. Predicate leakage allows adversaries to
additionally gain some information about some quality of the data object through the
structure or knowledge of a query clause that resulted in returning that object. Equality
and order leakage are the basis of most attacks in the secure database literature: they
allow adversaries to determine which data objects share the same plaintext value and the
ordering of those plaintext values, respectively. Eventually, leakage samples could lead to
the adversary learning the distribution of sensitive attributes.

Design Parameters and Tradeoffs The design decisions that make secure databases
different from standard database designs are related to tradeoffs between security and
some measure of performance.
Performance measures include:

• computation (on server and client)

• data movement (I/O’s across memory hierarchy, disk, and network)

• space (memory and persistent storage on server and client)

• query latency

The primary question being asked is: what is the query processing model? Which parts
of query processing should take place at the client and server respectively? Once this has
been determined, we must also ask what auxiliary structures (encryptions, precomputa-
tions, indices) are necessary to ensure performance while maintaining security.

Computation at the client is generally more secure and requires less cryptographic
resource use, as the client is trusted and could therefore use traditionally optimized query
processing techniques for operating over plaintext. Computation at the server is either as
secure (assuming a CPA-secure encryption scheme) or dramatically less secure and gen-
erally requires more computationally intensive techniques for cryptography requirements.
For example, secure range queries on encrypted data require full sequential scans instead
of metadata-informed range queries that can be done on plaintext; partially homomorphic

2



addition requires significantly more operations than regular plaintext addition. However,
if the time and space of the server is assumed to be cheaper than the computation and
space of the client, this can be a worthwhile tradeoff.

One example of a common query processing design decision concerns how much batch
processing to support - for instance, does the system answer search queries one-at-at-time
versus answering queries in batches with a shared scan approach to query processing. For
analytics database engines it can be perfectly appropriate to delay a single query, as long
as every batch of k queries runs together on one pass through the data, if it improves
overall system throughput. Thus, a user’s expectations can also shape what cryptographic
treatment of data is supportable.

2 Legacy Secure Database Systems

2.1 CryptDB

In [Popa et al., 2011], the authors design and implement CryptDB, the first widely-adopted
cryptographic database, built on top of the Postgres DBMS with the idea of maintaining
as much of the original SQL functionality as possible while providing minimum security
guarantees. The system works by using modern SQL engines as-is over encrypted values
which are mapped from plaintext values sent by the client through a CryptDB proxy
server and CryptDB UDFs. CryptDB is able to support a wide variety of selection and
projection operations, as well as minor computation and notably supports both updates
and joins, making it unique in this field.

However, CryptDB is far from offering full CPA security. In the most extreme case, if
the proxy server is compromised, then all data at that location could be exposed in the
clear, due to predicate evaluation happening at the proxy. In the more likely scenario of
a compromised SQL engine, security guarantees will depend on the type of encryption
used to secure a given field, as we will see below.

2.2 What CryptDB does well

In the interest of supporting traditional SQL operations over encrypted data, the CryptDB
system encrypts each column with several encryptions of increasing security, in what
they call “onions” [Popa et al., 2011]. Several of the encryption schemes provide CPA-
security against a compromised server and therefore have no leakage with respect to
equality or order. These are RND, a randomized cipher encryption using AES/Blowfish
with a random initialization vector (IV); Pallier for homomorphic addition; ElGamal
for homomorphic multiplication; DET, a deterministic AES/Blowfish encryption, when
applied to unique values; and SEARCH, a scheme based on [Song et al., 2000], when
applied to exact string matches.

CryptDB begins to encounter leakage concerns when it must rely on its less-secure
encryption schemes, DET for non-unique values, which will leak equality, SEARCH for
substring matching, which leaks substring equality (number of duplicate words), ADJ-

3



JOIN, which leaks equality, and OPE (order preserving encryption), which leaks equality
and order.

[Naveed et al., 2015] details the empirical weaknesses of the DET and OPE encryption
schemes in the CryptDB system through inference attacks on OpenEMR datasets. While
Naveed et al. [2015] make some valid points, which we investigate below in the limitations
of CryptDB, the authors of CryptDB argue in [Popa et al., 2015] that access to the
encryptions as used in the paper would never be available if the system were used correctly.

The main argument of Popa et al. [2015] concerns the action of tagging columns as
‘sensitive’, in which case a properly configured CryptDB system should refuse to use any
of the weaker encryption schemes on such sensitive attributes. In this case, the attacks
of [Naveed et al., 2015] would be avoided. The authors further argue that many of the
columns on which the inference attacks are performed do not actually exist in OpenEMR
or would not be queried in actual settings as they are in the attack paper.

Additionally, the attacks are heavily dependent on the quality of auxiliary datasets.
If such rich, well-matched datasets do not actually exist, CryptDB would perform much
better than in this example. While the likelihood of this attack model is difficult to codify,
it remains a challenge to solutions like CryptDB to take into account some measure of
the availability of such datasets.

2.3 Attacks against and Weaknesses of CryptDB

The attacks used against CryptDB in [Naveed et al., 2015] are attacks of a “general server
adversary” against data at rest on the server. While the authors detail four different
specific attacks, they all fall under the general category of Frequency Analysis, in which
the frequency of deterministically encrypted or order-preserving ciphertexts are compared
to either the frequency of known data demographics or the order of a known plaintext
message set. Below we describe the attacks and improvements that could be made to
CryptDB to increase security.

2.3.1 Attacks against CryptDB

The four attacks used against CryptDB in [Naveed et al., 2015] are as follows:

• Frequency analysis: this attack uses an auxiliary dataset with columns that are
expected to be similarly distributed to columns in the target dataset. By matching
the frequency of occurrences in the plaintext dataset to a deterministically encrypted
dataset, the ciphertexts can be matched to their plaintext counterparts. The success
of this attack depends on the correlation between the auxiliary and target dataset.

• `p-optimization: this attack is simply a more sophisticated version of the above
frequency analysis, in which histogram values can be matched with varying norm
distance metrics rather than simply on count.

• Sorting attack: the worst case of this attack on OPE-encrypted columns happens
when every possible value of the message space is sorted in an encrypted column.

4



This is notably a problem because a DBMS uses sorted intermediate results for
answering queries with range joins. This attack combined with knowledge of the
message space, reduces to an easy task of mapping each ciphertext to its plaintext
value.

• Cumulative attack: this attack seeks to be slightly more sophisticated than the
above, allowing for missing values by building an empirical cumulative density func-
tion of ciphertexts and selecting the plaintext values that minimize the difference
between this empirical CDF and an auxiliary plaintext column which is expected to
have a similar distribution.

The success of these attacks is entirely dependent on the ciphertexts leaking equality
or ordering. Below we address alternatives to the DET and OPE encryption schemes that
maintain all or some of the functionality while increasing security.

2.3.2 Alternatives for DET

With respect to deterministically encrypted columns, there is an easy fix, which the
CryptDB authors seem to rightly argue would have been used if any of the deterministi-
cally encrypted columns had been considered sensitive. Instead of using AES/Blowfish to
encrypt a given plaintext, they could instead use SEARCH, which still allows for exact
matches and is CPA-secure without indexing, but is more space-intensive.

SEARCH works by using the schemes based on pseudorandom functions and pseudo-
random generators developed in [Song et al., 2000]. The authors allow for exact matching
(with the possibility of some false positives) using roughly the following construction:

• For any “word” (here, a value of a column, assumed to be padded to some length n,
an encryption of the word itself Xi = Ek′′(Wi) is used as input to a pseudorandom
function fk′ : {0, 1}n → {0, 1}λ with some random key k′ to generate a new key ki
for each Wi.

• A pseudorandom generator is used to create a stream of values S1, , S`, each of length
n−m for m < n where ` is the number of values to be encrypted.

• These are used as inputs to a new pseudorandom function family keyed by the keys
generated above fki : {0, 1}n−m → {0, 1}m and then concatenated with the Si to
form Ti = 〈Si, fki(Si)〉 ∀i.

• The ciphertext is then computed as the XOR of this value, which will be indis-
tinguishable from random uniform due to the security of the PRG and PRF, and
the encryption Xi of the original Wi, leading to a provably CPA-secure ciphertext
Ci = Ti ⊕Xi.

To search for a value Wi, the client sends Xi = Ek′′(Wi) and ki = fk′(Xi). The server can
now do a sequential scan to find if there are any data points for which Ci⊕Xi = 〈s, fki(s)〉.

In reality, the Xi must be split into its first n − m and last m bits to allow for
decryption, but this construction provides the general intuition. We can see that there is

5



some probability ≈ `/2m of a false match, as with some probability, the psuedorandom
function evaluation for a different key k′i matches the pseudorandom function evaluation
for the true key ki. In the CryptDB attacks, access pattern attacks were not considered,
but we note that if it is a concern that the server knows where matches occur, this
parameter m can be made smaller, such that there are more false positives, again leading
to more client-side computation but greater security.

2.3.3 Alternatives for OPE

Traditional OPE Order-preserving encryption is more difficult to secure while main-
taining the properties that make it desirable. Some recent OPE constructions have created
schemes that are more robust to query-based attacks but seem unlikely to help in the case
of a compromised server. Modular OPE (here in conjunction with monotone minimal per-
fect hash functions, a function family which maps every value in a known message space
to its ordered index in that message space), studied in [Boldyreva et al., 2011], adds a pre-
determined random value to all order-preserving encryptions, making it more difficult for
an adversary who sees queries to determine the specific value or value window of a given
result set. However, this encryption scheme still suffers from the same inference attacks
as non-modular OPE with respect to distance windows (that is, inferring an estimate of
the distance between two values in a given result set) in a query setting and provides little
added protection against the type of CDF attacks seen in [Naveed et al., 2015] (one can
imagine simply rotating the ciphertext space until the frequencies find a good fit. While
this is certainly an added layer of complexity, it is not a convincing security measure for
privacy protection.)

Similarly, Popa et al. [2013] create a unique mutable OPE scheme based on balanced B-
trees, in which inherently unordered ciphertexts are stored in order of their corresponding
plaintexts in a B-tree and accessed through the encoding of their root-to-leaf paths. The
scheme must be mutable as rebalancing the B-tree requires changing a limited number of
these encodings on each insertion. The authors prove this to be the first OPE encryption
scheme that reveals no additional information beyond the ordering of the plaintexts,
however in the compromised server setting this again does not protect against frequency
or CDF attacks.

Approximate or Keyword-based OPE We note that the leakage of [Popa et al.,
2013] is the least that can be achieved with strict OPE and is still insecure in our attack
model of an untrusted server. This implies that methods must be used which either require
client-side computation or do not fit the traditional linear-time scan OPE construction.
Di Crescenzo and Ghosh [2015] develop an approach for secure range queries based on
storing for each value v in the message space the ‘upper-rank’, the number of items in
the message space less than or equal to v and the ‘lower-rank’, the number of items in
the message space strictly smaller than v. This is called the rank database and is used
to access corresponding values of a payload database. When initializing and querying
these databases, a random shift is additionally applied to the ranks, further obscuring
the data accesses. If these databases are suitably encoded, the frequency-based attacks

6



above are no longer possible. However, when using only a client-server protocol (no third
party computation) the server time complexity of this scheme is linear in the size of the
database, which is generally unacceptable.

Another approach is “bucketization”, which trades off some degree of client computa-
tion for added security. At the extreme of client computation, the server could ship the
entire securely encrypted column or database for a range query to the client and perform
the operation there with no leakage. On the other extreme, using OPEs that reveal order
allow all range filters to happen at the server but have high information leakage. Bucke-
tization index approaches allow for intermediate solutions in which a range query returns
some false positives to the server in return for added security.

In general, an index is created which partitions a new index column into some set of
M buckets corresponding to the values of a column. Then the column itself can remain
securely encrypted (e.g. by randomized AES), and range queries that would normally
operate over the column operate instead over the bucketed index. If the number of buckets
is less than the number of values in the message space, this will necessarily result in some
additional records being returned to the client. Hore et al. [2004] provide an algorithm
which achieves maximal entropy per balanced bucket while ensuring that the client only
processes at most k times more data than it would have in the ideal situation with as
many buckets (in which case the buckets would have items in strict order and any given
value would be contained in a single bucket). Their algorithm, controlled diffusion, begins
with this ideal-performance M -bucket partition and creates a new M -bucket partition
by probablistically moving values from one bucket to another to increase the entropy of
each bucket. However, it limits the number of buckets k that any one value can reside in
so that range queries including that value will never increase client workload by a factor
more than k. Empirically, the authors show that the extra work performed by the client
is often much less than k times the ideal workload, as some ranges will experience fewer
false positives than the worst case. (For example, requesting the full message space would
clearly result in no false positives.)

2.3.4 Other areas in which CryptDB could be improved

Steady State Onions As mentioned briefly above, CryptDB uses “onion” layers to
encrypt higher leakage encryptions with more secure encryptions. However, once a higher
level encryption is removed to allow for operations on DET or OPE, the column is left
in the less-secure state as its “steady state onion”. While any decryption of a sensitive
column to DET or OPE can be problematic if we assume a compromised server, if we
prefer to minimize the amount of time the server is in this state while still preventing
encryption “thrashing”, where we might re-encrypt a column only to have to decrypt it
soon after, CryptDB could use statistics on historical query distribution to intelligently
decide when re-encryption is worth the computational effort.

User responsibility In [Popa et al., 2015], the authors place a good deal of respon-
sibility on the users to properly tag sensitive columns. Either the authors of [Naveed
et al., 2015] explicitly ignore these instructions, or the program could do more to provide

7



leakage warnings based on potential query profiles. For example, it should be possible to
output a warning along the lines of “with the specified query and sensitivity profile, the
chosen encryption scheme is likely to reveal x to an adversary with access to y additional
information, would you like to proceed?”

More explicit warnings of this type are easier for a user to understand and could be
followed up with alternative solutions, for example: “Using a partitioned index instead
of order-preserving encryption reduces the risk of inference attacks by x and is expected
to increase client computation time by at most y. For full data privacy we recommend
performing order operations at the client.” Because timestamps are usually considered to
have high entropy and low sensitivity, timestamps could likely be recommended in many
scenarios to filter results to a smaller result set for client computation.

3 Optimizations in Legacy Databases

Aside from the leakage concerns detailed above, CryptDB also fails to support most
analytical queries and is not optimized to minimize space and computation costs. Authors
of the original CryptDB work have since explored extensions to the old approach, two of
which we address below.

3.1 Monomi

Monomi, developed in [Tu et al., 2013], uses the CryptDB system directly but acts as a
database designer and query optimizer, selecting the appropriate encryptions for each col-
umn based on a proposed query workload and space constraint. To allow for additional
queries to be answered on the server-side, Monomi also selects specific multi-attribute
quantities to precompute and store encrypted. For example, Pallier encryptions allow
only addition while ElGamal encryptions allow only multiplication, so if we expect the
query workload to involve adding two columns and multiplying by another, it may make
sense to do this computation in plaintext at the client once and store the computed values
encrypted on the server. In many cases, the encryption schemes prevent full computation
of a query at the server, and in these situations Monomi optimizes to do as much as pos-
sible at the server before shipping the results back to the client to finish the computation.

Given a dataset and a representative set of queries, Monomi proceeds in three steps
to choose the optimal database structure:

• For each query, Monomi determines what encryption scheme(s) for every column
(original or derived) would allow the query to be executed at the server.

• Monomi then uses a query execution planner to determine for each query and pos-
sible database structure (based on combinations of the encryption schemes deter-
mined above) how much computation can be done at the server and how much will
be pushed to the client.

8



• Monomi then uses a cost model to choose the encryption scheme that allows for
the lowest cost in terms of a combination of server computation, data transfer, and
client computation.

This process can also be extended using Integer Programming to select the best encryption
subject to additional constraints. In the paper, the authors limit this constraint to total
database space, but additional variables and constraints could be added to the problem
to restrict server computation, client computation, data movement, or leakage.

3.2 Arx

Arx extends CryptDB by directly addressing CryptDB’s prior issues related to joins over
DET and OPE, using custom encrypted indexes. While Arx’s primary storage engine is
still a DBMS (MongoDB) for directly storing encrypted base data, they introduce new
custom encrypted data structures for the purpose of selection (searching for pointers to
qualifying records in the underlying DBMS). In this way, Arx separates two discrete query
processing responsibilities: select operations run in the custom indexes, and the fetching
qualifying records happens in the DBMS.

Arx supports two custom tree index variants (Arx-Eq and Arx-Range). Arx-Range
aims for a history-independent data structure design and uses Garbled Circuits (GC) at
each node for tree traversal to avoid an interactive selection process. GCs are chained
together, so that a path from root node to leaf can be visited in a single request. Much
like a B+tree, the custom index guarantees that point queries (equality matches) take a
logarithmic number of node accesses. However, Arx-Range must destroy and recreate each
node after each visit, for security purposes (multiple fence keys are constants baked into
each GC). This strict protocol, when coupled with the history independence properties,
means that a value’s ciphertext cannot be distinguished solely by its position(s) in a data
structure, a dramatic improvement over OPE.

Meanwhile, Arx-Eq addresses the previous leakage problems of using deterministic
encryption schemes on non-unique attributes, by reducing encryption schemes of non-
unique values to the encryption of unique values (EQUnique). Each index specifies
that the client maintains a mapping table for creating indistinguishable ciphertexts,
via disambiguation of duplicated occurrences of an attribute value. The mapping ta-
ble assigns each duplicate a sequence number of its occurrence. Therefore, given two
different occurrences of duplicated values v, they must have sequence numbers m and
n, such that m 6= n; they no longer collide as duplicates in a new hash space H:
H(EQUnique(v),m) ≈ H(EQUnique(v), n).

The authors also note that Arx indexes can be extended with Segment-Tree like prop-
erties, where summary aggregate information over all child nodes (such as counts, sums,
etc) can be stored within each node as well. This is an example of precomputation being
used to accelerate aggregation queries instead of a lengthier traversal and summations
over Pallier ciphertexts. Since for any desired range, simply querying the covering set of
ancestor nodes is sufficient to collect an aggregate such as partial-sums.

9



4 State of the Art Custom Secure Databases

We recap problems with the legacy systems approach to designing secure databases, and
also dive into two notable examples on lines of cryptographic work that focus on leakage
reduction and custom secure data structure design.

Inherent Problems of Legacy Systems Many of the state of the art experimental
implementations of secure databases have moved away from building on top of legacy
systems [Fuller et al., 2017]. Legacy systems are inherently limited in their structure and
computation methodologies, leading to necessarily higher leakage than custom systems
built on secure multiparty computation techniques.

By relying on an underlying standard DBMS, legacy systems assume the DBMS ex-
poses no practical security weaknesses (usually when reasoning about an adversary with
server snapshot access). However, in practice this is hard to ensure, as systems design
aims to strike a tradeoff between Consistency, Availability and Partition-Tolerance (as
per Brewer’s popularized CAP theorem) Gilbert and Lynch [2002].

Even common database settings being switched on, could break many security as-
sumptions. For instance, maintaining write-ahead-logs (WAL) allows for determining the
order of transactions for the purpose of replay during database recovery - thus leaking
ordering of ciphertexts to the adversary who, worse, may already have a priori knowledge
of the access pattern (e.g. adversary knows when a in-order bulk insertion is happen-
ing). On the other hand, diagnostic features such as enabling query statistics allows for
database administrators to debug the data schema for underlying causes of slow queries.
Diagnostics can leak historic timing information to an adversary on the untrusted server,
as a common default is to store the diagnostic data in plaintext.

Grubbs et al. [2017] highlights additional practical vulnerabilities. We take special
note that it is accordingly hard to isolate an adversary with server snapshot access from
historical data pertaining to the workings of the DBMS itself. Otherwise practical con-
figurations of a DBMS could actually upgrade a snapshot adversary to a quasi-persistent
adversary by leaking the adversary a retroactive knowledge in the snapshot. Below we
discuss some unique custom solutions with provably less leakage than CryptDB and other
legacy systems.

Kamara-Moataz 2016 The system developed in [Kamara and Moataz, 2016] is unique
in that it does not build a cryptographic system on top of existing DBMS models. Rather,
the authors come up with a unique plan based on structural encryption, in which they
create several encrypted maps out of the original tables and then use structured opera-
tions over these maps to recover the elements corresponding to select, project, and cross
product operations. Information leakage is limited to access patterns, result set sizes, and
some information about attributes, preventing the attacks based on equality and ordering
detailed in our discussion of CryptDB. However, the system has not actually been imple-
mented, and the necessity of the maps created upon initialization prevents later updating
of the database.

10



Blind Seer The Blind Seer (BLoom filter INDex SEarch of Encrypted Results) system
developed in [Pappas et al., 2014] uses secure two-party computation based on Yao’s gar-
bled circuits and Naor-Pinkas oblivious transfer to traverse an index structure consisting
of encrypted keyword-based bloom filters. Each bloom filter at a node is hashed with
all keywords (for example “name:JEFF”) on which the client might filter for all of its
children. Thus, the bloom filter will return a positive result at any node which is the
ancestor of a leaf record which satisfies the Boolean query against which the bloom filters
are checked. The evaluation at each server-supplied index node is the product of a se-
cure function evaluation of a client-supplied circuit that represents an SQL-query as the
conjunction of individual Boolean keyword queries. Due to the security of the function
evaluation, no information is leaked except the eventual result, 1 or 0, and the resulting
tree traversal path. If the bloom filter returns a positive result at some node, the protocol
proceeds by checking every child of that node as well. If the bloom filter returns a negative
result, there are no matching results in the corresponding sub-tree.

Using this single index for the entire database, Blind Seer can evaluate a wide range of
queries including arbitrary Boolean queries, ranges, and negation queries (which are often
not supported by secure databases). However, insertion is not well-optimized, based on a
server-held array log that is occasionally flushed to the index, requiring a full rewrite of
the structure. Additionally, joins are not supported, as the index for the entire database
must be stored as a single structure.

5 Ideas for the Future of Secure Databases

Recent developments since CryptDB suggest a rich design space for custom index struc-
tures. Continued focus in this area has shown structures and access patterns that de-
rive their security from a growing diversity of cryptographic primitives spanning Garbled
Ciruits, Private Information Retrieval, Oblivious Transfer, and far more as seen briefly
above [Fuller et al., 2015].

Naturally, economics of computation and storage drive the tradeoffs of where query
processing gets done and where data is stored. We identify an opportunity for storing
encrypted base data on the untrusted cloud server as remote storage continues to get
cheaper, and notice a sweet spot for maintaining lightweight index structures on the
trusted client, if we allow for some disk or memory usage at the client side.

6 opAwesome and Future Work

We rely on the insight that in the distributed computing environment today, access pat-
terns over a single ciphertext that is the encryption of an entire dataset leak far less
information than similar access pattern over ciphertexts for every datum per attribute
for the same dataset. However, the main problem with encrypting large blocks of data is
twofold:

• Query processing steps could lose granularity of access - single value ciphertexts can

11



Figure 1: opAwesome is a LSM-Tree structure with remote files, which maintains a
lightweight index structure at the trusted client, and delegates encrypted base data storage
to the untrusted server.

be compared easily for equality, however a ciphertext of a file is far less useful for
comparison (but harder to distinguish for an adversary).

• Large encrypted data blocks need to be transferred between the untrusted parts of
the system and the trusted computing base. This can present a major I/O cost,
especially on the network.

To this end, we describe our preliminary work on opAwesome, a secure key-value
database which has a primary index that is a modification of a Log Structured Merge
(LSM) Tree. Our design seeks simplicity with guarantees of CPA security, by treating
entire files as ciphertexts. We trade off larger sizes of network communications, and trade
off space and computation between the trusted client and untrusted server.

6.1 Division of Labor: Trusted Client and Untrusted Server

opAwesome works across a trusted client and untrusted server. The client’s responsibility
is to buffer new write queries and maintain a file index which contains metadata about
files (such as file key ranges, and encryption instances used). The untrusted server is
tasked mainly with receiving and storing these immutable files created by the client.

6.1.1 Files

New file creation is the responsibility of the client. A file can be created by new writes,
or as the result of several old files being merged together (to consolidate repeated writes
to the same key). The contents within it are no longer mutable when it reaches the
untrusted server. The only time a file’s contents will be touched and re-written is if that
file later returns to the client as a participating file of a client-run merge operation, which
we discuss later.

12



The untrusted server is tasked with receiving and storing these immutable files created
by the client. At any point, the client could request a file back. To keep read accesses
(and ensuing size of server-client communications) bounded, we seek to parameterize the
responsibility of merge operations between the client and the server as a tuneable design
option.

Files are typically at least a multiple of disk-page size large to make the network
communication worthwhile. State of the art embedded key-value stores (non secure) keep
files between 2MB and 160MB by default. Effectively this means for small keys and values,
write and merge patterns must repeat themselves exactly (same keys, values, ordering,
and over long periods) before the ciphertext of an entire file would repeat. We note that
this would present a problem if a malicious user with use of the trusted client colludes
with the server adversary to control the client’s write buffer and file contents. On any
given file, CPA-security is guaranteed against a snapshot adversary, because any keys and
IVs are held by the client itself, as long as the client uses a strong deterministic encryption
scheme (which we make the default).

6.2 File Size Considerations

Because files are by default encrypted at the entire file level, the smallest unit of remote
server access is one file transfer over the network between server and client. Therefore,
tuning of file size is an important consideration because it also affects the granularity at
which reads, writes and merges can happen.

6.3 Log Structured Merge (LSM) across local-remote context

For the client file index, opAwesome leverages a modified Log Structured Merge (LSM)
Tree to create a division of labor on three crucial operation types O’Neil et al. [1996].
The three tasks that occur in the database are user reads and writes, and system merge
operations.

6.3.1 Read Queries

For reads, the client-side file index allows local select operations, producing a pruned list
of file pointers to retrieve from the remote server as a separate fetch operation.

The encrypted files, returned from the server to the client as the result of a fetch op-
eration of a read query, are then decrypted accordingly by the client for query evaluation,
before the final results are returned to the user.

6.3.2 Write Queries

For writes, the client-side has a writes buffer which is serialized, encrypted and committed
to the server as a file after the buffer fills. The file index, is updated accordingly to indicate
the existence of this new file on the server side.

13



We do not discuss delete queries as their own class of query, but in practice it is a
special case of a write, except that on a delete, there is no associated value to set a key
to.

6.3.3 System Merges

The third operation type are periodic merges triggered by the system as a background
process. The goal of the merge is for the system to keep the read amplification (ratio of to-
tal bytes scanned compared to relevant bytes) and network communication size bounded.
We note that without merges, total dataset size at the file server can balloon, because
a key can be the target of multiple writes as the associated value is written (including
deletes). Merges are triggered by the client, because the client has a full overview of the
file metadata from the local file index.

6.3.4 Client choice: different file, different encryption scheme

In our preliminary demo, we allow the client to specify CPA-secure deterministic encryp-
tion schemes, and setup various instances even across cipher types. As illustrated in 2, 3,
4, opAwesome supports storing different files under different encryption formats on the
untrusted server.

6.4 Progress

We plan to demonstrate that opAwesome can be used with any strong deterministic
encryption scheme. Furthermore we are investigating a process for opAwesome to tune its
data access patterns to maintain CPA-security across the presence of both unique keys and
non-unique keys. Currently opAwesome only requires lightweight indexing at the trusted
client, but we also are exploring support for helper data structures like Bloom Filters to
accelerate point queries on the untrusted server. One future direction is to delegate more
opAwesome merging operations to run securely in the background of the untrusted server
(where compute is much cheaper), however this requires more exploration.

While the preliminary design for opAwesome only supports a single server and single
client, we note that opAwesome has future flexibility to integrate with other distributed
cryptographic schemes.

14



Figure 2: For reads, the client-side file index allows local select operations, producing a
pruned list of file pointers to retrieve from the remote server as a separate fetch operation.
The encrypted files returned from the server are then decrypted accordingly on the client
for query evaluation, before the final results are returned to the user.

Figure 3: For writes, the client-side has a writes buffer to take initial write queries. After
the buffer is full, it is serialized, encrypted and committed to the server as a file. The file
index, is updated accordingly to indicate the existence of this new file on the server side.

15



Figure 4: Periodic merges help to bound number of files and space for both server and
client. Merges are opportune time for client to switch old file contents (Files 1-3,7,8) to
new files under new encryption schemes (Files 9, 10).

References

Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-preserving encryption
revisited: Improved security analysis and alternative solutions. In Annual Cryptology
Conference, pages 578–595. Springer, 2011.

Giovanni Di Crescenzo and Abhrajit Ghosh. Privacy-preserving range queries from key-
word queries. In IFIP Annual Conference on Data and Applications Security and Pri-
vacy, pages 35–50. Springer, 2015.

Benjamin Fuller, Darby Mitchell, Robert Cunningham, Uri Blumenthal, Patrick Cable,
Ariel Hamlin, Lauren Milechin, Mark Rabe, Nabil Schear, Richard Shay, et al. Security
and privacy assurance research (spar) pilot final report. Technical report, MIT Lincoln
Laboratory Lexington United States, 2015.

Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich, Emily Shen, Ariel Hamlin, Vijay
Gadepally, Richard Shay, John Darby Mitchell, and Robert K Cunningham. Sok:
Cryptographically protected database search. In Security and Privacy (SP), 2017 IEEE
Symposium on, pages 172–191. IEEE, 2017.

Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News, 33(2):
51–59, June 2002. ISSN 0163-5700. doi: 10.1145/564585.564601. URL
http://doi.acm.org/10.1145/564585.564601.

16



Paul Grubbs, Thomas Ristenpart, and Vitaly Shmatikov. Why your encrypted
database is not secure. In Proceedings of the 16th Workshop on Hot Top-
ics in Operating Systems, HotOS ’17, pages 162–168, New York, NY, USA,
2017. ACM. ISBN 978-1-4503-5068-6. doi: 10.1145/3102980.3103007. URL
http://doi.acm.org/10.1145/3102980.3103007.

Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A privacy-preserving index for range
queries. In Proceedings of the Thirtieth international conference on Very large data
bases-Volume 30, pages 720–731. VLDB Endowment, 2004.

Seny Kamara and Tarik Moataz. Sql on structurally-encrypted databases. IACR Cryp-
tology ePrint Archive, 2016:453, 2016.

Muhammad Naveed, Seny Kamara, and Charles V Wright. Inference attacks on property-
preserving encrypted databases. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 644–655. ACM, 2015.

Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. The log-
structured merge-tree (LSM-tree). Acta Informatica, 33(4):351–385, 1996. URL
http://dl.acm.org/citation.cfm?id=230823.230826.

Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Seung Geol
Choi, Wesley George, Angelos Keromytis, and Steve Bellovin. Blind seer: A scalable
private dbms. In Security and Privacy (SP), 2014 IEEE Symposium on, pages 359–374.
IEEE, 2014.

Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
Cryptdb: protecting confidentiality with encrypted query processing. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, pages 85–100.
ACM, 2011.

Raluca Ada Popa, Frank H Li, and Nickolai Zeldovich. An ideal-security protocol for
order-preserving encoding. In Security and Privacy (SP), 2013 IEEE Symposium on,
pages 463–477. IEEE, 2013.

Raluca Ada Popa, Nickolai Zeldovich, and Hari Balakrishnan. Guidelines for using the
cryptdb system securely. IACR Cryptology ePrint Archive, 2015:979, 2015.

Dawn Xiaoding Song, David Wagner, and Adrian Perrig. Practical techniques for searches
on encrypted data. In Security and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE
Symposium on, pages 44–55. IEEE, 2000.

Stephen Tu, M Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. Processing ana-
lytical queries over encrypted data. In Proceedings of the VLDB Endowment, volume 6,
pages 289–300. VLDB Endowment, 2013.

17


