A Secure Zero-Knowledge Two-Factor Authentication Protocol

Albert Chalom
Nathan Wolfe

achalom@college.harvard.edu
nwolfe@college.harvard.edu

Abstract

We present a two-factor authentication protocol for a password and
fuzzy password (where the original and current fuzzy password
might have some noise and therefore only need to be close rather
than match). Our protocol keeps the password and fuzzy password
confidential from the server with the server only storing a verifier
of the password and fuzzy password. Use cases of this protocol
could be that a user wants to authenticate him/herself to a server
with a password and fingerprint scan, but does not wish the server
to learn his/her password and fingerprint scan.

We provide an authentication protocol and then prove security
of our protocol. The protocol is based on generic two-party se-
cure computation, but we also provide a lightweight computation
method using Yao’s Garbled Circuits specifically for our protocol.
We end our paper by discussing what assumptions an optimal proto-
col must make to be secure, and show how our entropy assumptions
are close to optimal.

1 Background
1.1 Key Exchange

In 1976 Diffie and Hellman created the first protocol to allow two
users to create a secure channel on an untrusted network[4]. Prior
to this protocol, if two entities wished to create a secure channel,
they would have had to agree on a shared key earlier. This protocol,
now known as a Diffie-Hellman key exchange, allows two users
to agree on a key through an untrusted network, such that any
adversary cannot learn the key without exponential computational
power. This now forms the basis for many authentication protocols
that served as inspiration for our paper.

1.2 Password authenticated key exchange

In 2000, Boyko et al.[3] provided a PAKE (Password authenticated
key exchange) protocol that allows a two users to create a shared
key if they agree on a password, or a client and server to create a
shared key if the client provides a proper password. Their protocol
also protects against an adversary who monitors the communica-
tion network from being able to run an off-line dictionary attack to
discover the users password.

Importantly, they offered an extension to the protocol, called
PAK-X, where only one participant stores the password as plaintext,
and the other user stores a verifier, keeping the password hidden
from the server. That extension inspired our protocol.

1.3 Fuzzy password authentication
1.3.1 Fuzzy passwords

Fuzzy passwords are a generalization on passwords, where the au-
thenticator allows for the fuzzy password to be noisy. When a user
wants to authenticate him/herself they would provide a fuzzy pass-
word that just has to be close enough to the original fuzzy password.
Oftentimes Hamming distance will be used to measure closeness,

and a verifier will output success if the fuzzy password has a small
Hamming distance from the original (determining whether two n
length strings match in all but § locations). However, any definition
of closeness can be used.

Fuzzy passwords are useful for using biometric information as
a source of authentication. When a person repeatedly takes their
finger print or iris scan, the scans might not be identical, and the
fuzzy pass-string generated will have some noise. Therefore, an
authenticator would want to verify that two fingerprints or iris
scans belong to the same person, but allow for the fuzzy passwords
not to be complete matches.

1.3.2 Fuzzy Password Authenticated Key Exchange

Dupont et al.[5] provide a scheme for authenticated key exchange
provided that two fuzzy passwords are close enough. Their work
was the first instance of allowing these fuzzy passwords to be low
entropy to prevent an eavesdropping adversary from using an off-
line dictionary attack to learn the fuzzy password. However, this
scheme requires both parties to know the fuzzy password, and if
two fuzzy passwords are close enough it allows either party to learn
one bit of the other entity’s fuzzy password.

1.4 Motivation

Existing schemes exist allowing two-factor authentication, pass-
word authentication, and fuzzy password authentication. However,
fuzzy password authentication schemes require the server to store
the the fuzzy password directly. We wanted to create a scheme that
doesn’t require the server to store the fuzzy password in the plain.
Use cases for this might be a user who does not want the server
to know his/her biometric information. Even if the user trusts the
server, a user would want a scheme that keeps his/her biometric
information safe even if the server gets hacked. We therefore wish
to provide a two-factor authentication protocol for a password and
fuzzy password where neither the password nor fuzzy password is
stored on the server.

We do not focus on the key exchange aspect here, as we assume
the user and client can use any secure existing key exchange proto-
col or even password key exchange protocol and then perform this
authentication step and halt communication if authentication fails.

2 Overview

Section 3 will describe our assumptions, section 4 will present
our scheme, section 5 will prove correctness and security, and
section 6 will show possible implementations of the necessary
secure two-party computation. Section 7 is a discussion of our
password entropy requirements, compared to the optimal case. We
will then discuss future work that can be done to extend our work
further.

3 Assumptions

Our scheme requires a user to provide a normal (non-fuzzy) pass-
word with high entropy and to have a way of generating a fuzzy
password (likely a fingerprint scanner).

We assume that the client and server have established confiden-
tial and integral communication using a protocol such as TLS/SSL.
We also assume that the server has proven its identity by means
of a certificate. However, the client is not yet authenticated; the
server wants to determine their identity.

We assume that we have a pairwise independent hash function,
and access to two-party secure computation. We define two-party
secure computation as follows:[1]

Two-party secure computation

Let F be a two party function. We say a protocol is secure for
calculating F if there are parties 1 and 2 with inputs x; and x»
and outputs y; and y; respectively, such that for every efficient
adversary A there exists an efficient “ideal adversary” S such that
for every set of inputs by honest users the following distributions
are computationally indistinguishable

o The tuple (y1, y2) where A controls some adversarial parties
and the protocol is executed as above. We also allow the ith
party to abort the protocol, and denote this by y; = T for
jzi

e The tuple y1,y, that is created by an ideal adversary as
follows

1. We let S choose x; for all users controlled by the adver-
sary and define (y;,ys) = F(x1, x2).

2. For i =1,2 we allow S to choose to abort the protocol
at the ith stage. If the adversary aborts the remaining
users learn nothing, and if the adversary doesn’t abort
user i learns y]

3. Let k be the last stage that wasn’t aborted. For all honest
users i < k we set y; = y;, for all honest users > k we
set y; = T and we let all users the adversary controls
to set y; however they like.

We will provide some possible implementations of such two-
party computation in section 6.

Required Encryption/Decryption scheme

We also require that our Encryption/Decryption functions be CPA-
secure and our decryption function output ERROR if a user tries to
decrypt using the wrong key. This assumption of outputting error
isn’t new, but for concreteness, we provide a possible encryption
scheme, though many others can be used as well.

Let S,V be a secure MAC, and E, D be a encryption scheme. We
will now construct and encryption scheme E’, D’ that with high
probability will only decrypt if the correct key is used. We define
Ellcl,kz(m) = E1(m, Sg,(m)). Then we let m, 0 = Dj;(c). We define
Dllcl,kz(c) to output m if V(m, o) = 1 and ERROR otherwise.

We now claim that if an invalid key is used, this will output error
with high probability. To see this we will consider the following
two cases where k1 and k2 are incorrect, and show how this will
lead to an error.

Case 1: Incorrect k1. In this case, since an incorrect decryption
key is used, Dy(c) should decrypt to a string that is computation-
ally indistinguishable from uniform random. Then, if we break this

random string into m, o the probability that V(m, o) = 1 where
both m and ¢ are random is negligible.

Case 2: Incorrect k2. In this case, since an incorrect verification
key is used, the probability that Vi,(m, o) = 1 is negligible. This
follows from the fact that if a key is uniformly chosen from random,
the probability that V(m, o) = 1 is negligible.

4 Scheme

We will present a scheme under the assumption that we have secure
two-party computation, and in section 6 we will provide possible
implementations of secure two-party computation.

Our scheme requires a user to have a password and a way of
capturing biometric information. When creating an account, a
user would choose a password p and a capture their biometric
information, (often a fingerprint) fp. The user would then send
¢ = Egp)(fp) to the server where E is a secure encrypting function
and H is a hash function {0,1}* — {0, 1}". The server keeps c as a
verifier. The user must remember p, but doesn’t have to remember
fp.

Then when a user wants to authenticate itself it knows its pass-
word p and it can make a new (close) fingerprint scan fp’. Then
using secure two-party computation, the user can provide H(p)
and fp’ and the server can provide c. The computed function de-
termines whether fp’ is close to Dyy(,)(c) = fp without revealing
any additional information to the user or the server. The securely
computed function outputs 1 if fp and fp’ are close and 0 if they
are not close or the decryption with key H(p) gives ERROR.

5 Analysis

For our scheme to be useful, it must have the properties of a zero-
knowledge proof. That is, it must be complete, sound, and zero-
knowledge. We consider the client to be the prover and the server
to be the verifier.

5.1 Proof of completeness

Completeness means that if both parties are honest and the network
allows both the user and server to compute the function then the
server will always verify the user (assuming the right password
and two close enough fingerprints were provided).

To see this we note that when the honest user creates an account,
they provide the server with Efy(,,)(fp) and then the honest server
correctly stores this. Then when the user wishes to authenticate,
he/she supplies the key H(p) to the secure computation protocol.
Then by construction the two-party computation function will
output 1if fp’ is close to fp.

5.2 Proof of soundness

Soundness means that if a user trying to authenticate him/herself
provides an incorrect password or a fingerprint that is not close
enough to the original fingerprint then the probability that the
server will authenticate the user is negligible. More formally, fol-
lowing the two party secure definition provided above, we can
assume that the authenticating user is under adversarial control
and the server is honest. We only consider the case of having the
adversary control the user and assume that the server is honest
(if the server were malicious it could just arbitrarily authenticate
anyone).

We will now model our verification function as F(p, fp, c) where
the user provides the password p and fingerprint fp and the server
provides the original encrypted fingerprint c. In the two party
computation definition provided above, x1 = p|| fp and x2 = c. We
define F(p, fp,c) = (1, 1) iff fpis close to Dy ,(c) and F(p, fp, c) =
(0, 0) otherwise. We will now consider the following two cases of
the the user attempting to authenticate with an incorrect password
and then with an incorrect fuzzy password.

Case 1: Incorrect password

Let p be the password and p’ be the incorrect password the user
provided. Then, because H is a pairwise independent hash function,
Pr[H(p) = Hp")] = zi,, where n = |H(p)|. Except with negligible
probability, Dy (,)(c) will output ERROR as an incorrect key was
used for decryption. Then because our decryption fails, ERROR is
not close to fp so by construction F(p, fp,c) = (0,0)

Case 2: Not close enough fuzzy password

In this case, F correctly decrypts c. However, in this case fp and
fp’ are not close enough, and by construction of our function F if
fp and fp’ are not close enough F(p, fp,c) = (0,0).

In both these cases we showed that if the honest server provides
the correct input xy, the two party function F(p, fp,c) = (0,0).
We will now show that if we use a secure two-party computation
protocol for F that authentication would fail.

Following our protocol definition above, the adversarial user has
the option of halting the protocol (in which case that adversarial
user never gets authenticated), or setting y2 = F(x1, x2)[2]. Since
we showed in both cases above F(x1,x2) = (0,0) then except with
negligible probability the server will receive 0 or T, and the ad-
versarial user will be unable to authenticate itself with an invalid
password.

5.3 Zero knowledge

Zero knowledge implies that the server cannot learn anything about
fp, fp’, or H(p) and no malicious user can use the protocol to learn
p, H(p), fp or fp’. This follows from the definition provided earlier
of a secure two-party computation protocol where the only thing
each user learns is either the output of the function being computed
y; or that the protocol was aborted T.

We will show possible implementations of two-party protocols
that provide zero knowledge.

6 Possible 2-Party Computation
Implementations
6.1 Introduction to Yao’s Garbled Circuits (YGC)

Bellare et al.[2] set forth a formalization of garbling schemes. The
premise is that we have two parties, call them Party 1 and Party
2. Party 1 has a function f; Party 2 has an input x; they wish
to evaluate f(x). Bellare et al. demonstrated a garbling scheme
with privacy, obliviousness, and authenticity, guaranteeing that f(x)
is calculated correctly, such that neither party gains information
about the inputs f, x. However, parties 1 and 2 could select f or x
in a malicious way, respectively.

In our authentication protocol, we let Party 1 be the server and
Party 2 be the client. The server is not concerned about the client
choosing a malicious input x; the client merely provides a password

and fingerprint, and if these are wrong the only consequence is that
the authentication fails. However, the client should be concerned
about whether f is the right function. If f is constructed mali-
ciously, f(x) could reveal information about the client’s password
or fingerprint.

The usual garbling scheme used is called Yao’s Garbled Circuits.
Party 1 sends a “garbled” circuit F to Party 2. Party 2 obtains a
likewise-garbled version of its input, X, through oblivious transfer
with Party 1. Finally, Party 2 evaluates on F, X to obtain f(x). [7]

Now we focus our attention on how to guarantee that the garbled
circuit F computes a function that is not malicious.

6.2 General YGC for malicious adversaries

Lindell and Pinkas[6] present a YGC secure two-party computation
using the “cut-and-choose” technique. In this protocol, Party 1
provides A versions of the garbled circuit. Party 2 can then use
some of these replicas to check if the garbled function is correct.
By this method, the probability of cheating is exponentially small
in A

Unfortunately this method is not that efficient. To achieve a
cheating probability of 274, the number of circuits is multiplied by
A, and the number of oblivious transfers is multiplied by 1/2.

6.3 Lightweight YGC for this instance

We can optimize for our authentication scenario by making a secu-
rity concession.

6.3.1 Scheme

Party 2, the client, wants to authenticate; say their authenticat-
ing data is x. Say the server, Party 1, has f that determines the
authentication, with f(x) = 1 a successful login and f(x) = 0 a
failure.

Now let the server choose random z € {0,1}™. Define a new
function g:

{0 if f(x) =0
9(x) = .
if fix)=1

Now the server can let the client securely compute g(x); the
server will consider the client authenticated if they can determine
the secret z.

Let H; be a secure collision-resistant hash function. The server
sends the client Hi(z) as a commitment.

Now we use YGC; the server provides a single garbled circuit G
and lets the client evaluate with their garbled input X. The client
obtains z’ = g’(x) where g’ is the function actually encoded in G.
The client keeps the YGC output private.

The client checks if Hy(z’) = Hj(z). If so, the client responds
with z’, authenticating, otherwise, the client aborts.

6.3.2 Correctness

By construction, the client authenticates successfully if f(x) = 1
and both parties are honest.

This scheme is sound toward malicious clients; if f(x) = 0, the
client has no way of determining z. The client has H;(z), but since
Hj is a secure hash function, the client cannot determine z from
this efficiently.

6.3.3 Security

What security does the client have against a malicious server?
The garbled circuit G may actually encode any function g’ by the
server’s choice.

The client only has two possible responses: z’, or abort. The
client only responds z’ if Hi(z’) = Hj(z). Since Hj is collision-
resistant, the probability that z’ # z is negligible.

So, except with negligible probability, the client responds with
z or aborts. The server generated z originally, so that response
contains no new information. The only information to be gleaned
is in whether or not the client aborts.

Thus, with every authentication interaction, a malicious server
may learn one bit of information by observing whether the client
aborts. That is our security concession.

However, if the client is quick to cut ties with a server it suspects
is cheating, the amount of information the server learns will be
limited. If the client ever has to abort an authentication interaction,
it may conclude that the server is cheating. Thus, it makes no more
interactions with that server.

The malicious server thus may learn information only until the
first time the client aborts. For instance, if the server learns bits of
the client’s password one at a time, with each bit having probability
1/2 of 0 or 1, the average number of bits learned, including the
aborted step, will be 2; the probability of learning k bits or more is
217k For long enough passwords, this information given up may
not be an issue.

6.3.4 Performance

The upside of this security concession is that this computation
scheme only requires one exchange of a garbled circuit. Compare
this to the fully secure approach in Section 6.2, which uses A circuits
to geta 274 probability of cheating.

One possible downside of this scheme is since we use fuzzy
passwords, it is possible that the client just takes a bad scan of their
fingerprint, which results in the client aborting and cutting ties
with the server, when in reality the server was honest.

7 Entropy Discussion

If the server gets hacked, in order to prevent against a dictionary
attack we require that the user’s password is high entropy. This
assumption is nearly optimal; any system that wishes to be secure
against a dictionary attack, should the server be compromised,
would require a high entropy source. We can formalize this:

If a server wishes to authenticate a user, we can model this as
a function f(u,s) where u is some data the user provides (such
as a password, fingerprint, etc.) and s is some data the server
provides (such as a copy of the password, a hash of the password,
etc). Then f(u,s) = 1 authenticates the user, and f(u, s) = 0 rejects
the authentication attempt.

Theorem 7.1. If a server is compromised such that an adversary
learns f and s, and an authentication f(u*,s) = 1 exists, then the
adversary can perform an off-line dictionary attack to find u” such
that f(u’,s) = 1; i.e., an attack by guessing all possible values of u,
without using any network interactions.

Proof. An adversary given f and s can evaluate f(u, s) for all values
of u, without using the network. Then, since f(u*,s) = 1 exists,
if the adversary does this enough times, it will find a u’ such that

f(@’,s) = 1. If u* is a password from a low entropy distribution it
is likely that v’ = u*, but in any case this will allow the adversary
to authenticate as the user. O

7.1 Relevance to our scheme

One flaw with our scheme is that we require the user password
to be high entropy rather than the combined user input (i.e. the
password and fingerprint combined) to be high entropy to provide
protection should the server get hacked. This follows from the fact
that we encrypt the fingerprint data with a hash of the password,
so if an adversary with the server’s data discovers the hash of the
password they can learn the user’s fingerprint. In an ideal scheme,
the verification for the password and fingerprint would be separate
such that learning one of these two factors as well as the data stored
on the server, does not allow an adversary to learn the other.

However, while our scheme is not ideal, we do note that if we
assume the data on the server is kept confidential, then if an adver-
sary learns a user password from some other source (say a user uses
the same password for all their accounts) then this still does not
help the adversary learn the user’s fingerprint. This is because the
adversary does not have a copy of the encrypted fingerprint from
the server, and all authentication communication is done through
a secure channel. Thus, the adversary still cannot impersonate the
user through two-factor authentication.

8 Future Work

As mentioned before, one flaw with our scheme is that to protect
against a dictionary attack should the server be compromised, we
require that passwords are high entropy. However, in the ideal
case we would just require that either the password or the fuzzy
password are high entropy. Future work could provide an inde-
pendent verifier for both a password and fuzzy password without
storing the actual password and fuzzy password, or prove that this
is impossible.

Another flaw with our scheme is that two-party computation is
slow in practice and ensuring that it is zero-knowledge is particu-
larly slow. Future work can either improve generic performance of
a zero-knowledge two-party computation scheme, or find how our
scheme can specifically be optimized even if two-party computation
is still slow for the general case.

References

[1] BoazBarak. Multiparty secure computation I: Definition and Honest-But-Curious
to Malicious complier. CS127 Lecture Notes 2018
[2] Mihir Bellare, Viet Tung Hoang, Phillip Rogaway. Foundations of Garbled
Circuits. CCS 2012
[3] Victor Boyko, Philip MacKenzie, Sarvar Patel. Provably Secure Password-
Authenticated Key Exchange Using Diffie-Hellman. Eurocrypt 2000
4] Whitfield Diffie, Martin. E Hellman. New Directions in Cryptography. IEEE 1976
] Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin, Sophia
Yakoubov: Fuzzy Password-Authenticated Key Exchange. IACR Eurocrypt 2018
[6] Yehuda Lindell, Benny Pinkas. An Efficient Protocol for Secure Two-Party
Computation in the Presence of Malicious Adversaries. Journal Of Cryptology,
April 2015.
[7] Sophia Yakoubov. A Gentle Introduction to Yao’s Garbled Circuits. 2017

	Abstract
	1 Background
	1.1 Key Exchange
	1.2 Password authenticated key exchange
	1.3 Fuzzy password authentication
	1.4 Motivation

	2 Overview
	3 Assumptions
	4 Scheme
	5 Analysis
	5.1 Proof of completeness
	5.2 Proof of soundness
	5.3 Zero knowledge

	6 Possible 2-Party Computation Implementations
	6.1 Introduction to Yao's Garbled Circuits (YGC)
	6.2 General YGC for malicious adversaries
	6.3 Lightweight YGC for this instance

	7 Entropy Discussion
	7.1 Relevance to our scheme

	8 Future Work
	References

