
Fully Homomorphic Image Processing in the Cloud

William Fu, Raymond Lin, Daniel Inge
Harvard University

{wfu, rlin, dinge}@college.harvard.edu

May 2, 2018

1 Introduction

Fully homomorphic encryption [1], [2] has allowed devices to outsource computation to third parties
while preserving the secrecy of the data being computed on. Many images contain sensitive informa-
tion and are commonly sent to cloud services to encode images for different devices. We implement
image processing homomorphically that ensures secrecy of the image while also providing reason-
able overhead. The paper is organized as follows. First, we will present some previous related work.
Next, we will present the fully homomorphic encryption scheme we use. Then, we will introduce
our schemes for JPEG encoding and decoding, as well as schemes for bilinear and bicubic image
resizing. We then present some data and analysis of our homomorphic schemes. Furthermore, we
outline several issues with the homomorphic evaluation of proprietary algorithms, and how a third
party can gain information on the algorithm through noise, followed by some concluding remarks.
Source code is available at: https://github.com/wfus/Fully-Homomorphic-Image-Processing.

2 Related Work

Ever since fully homomorphic encryption [1], [2] was introduced, researchers have worked to prac-
tically apply it in a variety of applications. In recent years, such work has included homomorphic
biomedical analysis [3] and evaluation of encryption circuits [4], neural networks [5], and discrete
Fourier transforms [6].

Fully homomorphic encryption’s use to perform secure computations on sensitive medical, fi-
nancial, and other types of data is particularly important in the context of cloud computing, where
a party with sensitive information would like to outsource a computation to the cloud while still
retaining privacy. Fully homormophic computation has been used to calculate sensitive statis-
tics for biomedical analysis [3]. More complicated algorithms such as edit distance has also been
run homomorphically for use in calculating genetic distances and for the use in genomic sequence
analysis [7].

Unfortunately, most homomorphic computation models suffer from several issues. First, a
client that wants to outsource computation on sensitive data will usually not have much computa-
tion power themselves. However, the encryption step takes a nontrivial amount of computational
resources. As in the example of neural networks [5], a client can send a sensitive image through
neural network homomorphically to get a prediction. In order to outsource a prediction for an
image, the client will have to encrypt the entire uncompressed image and send through the cloud.
Furthermore, many neural networks take in a fixed sized image for prediction, or sample different

1

https://github.com/wfus/Fully-Homomorphic-Image-Processing

Raw
Image

Encrypted
Image

Size
1

Size
2

FHE Neural Net

FHE Neural Net

y1

y2

Homomorphically Evaluated

Image Resizing Potential Workflow

Figure 1: A potential application for image resizing. Many neural nets accept a statically sized
input. Resizing an image homomorphically would allow a cloud service to run several prediction
algorithms on the same image while ensuring that the user will only have to encrypt the image
once, since encryption is an expensive operation for end devices.

areas of the image. Therefore, we implement homomorphic image resizing and homomorphic im-
age decompression. Decompressing images homormorphically (for example from the JPEG) format
would allow clients to have to homomorphically encrypt significantly less data, since the client most
likely does not have abundant computational resources.

3 Homomorphic Encryption Scheme

In order to implement homomorphic encryption and evaluation, we use Microsoft’s SEAL library [8].
We will discuss briefly how numbers are encoded in SEAL, as well as the construction and properties
of the homomorphic encryption scheme SEAL uses.

3.1 Encoding

In SEAL, numbers are encoded as polynomials in the ring Rt = Zt/(x
n + 1) where t ∈ N is called

the plaintext modulus and n is a power of 2.
As we perform operations on real numbers rather than just integers in the course of our im-

plementations, we convert numbers to polynomials using the fractional encoding scheme in SEAL.
This involves choosing some base B, computing the representation of that number in that base,
and encoding that representation into a polynomial. To encode a number

y = sign(y)
(
. . .+ b3B

−3 + b2B
−2 + b1B

−1 + a0 + a1B + a2B
2 + . . .

)
we would use the polynomial

sign(y)
(
. . .− b3xn−3 − b2xn−2 − b1Bn−1 + a0 + a1x+ a2x

2 + . . .
)

Note that some numbers might not have a finite representation in a given base, and we have a
limited number of coefficients for in our polynomial. As such SEAL provides parameters ni and
nf that set the maximum number of coefficients to be used for the integer (ai coefficients) and
fractional (bi coefficients) parts of the representation, respectively.

2

3.2 Encryption

The homomorphic encryption scheme used in SEAL is due to Fan and Vercauteren [9] with slight
modification to the decryption, addition, and multiplication operations [8]. Plaintexts are polyno-
mials in Rt as defined in the above encoding section, and ciphertexts are arrays of polynomials in
Rq = Zq/(x

n + 1) for q ∈ N is called the ciphertext modulus and n is as defined earlier.
Let us define λ to be a security parameter, R2 = Z2/(x

n + 1), distribution χ defined based on
the discrete Gaussian, [·]q to be reduction of polynomial coefficients modulo q, b·e to be integer
rounding, b·c to be integer floor, and d·e to be integer ceiling. Key generation is defined as

KeyGen(λ) :s
R← R2, a

R← Rq, e
R← χ

(sk, pk)← (s, ([−(as+ e)]q, a))

Encryption and decryption are defined as

Encrypt(pk,m) :u
R← R2, e0, e1

R← χ(p0, p1)← pk

ct←
([⌊q

t

⌋
m+ p0u+ e0

]
q
, [p1u+ e1]q

)
Decrypt(sk, ct) :s← sk, (c0, . . . , ck)← ct

m←

 t
q

[
k∑

i=0

cis
i

]
q

t

Finally, homomorphic addition and multiplication are performed by doing

Add(ct0, ct1) :(c0, . . . , cj)← ct0, (d0, . . . , dk)← ct1

ct2 ← (c0 + d0, . . . , cmax(j,k) + dmax(j,k))

Multiply(ct0, ct1) :(c0, . . . , cj)← ct0, (d0, . . . , dk)← ct1

ct2 ←

[⌊ t
q

∑
r+s=0

crds

⌉]
q

, . . . ,

 t
q

∑
r+s=j+k

crds

q

We will now briefly state a few basic properties of the encryption parameters and evaluation op-

erations. First off, the noise budget cost of addition or subtraction operations is very low compared
to that of a multiplication operation. Increasing the ciphertext modulus q increases the initial noise
budge of a freshly encrypted ciphertext as well as decreases the security. Increasing the power of
the polynomial modulus n increases security while decreasing speed. In addition, increasing the
plaintext modulus t decreases the noise budget and increases the cost of multiplicative operations,
while it allows for computations on larger numbers or with more precision.

As multiplication increases the size of the ciphertext by increasing the number of polynomials in
the ciphertext array, such operations result in higher computation time needed for further operations
and high consumption of the noise budget. To combat this, the FV scheme also includes an
operation called relinearization that reduces the ciphertext size. However, as the multiplicative
depth of the circuits we use are not particularly high, and relinearization itself has a computation
cost (as well as a noise budget cost comparable to that of addition or subtraction), we do not make
use of it in our implementation.

3

4 Homomorphic Image Processing

4.1 Image Resizing

When we resize an image, we must have a way of defining each of the pixels in the new image
based on the pixels of the old image. A common way of doing this is using the pixels in the original
image that would be around a pixel in the new image to perform some sort of interpolation. This
is illustrated in Figure 2.

Figure 2: Finding nearby pixels in the original image for a pixel in the new image. The red lines
are the pixels of the original image, the black lines are the pixels of the new image, and the pixels
in the original picture that are dotted are the 2× 2 square of pixels in the old image that would be
“nearby” to the pixel in the upper left corner of the resized image.

We implement two types of interpolation commonly used for image rescaling: bilinear and
bicubic interpolation.

Bilinear interpolation involves performing linear interpolation in two dimensions. Linear inter-
polation uses a linear approximation to guess the for the value of a function at a point between
points with known function value. The formula for linearly interpolating the value of function f at
x between x0 and x1, if t = x−x0

x1−x0
, is

f(x) =
(
1 t

)(1 0
−1 1

)(
f(x0)
f(x1)

)
(1)

To extend to bilinear interpolation, we first interpolate values in one dimension, and then in the
other, as illustrated Figure 3.

Figure 3: Bilinear interpolation. The green and yellow points are points where we know the value
of the function, and the black point is the one which we wish to find, and the heights of the points
above the plane represent the function value (image obtained from [10]).

4

Each linear interpolation requires two points, so we will need the 2× 2 square of pixels around
the center of the new pixel to perform our interpolation.

Bicubic interpolation, on the other hand, performs cubic interpolation in two dimensions. Linear
interpolation uses a cubic approximation to guess the for the value of a function at a point between
points with known function value. The formula for interpolating the value of function f at x
between x0 and x1, if t = x−x0

x1−x0
, x−1 = 2x0 − x1 − x0, x2 = 2x1 − x0 is

f(x) =
1

2

(
1 t t2 t3

)
0 2 0 0
−1 0 1 0
2 −5 4 −1
−1 3 −3 1

f(x−1)
f(x0)
f(x1)
f(x2)

 (2)

To do bicubic interpolation, we first interpolate values in one dimension, and then in the other, as
illustrated in Figure 4.

Figure 4: Bicubic interpolation. The red, yellow, green and blue points are points where we know
the value of the function, the black point is the one which we wish to find, and the heights of the
points above the plane represent the function value (image obtained from [10]).

Since each cubic interpolation requires four points, we will need the 4×4 square of pixels around
the center of the new pixel to perform our interpolation.

Since bilinear and bicubic interpolation are built up directly from linear and cubic interpolation,
respectively, our homomorphic implementation simply involved writing functions to homomorphi-
cally evaluate those formulas.

4.2 Image Compression

We implement JPEG encoding, which is usually done by performing a YCbCr color transform, a
discrete cosine transform (DCT), quantization, and lossless entropy encoding on each 8 × 8 block
in the original image. We will briefly describe each of these steps here.

The Y’CbCr color transform involves taking our representation of color for each pixel from
the standard RGB space to the Y’CbCr space, where Y’ is a luma value and Cb, Cr are chroma
values. We move to this color space since human visual perception is more sensitive to brightness
than to color, so this representation is more compressible than is RGB color specification. The
transformation between the color spaces is given byY ′Cb

Cr

 =

 0.299 0.587 0.114
−0.168736 −0.331264 0.5

0.5 −0.418688 −0.081312

RG
B

5

Raw
Image

Color
Transform

(RGB-YUV)
DCT Quantization

Entropy
Encoding

JPEG
Headers

Homomorphically Evaluated

JPEG Standard Image Compression

Figure 5: The workflow for JPEG compression using our homomorphic scheme.

The DCT is a frequency domain representation of the image. If A is a 8 × 8 block for one
channel of the color space and B is the resultant DCT matrix, we have that if α(x) is 1√

2
if x = 0

and 1 otherwise,

Buv =
1

4
α(u)α(v)

7∑
x=0

7∑
y=0

Axy cos

(
2x+ 1

16
πu

)
cos

(
2y + 1

16
πv

)
The quantization process is where the lossy part of JPEG compression occurs. Since DCT coef-

ficients for high frequencies are often small values, and the disposal of such frequencies would lead
to little perceptible difference, we divide the DCT coefficients by elements of a quantization matrix
Q and round the result. If C is the resultant matrix after quantization of B using quantization
matrix Q, we have that

Cij =

⌊
Bij

Qij

⌉
Finally, the lossless entropy encoding involves “zig-zagging” through the quantized DCT coeffi-

cient matrix and performing run length encoding on that sequence, followed by Huffman encoding
on the result of that.

It goes against CPA security to implement a reasonable entropy encoding and send it back to
the client with less data (it would be possible to do the encoding, but the server would have to
send back padded zeros anyway with the same size). As the entropy encoding takes less time than
the color transform, DCT, and quantization steps, we implement homomorphic evaluation for all
of the steps except for the entropy encoding, which the client performs after receiving the result
from the other steps from the server.

4.3 Image Decompression

We implemented simple run length decoding, since most lossy image formats use run length encod-
ing after a DCT as the main compression technique. We tested with simple run length decoding
(without the Huffman coding using in the JPEG file format) consisting of pairs (ai, bi) where the
pair corresponds with ai being repeated bi times. An example sequence is

[(A, 8), (B, 3), (C, 5)] 7→ [AAAAAAAABBBCCCCC]

Since the H.264 and MPEG video encoding standard uses run length encodings that encode
lengths of 16 (4× 4 blocks), 64 (8× 8 blocks), and 256 (16× 16 blocks)and JPEG uses run length
encodings to encode lengths of 64 (8 × 8 blocks), we implemented our homomorphic run length
decoding for output lengths of 16 and 64.

6

There are methods of compiling a function into boolean circuits [11] to take advantage of con-
ditionals. However, converting the run length decoding into a boolean circuit would not allow
the resulting image to be used in a homomorphic neural network, so we investigated ways to
approximate run length decoding without converting into a boolean circuit. Unfortunately, the ho-
momorphic encryption scheme does not allow for conditional expressions or division by ciphertexts.
Therefore, we use the following method of approximating the run length encoding. Consider an
example with a fixed output length of 16 as in the case for video encodings.

[(20, 8), (30, 3), (15, 5)] 7→ [20, 20, 20, 20, 20, 20, 20, 20, 30, 30, 30, 15, 15, 15, 15, 15]

Since the output array is a fixed length, we can image that is it a continuous function f with
domain from 0 to 16, and split the function apart into f1, f2, f3 corresponding to each pair, which
is depicted as follows.

f(x) =

0 x < 0

20 0 < x < 8

30 8 < x < 11

15 11 < x < 16

0 x > 16

f1(x) =

0 x < 0

20 0 < x < 8

0 x > 8

f2(x) =

0 x < 8

30 8 < x < 11

0 x > 11

f3(x) =

0 x < 0

20 11 < x < 16

0 x > 16

However, it is difficult to recreate these step functions without using conditionals. It is also
difficult to use a sigmoid type function to approximate these step functions, because sigmoid involves
ciphertext division. We approximated the step functions using the Fourier series, since all of
the coefficients do not require ciphertext division and since the sine and cosine functions can be
Taylor expanded to use only ciphertext multiplication. However, since we have to take the Taylor
expansion of sine and cosine, we have to try to minimize the domain of the inputs into sine and
cosine. Therefore, we approximate using the Fourier series with a periodicity of 64 and our step
functions. The Fourier series for this example is explicitly plotted in Figure 6.

To evaluate our actual output array and the sixteen decoded values, we will sum up the Fourier
series of f1, f2, and f3 to find f , which is shown in Figure 6. Then, our output array will just be
equal to the function at 0, . . . , 15, and the decoded sequence will be

DecodedSequence = [f(0), . . . , f(15)]

Note that it is possible to do run length decoding homomorphically because the Fourier series
of the step function defined as 1 on (−b, b) and 0 elsewhere periodic from 0 to 64 is just

H(b, o, x) =
b

64
+

deg∑
k=0

2

kπ
sin

(
kbπ

64

)
cos

(
k(x− o)π

64

)

7

Then, given a run length encoding given by [(a1, b1), . . . , (at, bt)], the series representation of our
step functions will be shifted versions of H. Then, we will have

f(x) = H1(x) + · · ·+Ht(x) Hi(x) = ai ·H

(
bi
2

+ δ − 1

2
,
bi
2

+

i−1∑
k=1

bk, x

)

where δ is a parameter that affects the width of each step of our approximated step function.

Figure 6: The separate Fourier series for the the functions f1, f2, f3 using our example
[(20, 8), (30, 3), (15, 5)]. The Fourier series is centered at 0 with a period of 64, approximated
to the 16th term. Then, the series is shifted on the x axis to get the peaks to the correct position.
The sum f = f1 + f2 + f3 is plotted on the right and is compared to the original step functions it
approximates.

We use the Taylor expansion of sin and cos to the 10th order term to get a larger domain to work
with, since it is impossible to take a number modulo 2π homomorphically. Since all of these steps
use the ciphertexts ai, bi in the numerator and using only addition and multiplication, it works
homomorphically.

We note when applied to the JPEG decoding process, the noise resulting from our approximated
step functions should not prove to be a significant problem. As JPEG is a lossy compression scheme,
we see that the noise, when not excessive, should not have a significant impact on the quality of
the resultant image.

5 Evaluation

5.1 Timing

For benchmarking purposes, we ran all the algorithms on a computer with a 12 core Intel i7-8700K
with a clock rate of 3.70 GHz with 16 GB of DDR4 RAM. As n the power of the polynomial
modulus has the most significant impact of the speed [8], we found the average runtime of the
encryption and decryption operations in the homomorphic encryption scheme as well as the most
expensive operations we implemented for image resizing and compression as a function of n. This
averaging was done over multiple runs of each of the functions, as well as variations in plaintext
modulus. The resultant timings for the various operations can be found in Figure 7.

8

n = 2048 n = 4096 n = 8192 n = 16384

Encryption 0.851 1.782 3.978 11.223

Decryption 0.079 0.268 1.003 4.233

Linear Interpolation 3.057 10.399 39.418 170.172

Cubic Interpolation 9.078 31.664 122.357 526.084

DCT 55.701 199.171 762.647 3093.471

Figure 7: The average runtime in milliseconds for encryption and decryption in the homomorphic
scheme, as well as our various homomorphically evaluated functions, as a function of n, the power
of the polynomial modulus.

5.2 Image Resizing

Varying encryption parameters had similar effects on both bilinear and bicubic resizing. Since
bicubic resizing requires greater multiplicative depth, and the images produced with bilinear in-
terpolation were quite similar to the ones from bicubic inteprolation, we will show the results we
obtained during benchmarking for bicubic resizing. We resized a 48 × 48 image to a destination
size of 17× 17. Some results while varying the plaintext modulus t is shown in Figure 8.

t=11 t=1009 t=100003

Figure 8: Bicubic image resizing on a picture of Professor Boaz Barak to a 17 × 17 image with
polynomial modulus x4096 + 1 and plaintext modulus t.

Since we are working in a modular system, it is possible for operations to get corrupted due
to overflow when numbers exceed the modulus size. We can see that setting a smaller modulus
size of t = 11 produces visible overflowed pixels. However, using too large of a plaintext modulus
space decreases the amount of operations we can do, as this results in a decrease in the initial noise
budget of a ciphertext, as well an increase noise cost of performing multiplicative operations on
ciphertexts, thereby resulting in completely indecipherable ciphertexts. The result of such excess
of the noise budget can be seen in the black image resulting with t = 100003.

5.3 Image Compression

We observed similar effects with overflow as in the previous section about image resizing. However,
in this case, we can see that each overflow will only have a corrupting effect on the localized 8× 8
where it is located. We can see the corrupted high frequencies in Figure 9. Note that the high
frequency components of the DCT do not usually overflow, since we can see the outline of Professor
Barak’s face in the t = 11 case even as all of the chroma elements have been corrupted.

9

t = 11 t = 31 t = 101 t = 307 t = 1009

Figure 9: JPEG encoding on a picture of Professor Boaz Barak. All of the pictures were computed
with polynomial modulus x2048 + 1 and plaintext modulus t.

5.4 Image Decompression

When running the image decompression algorithm, several parameters needed to be tuned for
correctness. Since we use a Fourier series to approximate the step functions, the approximation
must go from 0 to 1 continuously. Therefore, using the Fourier series will cause values near the
boundaries of the run length segments to bleed over, generating a smoothing effect, which becomes
more pronounced as less Fourier series terms are used. Some resulting images with different numbers
of terms in our Fourier series are presented in Figure 10.

Original Image 8 Terms 16 Terms 32 Terms 48 Terms 64 Terms

Figure 10: The effect of our image decompression approximation given different amounts of terms
used in the Fourier series expansion. We used the decompression assuming the run length encoding
was used for RGB values, which causes the smoothing effect. Normally, the run length encoding in
actual the actual JPEG and video formats are done after DCT and in the YUV space.

We observe that as we increase the number of terms, the Fourier approximation gets better
and better, and hence the amount of blending that occurs decreases. Once we get to 64 terms, the
resultant picture is already extremely close to the original.

6 Functional Privacy

Although homomorphic encryption schemes give some security guarantees for ciphertexts, they do
not necessarily provide obfuscation of the function performed on the server. For instance, with
careful choice of initial noise budget in a ciphertext submitted for computation on a proprietary
neural network, a client might be able to exfiltrate information on the number of layers in the
neural network based on noise corruption in the result obtained from the server, since multiplicative
operations take a heavy toll on noise budget.

Given that some of our work’s primary applications lie in application of homomorphic image
processing tools for server-side computation on client data, we will briefly mention some recently
proposed resolutions to this problem. Gentry [1] suggests an approach, where when we receive
an input ciphertext, we add it to a ciphertext with value 0, and noise significantly larger (in
fact, super-polynomially larger) than the input ciphertext, to the input. This “noise flooding”

10

of the input ciphertext effectively destroys the noise information originally present in the input
ciphertext. Ducas and Stehle [12] suggest another approach to this issue that does not have the
noise tolerance requirements of the Gentry scheme. Their scheme, which they call “soak-spin-
repeat”, essentially involves repeated re-encryption with bootstrapping with injections of noise in
between re-encryptions in a way similar to the Gentry scheme, except with much smaller noise than
is required in that scheme.

7 Conclusion

In this report we constructed and benchmarked image resizing, encoding, and decoding using a fully
homomorphic scheme. We implemented these using Microsoft’s SEAL library assuming a client
lacking computational resources wishes to outsource their function to a cloud server. We showed
that homomorphic image resizing can feasibly be done on standard size images, even with the limited
resources of a standard desktop computer. Furthermore, we have implemented a homomorphic
run length decoding algorithm that can be used to implement JPEG and other image decoding
algorithms. Currently, in many implementations of neural nets or biometric applications, raw
images are encrypted and sent to the server, which consumes a lot of computational power on
the client side. Being able to send a compressed image and have it be rescaled and decompressed
homomorphically on the server side will significantly decrease the computing power needed on
the client side to utilize fully homomorphic encryption schemes, allowing weaker edge devices to
securely outsource computation for sensitive data.

8 Acknowledgements

This project in homomorphic encryption was done for CS227 taught by Professor Boaz Barak
at Harvard University. We would like to thank him for his lectures and notes (https://www.
intensecrypto.org/) for the course! Also, we would like to thank Chi-Ning Chou and Yueqi
Sheng for their support in the class.

11

https://www.intensecrypto.org/
https://www.intensecrypto.org/

References

[1] C. Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In STOC, 2009.

[2] C. Gentry, S. Halevi, and N.P. Smart. Fully Homomorphic Encryption with Polylog Overhead.
In Advances in Cryptology - EUROCRYPT, 2012.

[3] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing. Manual for
Using Homomorphic Encryption for Bioinformatics. In Proceedings of the IEEE, 2017.

[4] C. Gentry, S. Halevi, and N.P. Smart. Homomorphic Evaluation of the AES Circuit. In Advances
in Cryptology CRYPTO, 2012.

[5] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing. CryptoNets:
Applying Neural Networks to Encrypted Data with High Throughput and Accuracy. In Proceed-
ings of the 33rd International Conference on International Conference on Machine Learning,
2016.

[6] A. Costache, N.P. Smart, and S. Vivek. Faster Homomorphic Evaluation of Discrete Fourier
Transforms. In International Conference on Financial Cryptography and Data Security, 2017.

[7] J. Cheon, M. Kim, and K. Lauter. Homomorphic Computation of Edit Distance. In International
Conference on Financial Cryptography and Data Security, 2015.

[8] H. Chen, K. Han, Z. Huang, A. Jalali, and K. Laine. Simple Encrypted Arithmetic Library
v2.3.0. 2017.

[9] J. Fan and F. Vercauteren. Somewhat Practical Fully Homomorphic Encryption. In IACR
Cryptology ePrint Archive, 2012.

[10] Cmglee. Comparison of 1D and 2D interpolation. 2016. Available: https://commons.

wikimedia.org/wiki/FileComparison_of_1D_and_2D_interpolation.svg

[11] N. Buscher and S. Katzenbeisser. Compilation for Secure Multi-party Computation. Springer
International Publishing, 2017.

[12] L. Ducas and D. Stehle. Sanitization of FHE Ciphertexts. In Advances in Cryptology - EU-
ROCRYPT, 2016.

12

https://commons.wikimedia.org/wiki/FileComparison_of_1D_and_2D_interpolation.svg
https://commons.wikimedia.org/wiki/FileComparison_of_1D_and_2D_interpolation.svg

	Introduction
	Related Work
	Homomorphic Encryption Scheme
	Encoding
	Encryption

	Homomorphic Image Processing
	Image Resizing
	Image Compression
	Image Decompression

	Evaluation
	Timing
	Image Resizing
	Image Compression
	Image Decompression

	Functional Privacy
	Conclusion
	Acknowledgements

