
DeCERT: A Decentralized Certificate Authority
http://decert.io

Leo Hentschker (leohentschker@college.harvard.edu)

May 29, 2018

Abstract

DeCert is a new certificate authority protocol seeking to combine advancements in decentral-
ization and public key infrastructure. By building on the work of Lets Encrypt’s open source
certificate authority Boulder[1], DeCert is able to quickly and securely issue free TLS and SSL
certificates. Furthermore, in recording all issued certificates on the Ethereum blockchain,
DeCert takes a markedly different approach to the ”trust problem” inherit in public key in-
frastructure. Rather than blindly trusting the certificates introduced by DeCert, users of the
network engage in a token-based voting scheme to decide which certificates are trustworthy
and which aren’t. As any network participant can see all the certificates and votes on the
network, DeCert is the first certificate authority to allow individual Internet users to make
informed decisions on whom to trust. Furthermore, as the network’s voting mechanism runs
on the certificate level, DeCert presents the first scalable method of efficiently deprecating
compromised certificates.

1 Introduction

There have been no fundamental changes to public key infrastructure (PKI) for decades.
Since the introduction of the World Wide Web, Internet users and certificate authorities
have been authenticating themselves to each other in essentially the same way. Trusted
third parties called certificate authorities (CAs) issue encrypted certificates to website owners
that allow them to prove their identities. Then, Internet users encrypt packets using these
certificates, ensuring that only the designated website owners can read them [2]. While the
ciphers being used to encrypt this communication become more advanced every year, this
foundational requirement for website owners and Internet users to blindly trust CAs has not
changed.

Unfortunately, this approach to PKI is seriously flawed. This is evidenced by the fact
that in just the last few years

1. Symantec mis-issued more than 30,000 certificates [3]

2. Let’s Encrypt issued over 15k certificates to phishing websites masquerading as PayPal
[3]

1

http://decert.io


3. An attack on Comodo allowed a hacker to gain access to a certificate for Google [3]

The core problem with current approaches to PKI is that in comparison to CAs, Internet
users and website owners are forced to take a passive role. Without the ability to broadcast
to the world when individual certificates have been compromised or check to see what cer-
tificates are being issued, Internet users and website owners are unable to prevent identity
and data theft after breaches have occurred.

Fortunately, these problems can be solved by leveraging decentralized technologies. By
placing all participants on one decentralized network, DeCert maintains a constantly up-
dating record of valid TLS and SSL certificates. By merging this public record with a
token-based voting scheme, DeCert introduces a new mechanism of deprecating certificates:
consensus. Then, when faced with a new certificate, Internet users can query DeCert to
determine whether or not the network thinks the certificate is valid.

DeCert is made up of:

1. Smart contracts - written in Solidity for the Ethereum network

2. Custom CA - custom certificate authority written in Golang

3. Decentralized application - web client to interact with DeCert on the blockchain

4. Miscellaneous webservers - to handle testing, deployment and maintenance of the
system

All together, these make up a functioning, publicly available, alpha version of DeCert.

2 Certificate Authorities

TLS and SSL certificates are, literally, the secrets behind secure internet traffic. By encrypt-
ing packets with a private key that only the website knows, these certificates allow website
owners to prove to the world that they do in fact own their domains. While incredibly
helpful, the need for these certificates introduces a massive problem. How can we effectively
distribute certificates at scale without either issuing certificates to the wrong people or letting
the keys behind these certificates become compromised?

Currently, this problem is inadequately solved by private companies. Internet browsers
like Google Chrome and FireFox trust organizations like Comodo, Qualys, Symantec, Dig-
iCert and Let’s Encrypt to only give out valid TLS and SSL certificates. Therefore, whenever
these browsers encounter a certificate signed by one of these companies, they trust it com-
pletely. This approach has three fundamental problems.

1. CAs can only sign certificates with a very small number of root keys

2. There is no effective way to deprecate individual certificates

3. There is no way to know when new certificates have been issued

2



Because browsers have to store all trusted root keys, CAs can only sign certificates with
a small number of signing identities. Therefore, if a CA’s key becomes exposed, a huge
proportion of the certificates they’ve issued become insecure. Furthermore, any compromise
to a root key leaves browsers with two unsavory choices. First, they can choose not to load
any website with a certificate related to that root key. If this key was issued by a major
certificate authority – as the world saw when the CEO of Trustico revealed 23,000 private
keys in an email [4] – this can simultaneously take down thousands of websites. Or, they can
choose to continue browsing potentially unsafe websites and risk Internet users’ data being
stolen.

Secondly, without the infrastructure to effectively revoke individual certificates, website
owners are powerless to stop a hacker from impersonating them after a certificate has been
compromised. This means that until a certificate expires, malicious actors can use stolen
certificates to masquerade as a website’s owner with impunity. The potential consequences
of this were highlighted when in 2011 it was discovered that Comodo issued fraudulent
certificates for Google, Yahoo and Microsoft [5]. While these companies were able to work
with browsers to quickly deprecate the dangerous certificates, small and even medium-sized
Internet business simply do not have the resources to either recognize that one of their
certificates has been compromised or do something about it.

Finally, the Internet has a serious phishing problem. One of the most common attack
vectors on the web is a phishing attack, in which a malicious actor fakes a website in order
to steal a user’s online credentials. This has become increasingly common, with almost three
quarters of ransomware being delivered through some form of phishing attack in 2017 [6].
One of the core components of these phishing attacks are fraudulent certificates. HTTPS
connections with these fraudulent certificates trick users into thinking that their data is
secure, making them more likely to fall victim. Without the ability to track what certificates
are being issued, website owners don’t know when their website is being impersonated. As
a result, they have no way to combat these fraudulent certificates.

3 DeCert’s Approach

DeCert’s protocol obtains security through transparency and collective action. It engages
all network participants – Internet users, website owners and CAs – to maintain a public
record of valid certificates.

There are three critical actions that users can take on the network:

1. Add a new certificate - CA issues certificate to website owner and adds it to the
blockchain

2. Vote on a certificate - website owner broadcasts on the blockchain that they think
a certificate is valid or invalid

3. Query for a certificate - after seeing a certificate, an Internet user pulls its infor-
mation from the blockchain to determine whether or not they trust it

3



3.1 Action 1 - Add a New Certificate

At its core, DeCert is a public certificate database. Therefore, perhaps the most critical step
any network participant can take is to add a new certificate to that database. In DeCert,
certificates are represented as Solidity structs with the following schema

1 pragma solidity ^0.4.18;

2
3 ...

4 struct Certificate {

5 // who issued the certificate

6 address issuer;

7
8 // what are you requesting the certificate for

9 string domain;

10
11 // when does the certificate become valid

12 uint256 validityStart;

13
14 // when is the certificate no longer valid

15 uint256 validityEnd;

16
17 // unique identifier for the certificate for the CA

18 uint256 serialID;

19
20 // how many votes that the certificate is valid

21 uint256 validVotes;

22
23 // how many votes the certificate is invalid

24 uint256 invalidVotes;

25
26 // what is the ID of the Cert in the list?

27 uint listID;

28
29 // what is the certificate ’s signature?

30 string signature;

31 }

32
33 ...

34
35 /// @dev Add a certificate to the chain

36 /// @param _duration how long is the cert valid for

37 /// @param _serialID unique ID for the cert based on issuer

38 function addCertificate(

39 string _domain ,

40 uint256 _serialID ,

41 uint256 _duration

42 )

43
44 ...

At the moment, certificates reflect a paired down version of the X.509 standard. The funda-
mental idea is that when presented with a new certificate, Internet users should be able to
look it up on the blockchain to determine whether or not it is valid. Therefore, certificates

4

https://en.wikipedia.org/wiki/X.509#Structure_of_a_certificate


on chain must contain all the information necessary to uniquely identify a given certificate.

3.2 Action 2 - Vote on a Certificate

After a certificate has been added, any member of the network can vote on whether or
not they believe it is valid. The intention is that if a website owner or CA realizes that
a certificate has been compromised, they can broadcast that knowledge to the rest of the
network and prevent other actors from engaging with the fraudulent certificate.

1 pragma solidity ^0.4.18;

2
3 ...

4
5 struct Vote {

6 // who voted

7 address voter;

8
9 // what did they vote on

10 Certificate cert;

11
12 // is it valid or not

13 bool valid;

14
15 // how many votes

16 uint256 votes;

17 }

18
19 ...

20
21 /// @dev Vote on whether or not a particular certificate is valid

22 /// @param _issuer who issued the certificate

23 /// @param _serialID what is the ID of the certificate

24 /// @param _valid is the cert valid or not

25 /// @param _votes how many votes to spend

26 function voteOnCert(

27 address _issuer ,

28 uint256 _serialID ,

29 bool _valid ,

30 uint256 _votes

31 )

32
33 ...

DeCert uses a token-based voting system built on an ERC-20 compliant token. Therefore,
in order to vote, one must first purchase tokens from the network. For this initial beta test,
DeCert is selling a total of 10,000 tokens.

3.3 Action 3 - Query for a Certificate

Now that certificates have been uploaded and network participants have voted on which
certificates they believe are valid, Internet users can use this information when browsing the

5

https://en.wikipedia.org/wiki/ERC20


Figure 1: Purchasing tokens from the network

web. Whenever they are presented with a new certificate, they can read information from
the blockchain and determine whether or not they should trust it.

1 pragma solidity ^0.4.18;

2
3 ...

4 /// @dev Read properties of a cert from the chain

5 /// @param _issuer who issued the certificate

6 /// @param _serialID unique ID for the cert based on issuer

7 function getCertificate(

8 address _issuer ,

9 uint256 _serialID

10 )

11 public

12 view

13 returns (

14 address issuer ,

15 uint256 serialID ,

16 string domain ,

17 uint256 validityStart ,

18 uint256 validityEnd ,

19 uint256 validVotes ,

20 uint256 invalidVotes

21 )

22 ...

This method of certificate querying is innovative for two reasons. First, it lets users dy-
namically choose which certificates to trust based on the opinion of their peers. Secondly, it

6



allows the network to effectively deprecate individual certificates. Consider, for example, a
website owner who realizes that their certificate has been compromised and broadcasts this
information to the network by voting. Simply by looking at the number of valid and invalid
votes on a given certificate, anyone visiting the website is instantly notified of the potential
dangers surrounding that certificate.

4 DeCert Implementation

The literal implementation of the protocol can be broken up into 5 different components.

4.1 Piece 1 - Smart Contracts

The core of DeCert is made up of a series of Ethereum smart contracts. These contracts the
three previously mentioned actions:

1. Allow CAs to publish certificates they issue to the network

2. Allow network participants to vote on whether or not they believe a certificate is valid

3. Allow anyone to read certificate data from the network

These contracts have been deployed to Ropsten, an Ethereum test network designed for
piloting projects.

4.2 Piece 2 - Certificate Authority

In order to programmatically add certificates to the network, we implemented a certificate
authority that interacts with the previously deployed smart contracts. This step was sim-
plified by forking the code from Boulder, an open source CA maintained by Let’s Encrypt.
In order to integrate Let’s Encrypt’s code with the decentralized network, after issuing a
certificate, we add an additional call to a local webserver that interacts with the previously
deployed contracts and stores the issued certificate on the blockchain. Furthermore, because
this CA is nearly identical to Let’s Encrypt’s, users wishing to request new certificates from
it can use existing tools like certbot.

A live implementation of the forked CA can be accessed at https://ca.decert.io.

4.3 Piece 3 - Frontend to Simplify Network Interactions

One of the most important components of any Ethereum application is an intuitive frontend.
Using the following tools, we implemented a decentralized web application to allow users to
easily view contracts and vote on whether or not they believe them to be valid.

• JavaScript/React - used to build a reactive, single page application

• Truffle - JavaScript development framework for Ethereum

• MetaMask - hosts a remote Ethereum node

7

https://github.com/leohentschker/decert/tree/master/contracts
https://github.com/leohentschker/boulder
https://github.com/leohentschker/boulder
https://github.com/letsencrypt/boulder
https://certbot.eff.org/
https://ca.decert.io


Figure 2: Renewing a certificate using certbot and our custom CA

A live version of the website is running at http://decert.io.

Note: you will need to have MetaMask installed and running on Ropsten to use the site
properly.

4.4 Piece 4 - Backend to Allow Searching Over Deployed certifi-
cates

One fundamental problem with decentralized networks is that they don’t allow for indexed
queries. Therefore, in order to enable searching at scale, I implemented a backend server
that duplicates the data being stored on chain in a remote database. In order to create this
server we made use of:

• Django - for easily writing python webservers

• PostgreSQL - for data storage and searching

• Nginx - reverse proxy server

• Infura - hosts a remote Ethereum node, used to pull data from the blockchain without
running our own instance

8

http://decert.io
https://metamask.io/


A live version of the API the backend is running at https://api.decert.io.

4.5 Piece 5 - Test Website

In order to test our CA implementation, we needed a toy webserver to encrypt traffic to.
Again, we created a basic implementation using Django and Nginx. This webserver is alive
running at https://test.decert.io.

Note: because your browser doesn’t trust the root key of the DeCert CA, you will be
warned that you are visiting an insecure website if you go to either https://api.decert.io
or https://test.decert.io.

5 Next Steps

In its current state, DeCert has two major problems:

1. No browser integrations

2. Overly simplistic voting

5.1 Lacking Browser Integrations

Without browser integrations, DeCert is just a proof of concept. At the moment, it cannot
be used to either accept or reject a certificate from an actual website as it does not hook into
any browser’s SSL or TLS handling. Furthermore, without existing infrastructure around
dynamically accepting new certificates, overriding this functionality fell beyond the scope
of this project. Therefore, a necessary next step for this project would be to dive into how
browsers interact with certificates.

5.2 Overly Simplistic Voting

The current voting scheme forces honest participants to continuously outspend malicious
participants on all certificates. As users pay tokens to vote, if a bad actor concentrates their
resources and outspends good actors with respect to a single certificate, they can convince the
network that their certificate is valid when it isn’t. Therefore, bad actors have an incentive
to spend money and claim that a particular certificate is valid when it isn’t.

One potential fix is to use quadratic voting, in which users must pay for the square of
the number of votes they exercise [7]. This would make it significantly harder for bad actors
to outspend the rest of the network. However, malicious network participants are still able
to decrease trust in DeCert by claiming that all certificates are fraudulent. Therefore, this
approach also requires all network participants to be vigilant in determining whether any
particular certificate added to the network is valid.

Therefore, a better approach is to provide a fixed number of non-fungible tokens to
trusted network participants. Under this system, these participants can effectively monitor
certificates on the network and deal with security problems as they arise. Furthermore, as

9

https://api.decert.io
https://test.decert.io
https://api.decert.io
https://test.decert.io


long as no single entity controls the majority of the tokens on the network, no individual
interest will be able to misrepresent the validity of a certificate.

6 Conclusion

Over the last few years, the brilliant work by Let’s Encrypt has shown the world that all web
traffic can and should be encrypted. Within the confines of modern public key infrastructure,
more Internet users are accessing Internet content in a secure environment than ever before.
However, we as a community cannot stop there. Without the ability to effectively deprecate
individual certificates, theory and history show that current PKI systems aren’t nearly as
robust as they should be. While decentralized networks are still an immature technology,
the consensus-based voting schemes they enable can solve many of the problems plaguing
current PKI systems. Therefore, as the cryptographic community continues to improve how
the world encrypts their web traffic, we recommend keeping blockchains in mind. For, while
DeCert is just a proof of concept, it shows that decentralized networks can solve some of the
most fundamental problems facing PKI today.

10



References

[1] “Boulder.” https://github.com/letsencrypt/boulder, 2018.

[2] “Public key infrastructure.” https://msdn.microsoft.com/en-
us/library/windows/desktop/bb427432(v=vs.85).aspx, 2018.

[3] Jayaraman, Bargav, Li, Hannah, Evans, and David, “Decentralized certificate authori-
ties,” Oct 2017.

[4] Z. Whittaker, “Trustico compromises own customers’ https private keys in spat with
partner,” Mar 2018.

[5] P. Roberts, “Phony ssl certificates issued for google, yahoo, skype, others,” Mar 2011.

[6] “2017 global threat intelligence report.” https://www.dimensiondata.com/Global/Downloadable
Documents/2017 Global Threat Intelligence Report as released by NTT Security.pdf,
2017.

[7] “Quadratic voting + smart contracts = powerful governance model.”
https://medium.com/eximchain/quadratic-voting-smart-contracts-powerful-governance-
model-b8efa4ddeef1, 2017.

11

https://github.com/letsencrypt/boulder

	Introduction
	Certificate Authorities
	DeCert's Approach
	Action 1 - Add a New Certificate
	Action 2 - Vote on a Certificate
	Action 3 - Query for a Certificate

	DeCert Implementation
	Piece 1 - Smart Contracts
	Piece 2 - Certificate Authority
	Piece 3 - Frontend to Simplify Network Interactions
	Piece 4 - Backend to Allow Searching Over Deployed certificates
	Piece 5 - Test Website

	Next Steps
	Lacking Browser Integrations
	Overly Simplistic Voting

	Conclusion

