
Shor’s Algorithm

Andrei Laurentiu Ciupan

CS 227, Spring 2018 final project

Abstract. We will prove Shor’s algorithm for finding the period of the expo-

nential function in a finite group, which can be used to break RSA encryption.
We will introduce the RSA encryption scheme and walk through the proof of

Shor’s algorithm, introducing the necessary quantum computing tools.

1. Introduction

The RSA algorithm is a public-key encryption scheme. Assume there are two
communicating parties, Alice and Bob which communicate over a public channel
that can be intercepted by a third party, Eve: Bob wishes to send to Alice a message
m. A core version of the RSA scheme is described as follows:

(1) Alice chooses two large primes p, q and a positive integer c such that
gcd(c, (p− 1)(q − 1)) = 1. 1 Alice sends (N = pq, c) through the channel.

(2) Bob sends h = mc (mod N).

In the core version described above, we assume that m < N and gcd(m,N) = 1.
The complementary case m ≥ N or gcd(m,N) > 1, and other variants of RSA can
be developed from the main scheme described above.

The RSA algorithm is a valid encryption scheme. This algorithm’s security
comes from the computational difficulty of inferring m after seeing N, c and h = mc.

Moreover, Alice can decrypt the message above: note that Alice has access
to p, q and c and can therefore compute d = c−1 (mod (p − 1)(q − 1)). Since

m(p−1)(q−1) ≡ 1 (mod pq), we have that hd ≡ mcd ≡ m (mod N), so the message
m can be found by computing hd.

Shor’s algorithm presents a method for computing m after seeing N, c and h =
mc. Consider the function fh : ZN 7→ ZN defined by fh(x) = hx (mod N). Assume
that there exists an algorithm S(N,h) which computes the period of function fh.
Then consider the following algorithm with inputs N, c, h:

(1) Compute r = S(N,h).
(2) Compute d′ ≡ c−1 (mod r).

1The choices of p, q, c can be made, for example, through a probabilistic algorithm: repeatedly

draw random p, q until the two numbers obtained are prime. Then repeatedly draw random c until
the obtained value is coprime with (p − 1)(q − 1). The prime number theorem guarantees that

this algorithm will take linear time in expectation.

1

2 ANDREI LAURENTIU CIUPAN

(3) Compute m′ = hd
′

(mod N).

We claim that the final output m′ equals m. Here is why:
First of all, the period r of fh is the order of h modulo N , the smallest v such

that hv ≡ 1 (mod N). Let r′ be the order of m modulo N . Then mr′ ≡ 1 (mod N)
and r′ is minimal with this property. Since hr ≡ 1 (mod N) we have mcr ≡ 1

(mod N), therefore mgcd(r′,cr) ≡ 1 (mod N). 2 But since r′ is the order of m

modulo N and m(p−1)(q−1) ≡ 1 (mod N), we must have r′|(p−1)(q−1). However,
we are guaranteed that gcd(c, (p − 1)(q − 1)) = 1, so gcd(r′, cr) = gcd(r′, r), so

mgcd(r,r′) ≡ 1 (mod N). However, r′ is minimal with this property, so we must
have r′|r. Then since d′ ≡ c−1 (mod r), we obtain that d′ ≡ c−1 (mod r′) as well,

so d′c = r′q + 1, for some integer q, so hd
′
≡ mcd′ ≡ mr′q+1 ≡ m (mod N), as

desired. �
Therefore, in order to break the RSA encryption scheme we just need to com-

pute the period S(N,h) of the function fh(x) = hx (mod N). Further note that
steps 2 and 3 only require logarithmic time as a function of N , so they require
polynomial time in the number of bits of N .

We have introduced the RSA algorithm and introduced a potential method for
breaking it in polynomial time (in the number of bits of N). We are left to show that
the first step of our method, finding the period, can be completed in polynomial
time as well. This will be the goal of the next sections, and we will require quantum
computing methods in order to achieve this.

2. Quantum Computing: Tools

This section will introduce the theoretical tools at our disposal with quantum
computing. We will limit ourselves to the theoretical world and accurately describe
what we are able to do with a quantum computer. We will not discuss the potential
hardware implementations of these methods in practice.

2.1. The Qbits. Qbits are the quantum-computing equivalent of classical
bits. While a classical bit can be described by its value, which is 0 or 1, any
1-dimensional qbit is described by its state q = α0|0〉+α1|1〉, where α0 and α1 are
complex numbers such that |α0|2 + |α1|2 = 1. The symbols |0〉 and |1〉 can be inter-
preted as basis elements in the vector space spanned by them. A harmless remark
is to note that we can interpret this representation of qbits as a generalization of
the classical representation of bits, if we restrict the values of (a0, a1) to (1, 0) or
(0, 1).

In 1 dimension, the basis elements of the representation of a qbit are the
two states |0〉 and |1〉. In n dimensions, a qbit is described by its state q =∑
0≤x<2n

αx|x〉n, where:

(1) αx are complex numbers such that
∑

0≤x<2n

|αx|2 = 1

(2) The states {|x〉n} can be interpreted as basis vectors, where the subscript
makes clear that they are n-dimensional. We can represent these basis

2Here we use the result that if mx ≡ 1 (mod N) and mx′ ≡ 1 (mod N) then mgcd(x,x′) ≡ 1
(mod N). This result follows from the fact that the gcd of any two numbers can be written as a

linear integer combination of the two.

SHOR’S ALGORITHM 3

vectors by their binary representation as well, and, for instance identify
|1〉|0〉|1〉 with the three-dimensional qbit representation |5〉3, or |101〉3

In general, when I don’t specify the dimension of a qbit, I refer to a one-
dimensional one. Note that multiple qbits can be combined to produce a higher-
dimensional qbit. We can inductively define this process through the tensor prod-
uct: If |φ〉 = a0|0〉+ a1|1〉 and |ψ〉 = b0|0〉+ b1|1〉 then

|Ψ〉 = |φ〉 ⊗ |ψ〉 = (a0|0〉+ a1|1〉)⊗ (b0|0〉+ b1|1〉)

= a0b0|0〉|0〉+ a0b1|0〉|1〉+ a1b0|1〉|0〉+ a1b1|1〉|1〉

= a0b0|00〉2 + a0b1|01〉2 + a1b0|10〉2 + a1b1|11〉2.
This process is extended inductively to define a tensor product between an

n-dimensional qbit and a m-dimensional qbit as a (m+ n) -dimensional qbit.

2.2. Operations on qbits. An operation on an n-dimensional qbit state is a
linear transformation from the space of n-dimensional qbits to itself. Necessarily,
such a transformation is defined by its action on the 2n basis vectors {|x〉n}0≤x<2n .
We only deal with unitary operations, i.e. operations U for which the dot product
between U |x〉n and U |x′〉n equals 1 if and only if x = x′, and zero otherwise, where
|x〉n, |x′〉n are any basis vectors. For ease of notation we express the dot product
between states |x〉n and |x′〉n by 〈x|x′〉. The dot product here is the standard
dot product in a vector space over complex numbers, defined by the basis rule
〈a0x|b0x′〉 = a0 · b0〈x|x′〉, where x, x′ are n-dimensional basis vectors and their dot
product is defined as 1 if and only if x = x′, and zero otherwise.

We can sumarize the previous paragraph as follows: Any operator over the
space of n- dimensional qbit states is characterized by the 2n×2n matrix U satisfying
U · U∗ = I2n , where U∗ is the conjugate transpose of U . In this paper we will use
the following operations:

(1) 1. This is the identity operator defined on the space of one-dimensional

qbits by the identity matrix

(
1 0
0 1

)
(2) H. This is called the Hadamard operator and it’s defined on the space

of one-dimensional qbits by the matrix
1√
2

(
1 1
1 −1

)
. By construction,

H|0〉 =
1√
2
|0〉+

1√
2
|1〉

(3) UFT . This is called the quantum Fourier transform and it is defined on the

space of n-dimensional qbits by UFT |x〉n =
1

2n/2

∑
0≤y<2n

e
2πixy
2n |y〉n. The

quantum Fourier transform is indeed a unitary transformation: consider
two n-dimensional basis qbits x and x′. Then the dot product between
H|x〉 and H|x′〉 is written as 〈Hx|Hx′〉 and equals〈

1

2n/2

∑
0≤y<2n

e
2πixy
2n y

∣∣∣∣ 1

2n/2

∑
0≤y<2n

e
2πix′y

2n y

〉

= 〈
∑

0≤y<2n

ayy|
∑

0≤y<2n

byy〉 =
∑

0≤y<2n

ay · by,

4 ANDREI LAURENTIU CIUPAN

which in our case is rewritten as
1

2n

∑
0≤y<2n

zy, where z = e
2πi(x′−x)

2n , which

is a 2n-th root of unity equalling 1 if and only if x = x′. If x = x′

then z = 1 and the previous value trivially equals 1. If z 6= 1 then
1

2n

∑
0≤y<2n

zy =
1− z2n

1− z
= 0. So indeed this transformation is unitary. �.

(4) The action of a general function f : {0, 1, . . . , 2n−1} 7→ {0, 1, . . . , 2m−1}
is defined by the unitary transformation Uf (|x〉n|y〉m) = |x〉n|y⊕f(x)〉m.
We can refer to the first n bits as the input register and the last m bits
as the output register.

Note that the last two functions are defined on multiple-dimensional qbit states,
while the first two functions are defined on 1-qbit states. We can generalize their
action on multiple-dimensional qbit states by inductively defining the tensor prod-
uct of two one-dimensional unitary transformations. For one-dimensional unitary
transformations A and B, the two-dimensional unitary transformation C = A⊗B
is defined by C|x0x1〉2 = (A|x0〉)⊗ (B|x1〉).

The rule above inductively defines the tensor product between any unitary
transformations. Going back to the definition of the Hadamard gate, notice that

its n-th power tensor satisfies H⊗n|0〉n =
1

2n/2

∑
0≤x<2n

|x〉n. Also notice that the

transformation X = H⊗n ⊗ 1⊗m which applies the n-th power tensor Hadamard

gate to the first n bits satisfies X|0〉n+m =
1

2n/2

∑
0≤x<2n

|x〉n|0〉m. This relation will

be useful in a later section.
It’s crucial, and we simply state the result here, that the tensored value of

the Hadamard, identity and quantum Fourier transform gates can be applied in
polynomial time, as a function of n, to an n-dimensional qbit state.

2.3. Measurements. There are two operations we are allowed to do with an
n-dimensional qbit state: apply a unitary transform to it, or measure a subset of
its bits. We now define what a measurement does.

First consider a one-dimensional state q = a0|0〉 + a1|1〉. The measurement
function M is a probabilistic function, such that M |q〉 = |0〉 with probability |a0|2
and M |q〉 = |1〉 with probability |a1|2. Once a qbit q is measured, its value becomes
M |q〉, and the original state of q cannot be recovered.

One can perform a measurement of a subset of the bits of an n-dimensional qbit
state by measuring the corresponding bit positions one at a time and inductively
applying the generalization of the above rule: for an n-dimensional qbit state q =∑
0≤x<2n

ax|x〉n, measuring the i-th bit produces one of the two states:

(1)
∑
x∈S0

ax|x〉n with probability
∑
x∈S0

|ax|2

(2)
∑
x∈S1

ax|x〉n with probability
∑
x∈S1

|ax|2, where S0 is the set of n-dimensional

qbit basis states whose i-th component is 0m and S1 is the set of n-
dimensional qbit basis states whose i-th component is 1.

Remember, as before, that measuring a state ireversibly produces another state.

SHOR’S ALGORITHM 5

3. Shor’s Algorithm

Having defined the relevant tools and rules at our disposal in quantum com-
puting, we are ready to construct the period-finding algorithm S(N,h) described
in the first section. Recall that we are given N and h and want to find the period
of the function f(x) = hx (mod N). Assume that N can be expressed in binary
with n0 bits. The following is Shor’s algorithm:

(1) Manually calculate f(x) for a small number of x values3. If the period is
found, stop. Otherwise move on to the next step.

(2) Consider n = 2 · n0 and prepare the state q = |0〉n|0〉n0

4

(3) To the previous state, apply the transformation H⊗n ⊗ 1⊗n0 .
(4) To the previous state, apply the transformation Uf defined by Uf |x〉n|y〉n0 =
|x〉n|y ⊕ f(x)〉n0

(5) To the previous state, measure the last n0 bits. We will obtain a new
state.

(6) To the previous state, apply the quantum Fourier transform UFT ⊗ 1⊗n0 ,
where UFT is the quantum Fourier transform on n bits.

(7) To the previous state, measure the first n bits. Obtain a state |y〉n|z〉n0
.

(8) Find the continued fraction representation of
y

2n
. Let r be its denomina-

tor.
(9) Repeat steps 2-8 to obtain another value r′.

(10) Output the least common multiple of (r, r′) and confirm this value is a
period. Otherwise repeat steps 2-9.

We will prove that with probability at least 0.09, a single iteration of steps
2− 10 ends in the value r which is the period of f . Assume that f has period r.

We will show what the result of each step above produces.
The result of step 3 is that the first n bits get the n-tensor Hadamard transfor-

mation, while the last n0 bits remain at |0〉n0
. Since H⊗n|0〉n = ⊗n (H|0〉), from

the definition of H|0〉 in section 2.2 we obtain that H⊗n|0〉n =
1

2n/2

∑
0≤x<2n

|x〉n.

Therefore, at the end of step 3, the qbit is in the state
1

2n/2

∑
0≤x<2n

|x〉n|0〉n0 .

At the end of step 4, the qbit is now in the state
1

2n/2

∑
0≤x<2n

|x〉n|f(x)〉n0
.

At the end of step 5 we have measured the last n0 qbits of the state. According
to the measurement rule in section 2.3, the resulting state has a fixed value for
the last n0 bits, equal to |y0〉n0

for some y0 in the image of f . Since f has period
r and since at the end of step 4 each of the states of the first n bits have equal
weight, after measuring and obtaining y0, the only remaining states of the first n
qbits are the ones with values x such that f(x) = y0, and they each appear with
equal probability. If x0 is the smallest value of x such that f(x) = y0 and if m is

3for instance 0 ≤ x ≤ 100.
4We promised we would not discuss the hardware constructions, but one way to prepare such

a state is to repeatedly measure each qbit of an (n+ n0)-dimensional input and flip any resulting

qbit states that are 1.

6 ANDREI LAURENTIU CIUPAN

the smallest integer value such that x0 +m · r > 2n, then at the end of step 5 the

qbit is in the state
1√
m

∑
0≤k<m

|x0 + kr〉n|f(x0)〉n0
.

Step 6 applies the quantum Fourier transform to the first n bits of the previous
state. From the definition in section 2.2 and since the quantum Fourier trans-
form is a linear operator, we know that the resulting state of the first n bits is∑
0≤y<2n

 1√
m · 2n/2

∑
0≤k<m

e
2πi(x0+kr)y

2n

 |y〉n. This is the state of the first n bits at

the end of step 6.
Step 7 measures the first n bits. By definition, state |y〉n is obtained with

probability
1

m · 2n

∣∣∣∣∣∣
∑

0≤k<m

e
2πi(x0+kr)y

2n

∣∣∣∣∣∣
2

. Let’s find this value. It will turn out nice.

Let z = e
2πiry
2n = cos

(
2πry

2n

)
+ i sin

(
2πry

2n

)
and notice that the probability of

obtaining state |y〉n after measurement is
1

m · 2n
∣∣1 + z + · · ·+ zm−1

∣∣2.

Since z has unit norm, this value is maximized at z = 1.

When z 6= 1 then sin
(πry

2n

)
6= 0 and the previous probability equals

1

m · 2n
·

∣∣∣∣∣∣e 2πix0y
2n

∑
0≤k<m

zk

∣∣∣∣∣∣
2

=
1

m · 2n
·
∣∣∣∣zm − 1

z − 1

∣∣∣∣2

=
1

m · 2n
·
| cos

(
2πmry

2n

)
− 1 + i sin

(
2πmry

2n

)
|2

| cos
(
2πry
2n

)
− 1 + i sin

(
2πry
2n

)
|2

=
1

m · 2n
·

sin2
(
πmry
2n

)
sin2

(
πry
2n

) .
When y is of the form y = j · 2n

r
+ δj , for some integer j and some δj of

absolute value less than or equal to
1

2
, then

πmry

2n
= πmj+

πmrδj
2n

. Remember that

x0 +mr = 2n+k0 for some 0 ≤ k0 < r, so
πmrδj

2n
= πδj ·

mr

2n
= πδj

2n + k0 − x0
2n

=

πδj + πδj ·
k0 − x0

2n
.

However, since 0 ≤ x0, k0 < r and |δj | ≤
1

2
, we have

∣∣∣∣πδj k0 − x02n

∣∣∣∣ ≤ π r

2n
= π

r

22·n0
< π

r

N2
≤ π 1

N
,

which is a very small quantity when N is large.

So we can approximate sin
(πmry

2n

)
by sin(πδj).

Next notice that
πry

2n
= πj +

πrδj
2n

, where, as before,
πrδj
2n

is small, so we can

approximate sin
(πry

2n

)
by

πrδj
2n

.

SHOR’S ALGORITHM 7

Therefore, whenever sin
(πry

2n

)
6= 0, we can approximate

1

m · 2n
·

sin2
(
πmry
2n

)
sin2

(
πry
2n

)
by

1

m · 2n
· sin2(πδj)

(πrδj)
2 ·
(

1
2n

)2 =

(
sin(πδj)

πδj

)2

· 2n

mr2

=

(
sin(πδj)

πδj

)2

· 1

r
· 2n

mr
=

(
sin(πδj)

πδj

)2

· 1

r
·
(

1 +
x0 − k0
mr

)

=

(
sin(πδj)

πδj

)2

· 1

r
+

(
sin(πδj)

πδj

)2

· x0 − k0
r

· 1

mr
.

We show that the second term in the sum above is negligible. It is a product of
three terms. The first term is less than equal to 1. The second term is less than or
equal to 1 in absolute value. As for the third term, notice thatmr ≥ 2n−x0 > 2n−r,
so m(r + 1) > 2n, so

1

mr
<

1

2n
· r + 1

r
<

2

2n
, which is negligible.

Therefore the value
1

m · 2n
·
sin2

(
πmry
2n

)
sin2

(
πry
2n

) can be approximated by
1

r

(
sin(πδj)

πδj

)2

,

which is greater than or equal to
1

r
· 4

π2
, because

sin(x)

x
≥ 2

π
for all −π

2
≤ x ≤ π

2
.

Therefore, finally, the probability that qbit state |y〉n appears after the measure-

ment in step 7, when y = j · 2
n

r
+δj , is at least equal to the value

1

m · 2n
·
sin2

(
πmry
2n

)
sin2

(
πry
2n

)
when sin

(πry
2n

)
6= 0, which is at least equal to

1

r
· 4

π2
.

Notice that since
2n

r
≥ N , the above representation of y is indeed unique.

Therefore, with probability at least
r − 1

r
· 4

π2
the measured state is of the form

y = j · 2
n

r
+ δj for some 1 ≤ j ≤ r−1 and |δj | ≤

1

2
. Since in step 1 of the algorithm

we ensured that r is large enough, this last probability is at least equal to 0.4.
When the measured state |y〉n is of the form described in the previous para-

graph, then

∣∣∣∣ y2n − j

r

∣∣∣∣ =

∣∣∣∣ δj2n

∣∣∣∣ < 1

2N2
<

1

2r2
.

Here we use the first result which we don’t prove: by computing the continued

fraction approximations

{
jk
rk

}
k≥0

of
y

2n
and stopping at the last step k for which

rk is less than N , we are guaranteed by the inequality above that
jk
rk

=
j

r
. Since

gcd(jk, rk) = 1 we obtain that jk =
j

gcd(r, j)
and rk =

r

gcd(r, j)
. Therefore, with

probability at least 0.4, at the end of step 8 we obtain a value of the form
r

gcd(r, j)
for a random 1 ≤ j < r.

Therefore, at the end of step 9, with probability at least 0.42, the two obtained

values r′ and r′′ are both of the form r′ =
r

gcd(r, j′)
and r′′ =

r

gcd(r, j′′)
for two

random 1 ≤ j′, j′′ < r.

8 ANDREI LAURENTIU CIUPAN

With probability at least
6

π2
, j′ and j′′ are relatively prime 5, and in this

case the least common multiple of r′ and r′′ is r, as desired. This happens with

probability at least 0.42 · 6

π2
> 0.097, as desired.

We have therefore succeded in showing that with probability at least 0.09,
Shor’s algorithm correctly finds the period of the exponential function in a field
ZN . A finite iteration of repeating this algorithm and confirming the period leads
to the correct answer with high probability. �

4. Conclusion

In this paper, we first introduced the RSA encryption method, then proposed
an algorithm for breaking it. This algorithm required a procedure for finding the
period of the exponential function in ZN . We introduced quantum computing and
described the useful tools at our disposal : qbits, operators and measurements.
Using these tools we produced the missing step in breaking the RSA algorithm -
the period finding procedure. Along the way we have used standard mathematical
tools from number theory and complex analysis, and saw that they tie together
nicely to produce a correct probabilistic algorithm. I tried to keep the paper self-
contained, so that a nonexperienced reader can understand the basic premise and
methods of the RSA method and Shor’s algorithm.

References

[1] Mermin, N. David. Quantum Computer Science: An Introduction. Cambridge: Cambridge
University, 2007. Print.

[2] https://en.wikipedia.org/wiki/Continued_fraction

[3] http://www.boazbarak.org/cs127/schedule/

374 Harvard St, Cambridge, MA 02138

5Quick proof: j′ and j′′ are relatively prime iff they are not both divisible by any prime
p < r. This holds with probability at least∏

p<r, prime

(
1 −

1

p2

)
>

∏
p prime

(
1 −

1

p2

)
=

∏
p prime

1∑
j≥0 p

2j
=

1∑
k≥1

1
k2

=
6

π2

https://en.wikipedia.org/wiki/Continued_fraction
http://www.boazbarak.org/cs127/schedule/

	1. Introduction
	2. Quantum Computing: Tools
	3. Shor's Algorithm
	4. Conclusion
	References

