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Abstract. A true random number generator (TRNG) usually consists
of two components: an “unpredictable” source with high entropy, and a
randomness extractor — a function which, when applied to the source,
produces a result that is statistically close to the uniform distribution.
When the output of a TRNG is used for cryptographic needs, it is pru-
dent to assume that an adversary may have some (limited) influence on
the distribution of the high-entropy source. In this work:

1. We define a mathematical model for the adversary’s influence on the
source.

2. We show a simple and efficient randomness extractor and prove that
it works for all sources of sufficiently high-entropy, even if individual
bits in the source are correlated.

3. Security is guaranteed even if an adversary has (bounded) influence
on the source.

Our approach is based on a related notion of “randomness extraction”
which emerged in complexity theory. We stress that the statistical ran-
domness of our extractor’s output is proven, and is not based on any
unproven assumptions, such as the security of cryptographic hash func-
tions.
A sample implementation of our extractor and additional details can be
found at a dedicated web page [Web].

1 Introduction

1.1 General setting

It is well known that randomness is essential for cryptography. Cryptographic
schemes are usually designed under the assumption of availability of an endless
stream of unbiased and uncorrelated random bits. However, it is not easy to
obtain such a stream. If not done properly, this may turn out to be the Achilles
heel of an otherwise secure system (e.g., Goldberg and Wagner’s attack on the
Netscape SSL implementation [GW96]).

In this work we focus on generating a stream of truly random bits. This is the
problem of constructing a true random number generator (TRNG). The usual
way to construct such a generator consists of two components:



1. The first component is a device that obtains some digital data that is unpre-
dictable in the sense that it has high entropy.1 This data might come from
various sources, such as hardware devices based on thermal noise or radioac-
tive decay, a user’s keyboard typing pattern, or timing data from the hard
disk or network. We stress that we only assume that this data has high en-
tropy. In particular, we do not assume that it has some nice structure (such
as independence between individual bits). We call the distribution that is
the result of the first component the high-entropy source.

2. The second component is a function, called here a randomness extractor,
which is applied to the high-entropy source in order to obtain an output
string that is shorter, but is random in the sense that it is distributed ac-
cording to the uniform distribution (or a distribution that is statistically
very close to the uniform distribution).

Our focus is on the second component. The goal of this work is to construct
a single extractor which can be used with all types of high-entropy sources, and
that can be proven to work, even in a model that allows an adversary some
control over the source.

Running a TRNG in adversarial environments. The high entropy source used
in a TRNG can usually be influenced by changes in the physical environment
of the device. These changes can include changes in the temperature, changes
in the voltage or frequency of the power supply, exposure to radiation, etc.. In
addition to natural changes in the physical environment, if we are using the
output of a TRNG for cryptographic purposes, it is prudent to assume that an
adversary may be able to control at least some of these parameters. Of course,
if the adversary can have enough control over the source to ensure that it has
zero entropy then, regardless of the extractor function used, the TRNG will be
completely insecure. However, a reasonable assumption is that the adversary has
only partial control over the source in a way that he can influence the source’s
output, but not remove its entropy completely.

1.2 Our results

In this paper, we suggest a very general model which captures such adversarial
changes in the environment and show how to design a randomness extractor that
will be secure even under such attacks.

In all previous designs we are aware of, either there is no mathematical treat-
ment or the source of random noise is assumed to have a nice mathematical
structure (such as independence between individual samples). As the nature of
cryptanalytic attacks cannot be foreseen in advance, it is hard to be convinced

1 Actually, the correct measure to consider here is not the standard Shannon entropy,
but rather the measure of “Min-Entropy” (see Remark 1). In the remainder of the
paper we will use the word “entropy” loosely as a measure of the amount of ran-
domness in a probability distribution.



of the security of a TRNG based on a set of statistical tests that were performed
on a prototype in ideal conditions. We also remark that it may be dangerous
to assume that the source of randomness has a nice mathematical structure,
especially if the environment in which the TRNG operates may be altered by an
adversary.

Our extractor is simple and efficient, and compares well with previous de-
signs. It is based on pairwise-independent hash function [WC81].2 Our approach
is inspired by a somewhat different notion of “randomness extractors” defined
in complexity theory (see surveys [NTS99,Sha02] and Section 1.3).

Our design works in two phases:

Preprocessing: In this phase the manufacturer (or the user) chooses a string
π which we call a public parameter. This string is then hardwired into the
implementation and need not be kept secret. The same string π can be
distributed in all copies of the randomness extractor device, and will be
used whenever they are executed. (We discuss this in detail in Section 1.4).

Runtime: In this phase the randomness extractor gets data from the high-
entropy source and its output is a function of this data and the public pa-
rameter π.

The analysis guarantees that if π is chosen appropriately in the preprocessing
phase and the high-entropy source has sufficient entropy then the output of the
TRNG is essentially uniformly distributed even when the environment in which
the TRNG operates is altered by an adversary. This guarantee holds as long as
the adversary has limited influence on the high-entropy source.

In particular, we make no assumption on the structure of the high-entropy
distribution except for the necessary assumption that it contains sufficient en-
tropy. Existing designs of high-entropy sources seem to achieve this goal.

1.3 Previous works

Randomness extractors used in practice. As far as we are aware, all extractors
previously used in practice as a component in a TRNG, fall under the following
two categories:

Designs assuming mathematical structure These are extractors that work
under the assumption that the physical source has some “nice” mathematical
structure.
An example of such an extractor is the von Neumann extractor [vN51], used
in the design of the Intel TRNG [JK99]. On input a source X1, . . . , Xn the
von Neumann extractor considers successive pairs of the form X2i, X2i+1; for
each pair, if X2i 6= X2i+1 then X2i is sent to the output, otherwise nothing
it sent. The von Neumann extractor works if one assumes that the all bits
in the source are independent and are identically distributed. That is, each

2 Some choices of the parameters require use of `-wise independent hash functions for
` > 2.



bit in the source will be equal to 1 with the same probability p, and this will
happen independently of the values of the other bits. However, it may fail if
different bits are correlated or have different biases.
Other constructions that are sometimes used have every bit of the output be
XOR of bits in the source that are “far from each other”. Such constructions
assume that these “far away” bits are independent.
RFC 1750 [ErCS94] also suggests some heuristics such as applying a Fast
Fourier Transform (FFT) or a compression function to the source. However,
we are not aware of any analysis of the conditions on the source under which
these heuristic will provide a uniform output.

Applying a cryptographic hash function Another common approach (e.g.,
[ErCS94], [Zim95]) is to extract the randomness by a applying a crypto-
graphic hash function (or a block cipher) to the high-entropy source. The
result is expected to be a true random (or at least pseudo-random) out-
put. As there is no mathematical guarantee of security, confidence that such
constructions work comes from the extensive cryptanalytic research that
has been done on these hash function. However, this research has mostly
been concentrated on specific “pseudorandom” properties (e.g., collision-
resistance) of these functions. It is not clear whether this research applies
to the behavior of such hash functions on sources where the only guaran-
tee is high entropy, especially when these sources may be influenced by an
adversary that knows the exact hash function that is used.

Randomness extractors in complexity theory The problem of extracting
randomness from high-entropy distributions is also considered in complex-
ity theory (for surveys, see [NTS99,Sha02]). However, the model considered
there allows the adversary to have full control over the source distribution.
The sole restriction is that the source distribution has high entropy. One
pays a heavy price for this generality: it is impossible to extract randomness
by a deterministic randomness extractor.3 Consequently, this notion of ran-
domness extractors (defined in [NZ96]) allows the extractor to also use few
additional truly random bits. The rationale is that the extractor will output
many more random bits than initially spent. While this concept proves to
be very useful in many areas of computer science, it does not provide a way
to generate truly random bits for cryptographic applications.4

Nevertheless, our solution uses techniques from this area. For the reader
familiar with this area, we remark that our solution builds on observing
that a weaker notion of security (the one described in this paper) can be

3 Consider even the simpler task of extracting a single bit. Every candidate randomness
extractor E : {0, 1}n → {0, 1} partitions {0, 1}n into two sets B0, B1 where Bi is
the set of all strings mapped to i by E. Assume w.l.o.g. that |B0| ≥ |B1. Then the
adversary can choose the source distribution X to be the uniform distribution over
B0 and thus, E(X) is always fixed as 0 and is not at all random. Note that if E(·)
can be computed efficiently, then this distribution X can also be sampled efficiently.

4 Some weaker notions of randomness extractors were proposed. These notions usu-
ally suggest considering restricted classes of random sources. See [TV02] and the
references there.



guaranteed even when the few additional random bits are chosen once and
for all by the manufacturer and made public.

1.4 Advantages and disadvantages of our scheme.

The main advantage of our scheme is that it is proven to work for every high-
entropy source, provided that the adversary has only limited control on the
distribution of the source. By contrast, previous schemes are either known to fail
for some very natural high-entropy sources (e.g., the von Neumann’s extractor),
or lack a relevant formal analysis (see above).

Efficiency. It is natural to measure the performance of a randomness extractor
in terms of the cost per output bit. This measure depends on the following
factors:

1. Cost: The speed and size of the hardware or software implementation of the
extractor.

2. Entropy rate: The amount of entropy contained in the source.
3. Entropy loss: The difference between the amount of entropy that the high-

entropy source contains and the number of bits extracted.

Our design allows tuning the running time and entropy loss as a function of
the expected entropy rate and the desired resiliency against adversarial effects
on the source. This tuning helps to achieve good overall performance in different
scenarios. We discuss specific scenarios below.

In general, our approach is quite simple and efficient and is suitable for a
hardware implementation. Its cost is comparable to that of cryptographic hash
functions, and it can provably achieve low entropy loss and extract more than
half of the entropy present in the source (by comparison, the von Neumann
extractor extracts at most half of the entropy)5.

Example: low entropy rate. For example, consider the case where the source
is the typing patterns of a user. In this case the speed at which one can sample
the high-entropy source is comparatively slow, and furthermore sampling the
source may be expensive. It is thus crucial to minimize entropy loss and extract
as much as possible from the entropy present in the source. Our design allows
extracting 3/4 of the entropy in the source at a slight cost to the running time.
In this case, the running time is less significant as the bottleneck is the sampling
speed from the random source.

Example: high entropy rate. Consider the case where the source is sampling
of thermal noise. Now the running time is important and we can tune our design
to work faster at the cost of higher entropy loss.

The existence of a formal proof of security can be helpful when optimizing the
implementation. Our proof shows that any implementation of “universal hash
5 The basic von Neumann extractor can be extended to extract more bits at some cost

to the algorithm’s efficiency [Per92].



functions” (or “`-wise independent hash functions”) suffices for our random-
ness extractor. Thus, a designer can choose the most efficient implementation
he finds and optimize it to suit his particular architecture. This is contrast to
cryptographic hash functions, which do not have a proof of security and where
the effect of changes (e.g., removing a round) is unknown, and thus such opti-
mizations are not recommended in practice.

A public parameter. One disadvantage of our scheme is the fact that it uses
a public parameter.6 The security of the scheme is proven under the assumption
that the parameter is chosen at random. This parameter needs to be chosen only
once and the resulting scheme will be secure with extremely high probability.

We stress that we do not assume that this parameter is kept secret. More-
over, this parameter can be chosen once and for all by the manufacturer and
hardwired into all copies of the device. We also do not assume that the distri-
bution of the high-entropy source is completely independent from the choice of
this parameter — our model allows this distribution to be partially controlled
by a computationally-unbounded adversary that knows the public parameter.

Note that a public parameter is necessary to obtain the security properties
that we require.

2 The formal model

2.1 Preliminaries

Min-Entropy. The min-entropy of the source X, denoted by min-Ent(X), the
maximal number k such that for every x ∈ X, Pr[X = x] ≤ 2−k.

Remark 1. Min-entropy is a stricter notion than the standard (Shannon) en-
tropy, in the sense that the min-entropy of X is always smaller than or equal to
the Shannon entropy of X.

It is easy to see that it is impossible to extract m bits from a distribution X
with min-Ent(X) ≤ m− 1. This is because such a distribution gives probability
at least 2−(m−1) to some element x. It follows that for any candidate extractor
function E : {0, 1}n → {0, 1}m the element y = E(x) has probability at least
2−(m−1) and thus E(X) is far from being uniformly distributed.

We conclude that having min-entropy larger than m is a necessary condition
for randomness extraction. In this paper we show that having min-entropy k
slightly larger than m is a sufficient condition.

Statistical Distance. We use dist(X, Y ) to denote the statistical distance between
X and Y that is: 1

2

∑
a |Pr[X = a]− Pr[Y = a]|. We say that X is ε-close to Y

if dist(X, Y ) < ε.

6 The description of many hash functions and block ciphers includes various semi-
arbitrary constants; arguably these can also be considered public parameters.



Table 1. List of parameters

n The length (in bits) of a sample from the high-entropy source.

k The min-entropy of the high-entropy source.

t The adversary can alter the environment in at most 2t different ways

m The length (in bits) of the output of the randomness extractor.

ε The statistical distance between the uniform distribution
and the output of the randomness extractor.

Notation for probability distributions. We denote by Um the uniform distribution
on strings of length m. If X is a distribution then by x ∈R X we mean that x is
chosen at random according to the distribution X. If X is a set then we mean
that x is chosen according to the uniform distribution on the set X. If X is a
distribution and f(·) is a function, then we denote by f(X) the random variable
that is the result of choosing x ∈R X and computing f(x).

2.2 The parameters

The parameters for our design are listed in Table 1. We think of samples from
the source as coming in blocks of n bits.

The goal is to design an extractor that, given an adversarially-chosen n-bit
source with k bits of entropy, is resilient against as much adversary influence
as possible (i.e., maximize t), while extracting as many random bits as possible
(i.e, maximize m), with negligible statistical distance ε. In Section 2.5 we give a
sample setting of the parameters.

2.3 Definition of security

Definition 1 (Extractor). An extractor is a function E : {0, 1}n × S →
{0, 1}m for some set S.

Denote by Eπ(·) = E(·, π) the one-input function that is the result of fixing
the parameter π to the extractor E. We would like the output E(X, π) = Eπ(X)
to be (close to) uniformly distributed, where X ∈ {0, 1}n is the output of the
high-entropy source and π ∈ S is the public parameter.

Defining Security. We consider the following ideal setting:

1. An adversary chooses 2t distributions D1, . . . ,D2t over {0, 1}n, such that
min-Ent(Di) > k for all i = 1, . . . , 2t.

2. A public parameter π is chosen at random and independently of the choices
of Di.

3. The adversary is given π, and selects i ∈ {1, . . . , 2t}.
4. The user computes Eπ(X), where X is drawn from Di.

Definition 2 (t-resilient extractor). Given n, k,m, ε and t, an extractor E
is t-resilient if, in the above setting, with probability 1− ε over the choice of the
public parameter the statistical distance between Eπ(X) and Um is at most ε.



Interpretation. The above ideal setting is intended to capture security in the
following scenario. A manufacturer designs a noise generating device whose out-
put is a random variable X. Ideally, we would like the adversary not to be
able to influence the distribution of X at all. However, in a realistic setting
the adversary has some control over the environment in which the device oper-
ates (temperature, voltage, frequency, timing, etc.), and it is possible that that
changes in this environment affect the distribution of X. We assume that the
adversary can control at most t boolean properties of the environment, and can
thus create at most 2t different environments. The user observes the value of X
which, conditioned on the choice of environment being i, is distributed as Di.
The definition of security guarantees that the output of the extractor is close to
uniformly distributed.

In fact, the security definition (which our construction fulfills) may be stronger
than necessary in several senses:

• We do not assume any computational bound on the adversary.
• We do not assume that the user knows which environment i was chosen.
• More fundamentally, we do not require either the user nor the manufacturer

need to knows which properties of the environment are controllable by the
adversary. The only limitation is that the adversary can control at most t
(boolean) properties, and that the source entropy is at least k.

• We allow adversarial choice of all the source distribution for each of the 2t en-
vironment settings. Thus, even for “normal” environment settings, the source
may behave in the worst possible way subject to the above requirements. By
contrast, in the real world the source distributions would be determined by
the manufacturer, presumably in the most favorable way.

• The behavior of the source may change arbitrarily for different environments
(i.e., the distributions Di,Dj for i 6= j need not be related in any way). In
the real world, many properties of the source would persist for all but the
most extreme environment settings.

Remark 2. One can make a stricter security requirement by allowing the adver-
sary to choose i not only as a single value, but also as a random variable with
an arbitrary distribution over {1, . . . , 2t}. The two definitions are equivalent.

Remark 3. Many applications require a long stream of output bits. In such cases,
our extractor can simply be applied to successive blocks of inputs, always with
the same fixed public parameter. The security is guaranteed as long as each input
block contains k bits of conditional min-entropy (defined analogously to condi-
tional entropy), conditioned on all previous blocks. Of course, this still requires
that the conditional distribution of every input block is one of D1, . . . ,D2t .

2.4 Our result

Our main result is an efficient design for a t-resilient extractor for a wide range
of the parameters. We have the following theorem:



Theorem 1. For every n, k,m and ε there is a t-resilient extractor with a public
parameter of length 2n such that 7

t =
k −m

2
− 2 log(1/ε)− 1

We can increase t at the cost of an increase in the running time and the
length of the public parameter π, to obtain:

Theorem 2. For every n, k,m and ε and ` ≥ 2 there is a t-resilient extractor
with a public parameter of length `n such that

t =
`

2
(k −m− 2 log(1/ε)− log ` + 2)−m− 2− log(1/ε)

We explain our construction in Section 3 and prove its security in Ap-
pendix A. In Section 4 we present potential implementations.

Note that in the above theorems, t does not depend on n. In other words,
the resiliency t depends only on the amount of of entropy loss (i.e., k −m), the
statistical distance (i.e., ε) that we are willing to accept and the parameter `.

2.5 Sample settings of parameters

As the theorems involve many parameters we give concrete examples for natural
choices. In the following examples we will consider extracting m = 256 bits which
are ε = 2−35-close to uniform from a source containing k = 512 bits of entropy.
The choice of n (the length of the source) should depend on the expected quality
of the random sample. For example, if the source is the typing pattern of a user
then its entropy rate is low and we may need to set n ≈ 2500 in order to have 512
bits of entropy, while for dedicated noise-generation hardware we may assume
that the entropy rate is very high and set n = 768.

Using Theorem 1 we get t = 57 for k = 512. Using the less efficient design
of Theorem 2 we can improve both entropy loss and security: choosing ` = 16
we get t = 667 and can even reduce k to k = 448. These numbers are just
an illustration and different tradeoffs between performance, entropy loss and
guarantee of security can be made.

3 Our Design

In this section, we present our construction which is based on the notion of
“`-wise independent hash functions”. We formally define this notion and de-
scribe our construction in these term in Section 3.1 and prove correctness in
Appendix A. We discuss implementation of this construction in Section 4.

7 In fact, the constructions described in Section 4 have a shorter public parameter, of
length n and n + m− 1.



3.1 Randomness extractors from `-wise independence

We start by recalling the notion of `-wise independence.

Definition 3 (`-wise independence). A collection Z1, · · · , Zn of random vari-
ables is called `-wise independent if for every i1, · · · , i` ∈ {1, · · · , n} the random
variables Zi1 , · · · , Zi`

are independent.

A very useful tool is the notion of `-wise independent families of hash func-
tions. Intuitively, such functions have some properties of random functions even
though they’re much less random.

Definition 4 (`-wise independent families of hash functions). Given a
collection H = {hs}s∈S of functions hs : {0, 1}n → {0, 1}m, we consider the
probability space of choosing s ∈R S. For every x ∈ {0, 1}n we define the random
variable Rx = hs(x) (Note that x is fixed and s is chosen at random). We say
that H is an `-wise independent family of hash functions if:

– For every x, Rx is uniformly distributed in {0, 1}m.
– The random variables {Rx}x∈{0,1}n are `-wise independent.

The usefulness of this definition stems from the fact that there are such
families which are relatively small (of size 2`n) and for which hs(x) can be
efficiently computed given s and x.

In these terms, our construction is described as follows: randomly choose
s ∈R S (this is the “public parameter”), and let the randomness extractor be
simply

E(x) = hs(x)

In Appendix A we show that for appropriate parameters, this yields a t-resilient
extractor. The following section describes concrete constructions.

4 Implementation

This section describes several extractor implementations based on known con-
structions of pairwise-independent hash functions [CW79,WC81]. Recall that an
implementation of our randomness extractor is constructed has two phases:

– Preprocessing: Choosing the public parameter π.
– Runtime: Running Eπ(x) on a given string x.

As the first phase is done once and for all at a preprocessing phase, we
focus on optimizing the resources used by the second phase. Also, the known
implementations of `-wise independent hash functions (for large `) have higher
implementation cost than 2-wise independent hash functions; we thus consider
only implementations of 2-wise independent hash functions.



4.1 Linear functions

Theorem 3. Let GF (2n) be the field with 2n elements, and S = {(a, b)|a, b ∈
GF (2n)}. For s = (a, b) and m < n define: hs(x) = (a · x + b)1,··· ,m (i.e., the
first m bits of a · x + b where arithmetic operations are in GF (2n)). Then the
family Hn,m = {hs}s∈S is a 2-wise independent family of hash functions.

The field GF (2n) can be realized as as the field of polynomials over GF (2)
modulo an irredicible polynomial of degree n. When the field element are repre-
sented as coefficient vectors, addition is the bitwise XOR operation while mul-
tiplication requires a modular reduction operation that is easily implemented in
hardware for small n, but grows expensive for larger ones and is not well suited
for software implementations.

In Appendix A we show that for every random variable X with min-Ent(X) ≥
k, for an appropriate choice of m we have that for most pairs s = (a, b), hs(X)
is close to uniform.

We have s = (a, b), hs(x) = (ax)1,··· ,m ⊕ b1,··· ,m. Define ga(x) = (ax)1,··· ,m.
For every fixed pair (a, b), b1,··· ,m is constant. Thus, h(a,b)(X) is close to uniform
if and only if ga(X) is close to uniform. This yields the following extractor for
any m < n, where the relation to t and ε follows from Theorem 1.

– Preprocessing: choose some irreducible polynomial of degree n. Choose a
string a ∈ {0, 1}n at random and set π = a.

– Runtime: Eπ(x) = (a · x)1,··· ,m, using multiplication in GF (2n).

Remark 4. A family of `-wise independent hash functions can be constructed in
a similar manner by setting s = (a1, · · · , a`) and hs(x) =

∑
1≤i≤l ai · xi−1.

4.2 Binary Toeplitz matrices

Theorem 4. Let F be a finite field and let n′,m′ be integers, m′ < n′. Let
S = Fn′+m′−1. For s ∈ S and x ∈ Fn, define hs(x) ∈ Fm′

by (hs(x) ∈ Fm′
)i =∑n

j=0 xisi+j. Then the family Hn′,m′ = {hs}s∈S is a 2-wise independent family
of hash functions.

The function hs(x) can be thought of as multiplication of an m× n Toeplitz
matrix (whose diagonals are given by s) by the vector x. Alternatively, it can
be considered a convolution of x and y. For F = GF (2), n′ = n, m′ = m,
hs(x) we get the following extractor any m < n, (as before, t and ε follows from
Corollary 1).

– Preprocessing: Choose a string π ∈ {0, 1}n+m−1 at random.
– Runtime: m bits such that the i-th bit is

⊕n
i=0(xi ∧ si+j).

For reasonable n and m, this can be implemented very efficiently in hardware,
though in software the bit operations are somewhat inconvenient. To evaluate
this, we tested a software implementation of this construction, written in plain
C. For the parameters n = 768, m = 256 of Section 2.5, this implementation
had a throughput of 36Mbit/sec (measured at the input) when executed on a
1.7GHz Pentium Xeon processor (cf. [Web]).



4.3 Toeplitz matrices over GF (2k)

Since Theorem 4 applies to any finite field, we may benefit from using GF (2k)
for k > 2. For example, consider F = F ′[x]/(x2 + rx + 1) ∼= GF (216) where
F ′ = GF (2)[x′]/(x′8+x′4+x′3+x′+1) ∼= GF (28) and r = x′ ∈ F ′ (both modulus
polynomials are irreducible over the respective fields; the latter is taken from
the Rijndael cipher.) Using this field, a direct implementation of the convolution
performs just n/16 field multiplications for every 16 output bits.

The fields F ,F ′ are very suitable for software implementation, as follows. For
a, b ∈ F ′ \ {0}, multiplication in F ′ can be realized as ab = exp(logz a + logz b),
where z is some generator of F ′; expz and logz can be implemented via two small
lookup tables [Gla02]. Multiplication in F can then realized by 5 multiplications
in F ′:

(a1x + a0) · (b1 + xb0) ≡ a0b0 − c + (a0b1 + a1b0 − rc)x over F

where c = a1b1 and r = x′ ∈ F ′ is a constant (02h as a bit vector). All additions
can be done as bitwise XOR, so overall each multiplication over F requires 4
XOR operations, 5 integer additions, a few shifts, 5 ·3 table lookups (into the L1
cache) and 5 · 2 tests whether a, b = 0. 8 A straightforward C implementation of
the above description achieved a throughput of 56Mbit/sec in the same settings
as above (cf. [Web]).

4.4 Randomness tests

We subjected the above implementations to the DIEHARD suite of statistical
tests [Mar95]. For the seed, we used 1023 truly random bit generated by the
/dev/random TRNG of Linux 2.4.20. For the source, we generated a 90MB file
of English text by retrieving a large number of e-texts from Project Gutten-
berg, discarding the first 1000 lines of each file (this contains a common header)
and eliminating all whitespaces. Thus the source data included the texts of Moby
Dick and Frankenstein, the complete works of Shakespeare, and other such “ran-
dom” data. We then executed the extractor on successive blocks of n bits, with
n = 768 and m = 256, to get 30MB of output bits. The DIEHARD tests did not
detect any anomaly in this output.9 The test report is available at [Web].

5 Conclusions

In this work, we provide an extractor function that is proven to work in a model
that allows for some adversarial influence on the high-entropy source. The most
obvious question is whether the real world conditions satisfy the assumptions
8 The multiplication of c by the constant r can be computed by a single lookup; this

eliminates 1 addition, 2 lookups and 2 tests.
9 In fact, on first attempt DIEHARD did report certain anomalies in one test. A

careful inspection revealed that our source data accidentally included several nearly-
identical versions of some literary works.



of our model. For example, suppose that a manufacturer constructs a device
that outputs a distribution with min entropy at least k in the “benign” (i.e.,
non-adversarial) settings. Suppose now that he wants to apply our extractor to
the output of this device, in an environment that may be somewhat influenced
by the adversary.

One concern the manufacturer may have is how to ensure that under all pos-
sible adversarial influences, the entropy of the source will remain sufficient? This
is indeed a valid concern, but if this is not met then the result will be insecure re-
gardless of the extractor function used (since the adversary will be able to reduce
the source’s entropy, and no extractor function can add entropy). Therefore, it
is the responsibility of the manufacturer to make sure that the device satisfies
this condition. When this is fulfilled, our construction gives explicit guarantees
on the quality of the extractor’s output.

We stress that while the manufacturer still needs to carefully design the high-
entropy source to be as independent as possible from environmental influence,
the overall scheme will work even if design is not perfect and the adversary can
affect the source in unpredictable ways, subject to the constraints assumed in
our security model.
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A Proof of the Main Theorems

We begin by showing that if H = {hs}s∈S is an `-wise independent family of
hash function for sufficiently large `, then for any fixed distribution X with
sufficiently large min-Ent(X), for most choices of s ∈ S, hs(X) is close to the
uniform distribution. The interpretation is that for most choices of s, hs is a
good randomness extractor for X. This is formally stated in the next lemma.

Lemma 1. Let X be an n-bit random variable with min-Ent(X) ≥ k. Let H =
{hs}s∈S be a family of `-wise independent hash functions from n bits to m bits,
` ≥ 2. For at least a 1− 2−u fraction of s ∈ S, hs(X) is ε-close to uniform for

u =
`

2
(k −m− 2 log(1/ε)− log ` + 2)−m− 2

The proof of uses standard arguments on `-wise independent hash functions
(this technique was used in a very related context in [TV02]). We will need the
following tail inequality for `-wise independent distributions.

Theorem 5. [BR94] Let A1, · · · , An be `-wise independent random variables in
the interval [0, 1]. Let A =

∑n
i=1 Ai and µ = E(A) and δ < 1. Then,

Pr[|A− µ| ≥ δµ] ≤ c`

(
`

δ2µ

)b`/2c

Where c` < 3 and c` < 1 for ` ≥ 8.



Proof (of Lemma 1). For x ∈ {0, 1}n let px = Pr[X = x]. We consider the
probability space of choosing s ∈R S. For every x ∈ {0, 1}n and y ∈ {0, 1}m we
define the following random variable:

Zx,y =
{

px h(x) = y
0 otherwise

We also define Ax,y = Zx,y2k. Recall that for every x, hs(x) is uniformly dis-
tributed, and therefore for every x, y, E(Zx,y) = px2−m. Let Zy =

∑
x∈{0,1}n Zx,y

and Ay =
∑

x∈{0,1}n Ax,y. It follows that for every y ∈ {0, 1}m, E(Zy) = 2−m

and thus, E(Ay) = 2k−m. Note that for every x, y, Ax,y lies in the interval
[0, 1] and that for every y, the variables Ax,y are `-wise independent. Applying
Theorem 5 we obtain that for every y and δ < 1

Pr[|Ay − 2k−m| ≥ δ2k−m] ≤ c`

(
`

δ22k−m

)`/2

Substituting Zy for Ay and choosing δ = 2ε, we get that for every ε < 1/2

Pr[|Zy − 2−m| ≥ 2ε2−m] ≤ c`

(
`

4ε22k−m

)`/2

By a union bound, it follows that with probability 1 − 2mc`

(
`

4ε22k−m

)`/2
>

1 − 2−u over s ∈R S, for all y ∈ {0, 1}m |Zy − 2−m| < 2ε2−m. We now argue
that for such s, hs(X) is ε-close to uniform. Observe that Zy is the probability
that hs(X) = y (we think of s as fixed, with x chosen according to X). The
statistical distance between hs(X) and the uniform distribution is given by:

1/2
∑

y∈{0,1}m

|Zy − 2−m| < 1/2
∑

y∈{0,1}m

2ε2−m ≤ ε

�

When applying Lemma 1 with ` = 2, one must set m < k/2. This can be
avoided as shown by the following lemma, for the special case ` = 2.

Lemma 2. Let X be an n-bit random variable with min-Ent(X) ≥ k. Let H =
{hs}s∈S be a family of 2-wise independent hash functions from n bits to m. For
at least a 1− 2−u fraction of s ∈ S, hs(X) is ε-close to uniform for

u =
k −m

2
− log(1/ε)− 1

The proof is based on a technique introduced in [ILL89], and will appear in
the full version of this paper. The next corollary follows easily, by a union bound.

Corollary 1. Let X1, · · · , X2t be random variables with values in {0, 1}n such
that for each 1 ≤ i ≤ 2t, min-Ent(Xi) ≥ k. Let H and u be as in Lemma 1 (or
Lemma 2). For at least a 1−2t−u fraction of s ∈ S it holds that for all i, hs(Xi)
is ε-close to uniform.

Theorems 1 and 2 follow by setting u = log(1/ε).


