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Abstract

We show that every construction of one-time signature schemes from a random oracle achieves
black-box security at most 2(1+o(1))q, where q is the total number of oracle queries asked by the
key generation, signing, and verification algorithms. That is, any such scheme can be broken with
probability close to 1 by a (computationally unbounded) adversary making 2(1+o(1))q queries
to the oracle. This is tight up to a constant factor in the number of queries, since a simple
modification of Lamport’s one-time signatures (Lamport ’79) achieves 2(0.812−o(1))q black-box
security using q queries to the oracle.

Our result extends (with a loss of a constant factor in the number of queries) also to the ran-
dom permutation and ideal-cipher oracles. Since the symmetric primitives (e.g. block ciphers,
hash functions, and message authentication codes) can be constructed by a constant number of
queries to the mentioned oracles, as corollary we get lower bounds on the efficiency of signature
schemes from symmetric primitives when the construction is black-box. This can be taken as
evidence of an inherent efficiency gap between signature schemes and symmetric primitives.

1 Introduction

Digital signature schemes allow authentication of messages between parties without shared keys.
Signature schemes pose an interesting disconnect between the worlds of theoretical and applied
cryptography. From a theoretical point of view, it is natural to divide cryptographic tools into
those that can be constructed using one-way functions and those that are not known to have
such constructions. Signature schemes, along with private key encryption, message authentication
codes, pseudorandom generators and functions, belong to the former camp. In contrast, the known
constructions of public key encryption are based on structured problems that are conjectured to be
hard (i.e., problems from number theory or the theory of lattices). From a practical point of view,
it is more natural to divide the tools according to the efficiency of their best known constructions.
The division is actually similar, since schemes based on structured problems typically require both
more complicated computations and larger key size, as they often have non-trivial attacks (e.g.,
because of the performance of the best known factoring algorithms, to get 2n security based on
factorization one needs to use Ω̃(n3) bit long integers).
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Signature schemes are outlier to this rule: even though they can be constructed using one-way
functions, applied cryptographers consider them as relatively inefficient since practical construc-
tions are based on structured hard problems, and thus are significantly less efficient than private key
encryption, message authentication codes, pseudorandom functions etc... In particular, very high
speed applications shun digital signatures in favor of message authentication codes,1 even though
the latter sometime incur a significant cost in keeping shared private keys among the entities in-
volved (e.g., see [PCST00] and the references therein). The reason is that known constructions of
such schemes from one-way functions or other unstructured primitives are quite inefficient. This
problem already arises in one-time signatures [Rab78, Lam79, Mer87], that are a relaxation of
digital signatures offering security only in the case that the attacker observes at most a single valid
signature. The best known constructions for this case require Ω(k) invocations of the one-way
function (or even a random oracle) to achieve 2k security. In contrast, there are known construc-
tions of message authentication codes, private key encryptions, and pseudorandom generators and
functions that use only O(1) queries to a random oracle.

In this paper, we study the question of whether there exist more efficient constructions of
signature schemes from symmetric primitives such as hash functions and block ciphers. We show
to a certain extent that the inefficiency of the known constructions is inherent.

1.1 Our results

We consider the efficiency of constructions of one-time signatures using black boxes / oracles that
model ideal symmetric primitives: the random oracle, the random permutation oracle, and the ideal
cipher oracle (see Section 3 for definitions). We wish to study the security of such constructions as
a function of the number of queries made to the oracle by the construction (i.e., by the generation,
signing, and verification algorithms). Of course, we believe that one-time signatures exist and so
there are in fact signature schemes achieving super-polynomial security without making any query
to the oracle. Hence we restrict ourselves to bounding the black-box security of such schemes. We
say that a cryptographic scheme using oracle O has black-box security S if for every 1 ≤ T ≤ S,
a (potentially computationally unbounded) adversary that makes at most T queries to O cannot
break the scheme with probability larger than T/S (see Definition 3.6). Our main result is the
following:

Theorem 1.1. Any one-time signature scheme for n-bit messages using at most q ≤ n queries to
a random oracle has black-box security at most 2(1+o(1))q where o(1) goes to zero with q.

This is in contrast to other primitives such as message authentication codes, collision resistant
hash functions, private-key encryption, and pseudorandom functions, that can all be implemented
using one or two queries to a random oracle with black-box security that depends exponentially
on the length of these queries. We note that Theorem 1.1 is tight up to a constant factor in the
number of queries, since a simple modification of Lamport’s scheme [Lam79] yields 2(α−o(1))q black-
box security, where α ∼ 0.812 is equal to H(c)/(1 + c), where H is the Shannon entropy function
and c = (3−

√
5)/2 (see Section 5). We also prove several extensions of the main result:

Other oracles. Since our goal is to find out whether signatures can be efficiently constructed
from symmetric primitives, it makes sense to study also other primitives than the random

1In contrast to digital signatures that have a public verification key and secret signing key, message authentication
codes have a single key for both verification and signing, and hence that key must be kept private to maintain security.
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oracle. Theorem 1.1 extends (with a loss of a constant factor in the number of queries) to the
ideal cipher oracle and random permutation oracle that are also sometimes used to model the
idealized security of symmetric primitives such as block ciphers and one-way permutations.

Implementing adversary in BPPNP. The proof of Theorem 1.1 shows that for every q-query
one-time signature scheme for {0, 1}n from random oracle, there is an adversary that breaks
it with probability close to 1 using at most poly(q)2q queries. However, the running time of
this adversary can be higher than that. This is inherent, as otherwise we would be proving
unconditionally the non-existence of one-time signature schemes. However, we show that
this adversary can be implemented in probabilistic polynomial-time using an oracle to an
NP-complete problem. Thus, similar to what Impagliazzo and Rudich [IR89] showed for
key-exchange, if there were a more efficient construction of signature schemes from random
oracles with a proof of security relying on the adversary’s efficiency, then this is also a proof
that P 6= NP.

Imperfect completeness. While the standard definition of signature schemes requires the verifier
to accept valid signatures with probability 1, one can also consider relaxed variants where the
verifier has some small positive probability of rejecting even valid signatures. We say that
such signature schemes satisfy imperfect completeness. We can extend Theorem 1.1 to this
case, though to get an attack succeeding with high probability we lose a quadratic factor in
the number of queries.

Efficiency of the verifier. Because the signing and the verification algorithms are executed more
often than the key generation algorithm, it makes sense to study their efficiency separately
rather than just studying the total number of queries. Although in the construction for
signature schemes that we will see later (see Section 5), the signing algorithm asks only one
oracle query and the total number of queries is optimal up to a constant factor, the question
about the efficiency of the verifier still remains. We show that (keeping the number of signing
queries fixed to one) there is a tradeoff between the number of queries asked by the verification
algorithm and the total number of queries, conditioned on getting certain black-box security.

Black-box constructions. As mentioned above, all the symmetric primitives can be constructed
from random oracle, random permutation oracle, or ideal cipher oracle by only O(1) queries
and get exponential security over the length of the queries. Therefore, our lower bounds on
signatures from ideal oracles yield as corollaries lower bounds on the efficiency of signatures
from symmetric primitives when the construction is black box. This holds even when the
one-way permutation used in the construction has n/2 hardcore bits. The latter answers a
question raised by [GGKT05]. Our results reject the existence of black-box constructions
unconditionally (similar to [HHRS07], while the results of [GGKT05] show the existence of
one-way function as a consequence. We prove the strongest possible form of lower bound on
the efficiency of black box constructions of signatures from symmetric primitives. Namely,
we show that black-box constructions of signature schemes for n-bit messages based on ex-
ponentially hard symmetric primitives of security parameter n, need to make at least Ω(n)
calls to the primitive.

Note on the random oracle model. Although the random oracle model [BR93] (and its cousin
the ideal cipher model) is frequently used as an idealization of the properties enjoyed by certain

3



constructions such as the SHA-1 hash function [Nat95] and the AES block cipher [DR02], it has
drawn a lot of criticism as this idealization is not generally justified [CGH98]. However, for the
sake of lower bounds (as is our concern here) this idealization seems appropriate, as it is a clean
way to encapsulate all the attractive properties that could be obtained by constructions such as
SHA-1,AES, etc..

Taxonomy of black-box reductions. Reingold, Trevisan and Vadhan [RTV04] study various
notions of “black-boxness” of security proofs in cryptography according to whether a construction
of a cryptographic tool based on an underlying primitive uses this primitive as a black box, and
whether its security proof uses the adversary as a black box. Those definitions are not in the
oracle model that we are concerned here. They call a construction for primitive A from primitive
B black-box, if the implementation of A uses B as a black box. The security reduction which
converts an adversary for the implementation of A to an adversary for B could have different levels
of being black box 2. However, in the oracle based constructions studied here, the implementation
reduction is always forced to be black-box, and for the proof of security, there is no security
measure defined for the primitive used (i.e. the oracle) to which we could reduce the security of our
construction. One common way to prove security for oracle based constructions is to rely on the
statistical properties of the oracle and show that any (even computationally unbounded) adversary
breaking the implementation needs to ask many queries from the oracle. This gives a quantitative
security guarantee and is called a black-box proof of security in the oracle model. A non-black-box
proof of security in this model, is a proof showing that any adversary who runs in time poly(n, T )
where n is the input length and T the number of oracle queries it asks, needs to ask many queries
from the oracle. In this work, we give a lower bound on the number of queries needed to get
black-box security S for one-time signatures in various ideal oracle models, and also show that if
P = NP, then this bound holds for non-black-box proofs of security as well. We note that if one-way
functions exist, then there do exist constructions making no query to the random oracle with super-
polynomial non-black-box security. As we mentioned before, our lower bounds in the ideal oracle
models yield some lower bounds on the efficiency of one-time signatures from symmetric primitives
in the standard model of [RTV04]. We also note that there do exist cryptographic constructions
that use the primitive [GMW86, GMW87] or the adversary [Bar01] in a non-black-box way, but
at the moment all of the known highly efficient cryptographic constructions (e.g., those used in
practice) are black box, in the sense that if they use a generic underlying primitive (i.e., not based
on specific problems such as factoring) then it’s used as a black-box and if they have a proof of
security then the proof treats the adversary as a black box.

1.2 Prior work

To the best of our knowledge, this is the first lower bound on the number of random oracle queries
needed to construct signature schemes. Starting with the seminal paper of Impagliazzo and Rudich
[IR89], that showed that there is no construction of a key exchange protocol from a random oracle
with super-polynomial black-box security, and therefore rejecting black-box constructions of key
exchange protocols from one-way function, several works have investigated the existence of black-
box constructions reducing one kind of cryptographic scheme to another. However, only few works

2It could be fully black-box, semi black-box, or non-black-box, and if the implementation reduction is black box,
the whole construction is called, (resp.) fully black-box, semi black-box, or weakly black-box.
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studied the efficiency of such constructions [KST99, GGKT05]. Of these, the most relevant is
the paper by Gennaro, Gertner, Katz, and Trevisan [GGKT05]. They considered the efficiency of
basing various cryptographic primitives on one-way permutations (OWP) secure against S-sized
circuits, and proved that to achieve super-polynomial security (1) pseudorandom generators with
` bits of stretch require Ω(`/ logS) invocations of the OWP, (2) universal one-way hash functions
compressing their input by ` bits require Ω(`/ logS) invocations, (3) private key encryption schemes
for messages of length n with key length k require Ω((n−k)/ logS) invocations, and (most relevant
for us) (4) one-time signature schemes for n-bit messages require Ω(n/ logS) invocations.3

However, the one-way permutation oracle used by [GGKT05] was very far from being a random
oracle.4 Indeed, the applications (1), (2), and (3) can be implemented using only a constant
number of calls to a random oracle, and correspondingly are considered to have efficient practical
implementations. Thus, [GGKT05] did not answer the question of whether signature schemes can
be efficiently constructed from efficient symmetric key primitives such as hash functions and block
ciphers. It is this question that we are concerned with in this paper. Thus, on a technical level
our work is quite different from [GGKT] (as we work with a random oracle and cannot “tamper”
with it to prove our lower bound) and in fact is more similar to the techniques in the original
work of Impagliazzo and Rudich [IR89]. We note that this work partially answers a question
of [GGKT05], as it implies that any black-box construction of one-time signatures from one-way
permutation p : {0, 1}n 7→ {0, 1}n with even n/2 hard-core bits requires at least Ω(n) queries to
the permutation.

Several works [Mer87, EGM89, Vau92, BM94, BM96] considered generalizations of Lamport’s
one-time signature scheme. Some of these achieve shorter keys and signatures, although their
relation between the number of queries and security (up to a constant factor) is at most a constant
factor better than Lamport’s scheme (as we show is inherent).

2 Our techniques

We now give a high level overview of the ideas behind the proof of Theorem 1.1. Our description
ignores several subtle issues, and the reader is referred to Section 4 for the full proof. To understand
the proof of the lower bound,5 it is instructive to review the known upper bounds and in particular
the simple one-time signature scheme of Lamport [Lam79]. To sign messages of length n with
security parameter ` using a random oracle O (that we model as a random function from {0, 1}`
to {0, 1}`) the scheme works as follows:

• Generate the public verification key V K by choosing 2n random strings {xbi}i∈[n],b∈{0,1} in
{0, 1}` and setting V K to be the sequence {ybi}i∈[n],b∈{0,1} for ybi = O(xbi).

• To sign a message α ∈ {0, 1}n, simply reveal the preimages in the set {xbi}i∈[n],b∈{0,1} that
correspond to the bits of α. That is, the signature is xα1

1 , . . . , xαnn .

• The verifier checks that indeed O(xαii ) = yαii for every i ∈ [n].
3Otherwise, we can construct a one-way function directly.
4They considered an oracle that applies a random permutation on the first t bits of its n-bit input, for t� n, and

leaves the rest of the n− t bits unchanged. This is a one-way permutation with 2Ω(t) security.
5We use the terms “lower bound” and “upper bound” in their traditional crypto/complexity meaning of negative

results vs. positive results. Of course one can view Theorem 1.1 as either upper-bounding the security or lower-
bounding the number of queries.
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This scheme uses 3n queries. It can be shown that it has 2Ω(`) security. Note that in this case
the security can be arbitrarily large independently of the number of queries. Indeed, note that
Theorem 1.1 requires that the number of queries q is not larger than the length of the messages
to be signed. Lamport’s scheme can be easily modified to work for unbounded size messages by
following the well known “hash-and-sign” paradigm: first use the random oracle to hash the message
to length k, and then apply Lamport’s scheme to the hashed value. This will result in a scheme
with 3k + 2 queries and (by the birthday bound) 2k/2 black-box security (see Section 5 for some
improvements). We see that now indeed the security is bounded by 2O(q) (where q = 3k + 2 is the
number of queries), regardless of the length ` of the queries.

The above discussion shows that to prove Theorem 1.1, we will need to use the fact that there
is a large number of potential messages, which is indeed what we do. Note that the reason that the
hash-and-sign variant of Lamport’s scheme only achieves 2k/2 security is that if a pair of messages
α, β satisfies Ok(α) = Ok(β) (where Ok(x) denotes the first k bits of O(x)), then they have the
same signature, and so a signature for α allows an adversary to forge a signature on β. We will
try to generalize this observation to arbitrary signature schemes. For every such scheme S and two
messages α, β (after fixing the oracle and the randomness of the system), we will say that “α is
useful for β” if they satisfy a certain condition. Then (roughly speaking) we will prove that: (A)
if α is useful for β then a signature on α can be used to compute a signature on β by asking at
most 2O(q) oracle queries (where q is the total number of queries made by the scheme S), and (B)
if α and β are chosen at random from a large enough space of messages, then α will be useful for β
with probability at least 2−O(q). Together (A) and (B) imply that, as long as the space of possible
messages is large enough, then the black-box security of S is bounded by 2O(q), since the adversary
can find a useful pair of messages α, β with probability 2−q, ask for a signature on α and use that
to forge a signature on β by asking 2q queries.6

Defining the usefulness condition. This proof strategy rests of course on the ability to
find an appropriate condition “α is useful for β” for every one-time signature scheme S. This is
what we describe now. For now, we will assume that only the key generation algorithm of S is
probabilistic, and that both the signing and verification algorithms are deterministic.7 For every
fixed randomness for the generation algorithm, fixed oracle, and a message α, we define G,Sα and
Vα to be the sets of queries (resp.) made by the generation, signing, and verification algorithms
where the last two are applied on the message α.

First attempt. Observe that in the hash-and-sign variant of Lamport’s scheme, α and β have
the same signature if Vα = Vβ. This motivates stipulating for every signature scheme that α is
useful for β if Vβ ⊆ Vα. This definition satisfies Property (A) above: if we know all the queries
that the verifier will make on a signature of β, then finding a signature that makes it accept can
be done by an exponential-time exhaustive search that does not make any oracle queries at all.
The problem is that it might not satisfy (B): it’s easy to make the verifier ask, when verifying a
signature for α, a query that uniquely depends on α, thus ensuring Vβ * Vα for every distinct α, β.

6The actual adversary we’ll show will operate by asking poly(q)2q queries, and it succeeds with probability almost
1, see the proof of Theorem 4.1.

7We study the randomized verifier in Section 6.3, but assuming that the signer is deterministic is without loss of
generality. That is because the key generator can give, through the secret key, a secret seed s to the signer, and the
signer would use O(s, α) as the randomness needed to sign the message α.
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Second attempt. A natural intuition is that verifier queries that do not correspond to queries
made by the generation algorithm are sort of “irrelevant”— after all, in Lamport’s scheme all the
queries the verifier makes are a subset of the queries made by the generation algorithm. Thus, we
might try to define that α is useful for β if Vβ ∩G ⊆ Vα. Since G has at most q queries, and so at
most 2q subsets, this definition satisfies Property (B) since if α and β are randomly chosen from
a set of size 2q then α will be useful for β with probability at least 2−2q. Unfortunately, it does
not satisfy Property (A): there is a signature scheme for which every pair of messages α, β satisfies
this condition even when a signature for α cannot be used to forge a signature on β.8

Our actual condition. The condition we actually use, roughly speaking, is that α is useful for
β if

Vβ ∩ (G ∪ Sα) ⊆ Vα . (1)

Using Bollobás’s Inequality [Bol65] (see the proof of Claim 4.7) it can be shown that the condition
(1) satisfies Property (B). It’s less obvious why it satisfies Property (A)— to see this we need to
see how our adversary will operate. The high level description of our attack is as follows:

1. Input: Key Generation. The adversary receives the verification key V K.

2. Request Signature. Choose α 6= β ←R {0, 1}n at random, and get σα, the signature of α.

3. Learning Oracle Queries. Run Ver(V K,α, σα) to learn the set Vα of oracle queries that it
asks and their answers. (Later we will modify this step somewhat, and ask some more oracle
queries.)

4. Sampling a Possible Transcript. Conditioned on knowing V K, σα, and answers of Vα,
guess: the value of SK, the sets G and Sα, and their answers. Let ˜SK, G̃, and S̃α be the
guesses.

5. Forging. Sign the message β by using ˜SK and sticking to the oracle answers guessed for
queries in G̃∪ S̃α to get σβ. That is, if we wanted to ask a an oracle query in G̃∪ S̃α, use the
guessed answer, and otherwise ask the real oracle O. Output σβ.

Note that the queries for which we might have guessed a wrong answer are in the set (G̃∪S̃α)\Vα,
because we did the guesses conditioned on knowing Vα and its answers. Suppose that during the
verification of (β, σβ), none of these queries is asked from the oracle (i.e. Vβ∩(G̃∪ S̃α) ⊂ Vα). Then
we can pretend that our guesses were correct. That is, because the answers to different queries of
random oracle are independent, as far as the verifier is concerned our guesses could be right, and
hence by definition, the verification of (β, σβ) must accept with probability 1.

The description of the attack above shows that a similar condition to the condition (1), namely

Vβ ∩ (G̃ ∪ S̃α) ⊂ Vα , (2)

has Property (A). But condition (2) might not have Property (B). We cope with this by ensuring
that the attacker has sufficient information so that (essentially) whenever (1) happens, (2) also

8Such an example can be obtained by the variant of Lamport’s scheme where each signer uses the verification
key V K to sign a new verification key V K′ (the randomness for which is part of the secret key), and then signs
the message using the secret key corresponding to V K′. In this case Vα ∩ G = Vβ ∩ G for every pair α, β, even if a
signature on α cannot be used to compute a signature on β.
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happens. This is accomplished by learning more oracle queries before making the guesses. Namely,
we learn all the queries that are in the set G̃ ∪ S̃α with some noticeable probability (conditioned
on what we know about them). We then use a careful hybrid argument (that involves the most
technical part of the proof) to show that after performing this learning, the condition (2) occurs
with probability at least as large as the probability that (2) occurs (up to some lower order terms).
Thus our actual usefulness condition will be (2), though for the complete definition of the sets G̃, S̃α
involved in it, one needs to go into the details of the proof of Theorem 4.1).

3 Preliminaries

3.1 Basic Probability Facts

We recall some simple but useful well known facts and definitions about random variables.

Definition 3.1. The statistical distance of two finite random variables X,Y , denoted by SD(X,Y ),
is defined to be 1

2

∑
a |Pr[X = a]− Pr[Y = a]|.

Lemma 3.2. If A,B are random variables, and the event E is defined over Supp(A) ∪ Supp(B)
(where Supp(X) denotes the support of the random variable X), then |Pr[E(A)] − Pr[E(B)]| ≤
SD(A,B).

Lemma 3.3. If the random variable A′ is a function of random variable A, and the random variable
B′ is a function of B, then SD(A′, B′) ≤ SD(A,B).

Lemma 3.4. If the event E is defined over the random variable A, and the event D is defined over
the random variable B, and we have SD(A | E,B | D) = 0, then SD(A,B) ≤ (Pr[E] + Pr[D])/2.

By Un we mean the uniformly distributed random variable over n-bit strings.

3.2 Signature Schemes in Oracle Models

We define the notion of one-time signature schemes and their black-box security. We specialize our
definition to the case that the signature schemes use an oracle O that may also be chosen from
some probability distribution. We use the standard notation AO(x) to denote the output of an
algorithm A on input x with access to oracle O.

Definition 3.5. An oracle signature scheme (with perfect completeness) for n bit messages is a
triple of oracle algorithms (Gen,Sign,Ver) (where Gen could be probabilistic) with the following
property: for every oracle O, if (SK, V K) is a pair that is output by GenO(1n) with positive
probability, then for every α ∈ {0, 1}n, VerO(V K,α,SignO(SK,α)) = 1. We call SK the signing
key and V K the verification key.

One can also make a relaxed requirement that the verification algorithm only needs to accept
valid signatures with probability 0.9 (where this probability is over the verifier’s coins only). We
say that such relaxed signature schemes have imperfect completeness, and we will consider such
schemes in Section 6.3. If the oracle algorithms of the Definition 3.5 run in polynomial-time, then
we call the signature scheme efficient. Note that we consider (not necessarily efficient) signature
algorithms on a finite set of messages. For upper bounds (i.e., positive results) one would want
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uniform efficient algorithms that could handle any size of message, but for a lower bound (i.e., a
negative result), this simpler definition will do.

So far, we did not say anything about the security. In the following definition we specify the
“game” in which the adversary participates and tries to break the system and give a quantitative
measure for the security.

Definition 3.6. For every S ∈ N, the oracle signature scheme (Gen, Sign,Ver) is a one-time signa-
ture scheme with black-box security S, if for every message α ∈ {0, 1}n, 1 ≤ T ≤ S, and adversary
algorithm A that makes at most T queries to its oracle, Pr[Ver(V K,α∗, σ∗) = 1 where (α∗, σ∗) =
AO(V K, SignO(SK,α)) and α∗ 6= α] ≤ T

S , where (SK, V K) = GenO(1n), and this probability is
over the coins of all algorithms (Gen, Sign,Ver, and A), and the choice of the oracle O.

This is a slightly weaker definition of security than the standard definition, since we are not
allowing the adversary to choose the message α based on the public key. However, this is again fine
for lower bounds (the known upper bounds do satisfy the stronger definition). Also, some texts use
1/S (rather than T/S) as the bound on the success probability. Security according to either one of
these definitions is always at most quadratically related, but we feel Definition 3.6 is more precise.

In a non-black-box proof of security, the running time of the adversary is utilized in order to
prove the security of the system:

Definition 3.7. For every S ∈ N, the oracle signature scheme (Gen,Sign,Ver) is a one-time signa-
ture scheme with non-black-box security S, if for every message α ∈ {0, 1}n, T ≤ S, and adversary
algorithm AT that makes at most T oracle queries and runs in time poly(n, T ), Pr[Ver(V K,α∗, σ∗) =
1 where (α∗, σ∗) = AOT (V K, SignO(SK,α)) and α∗ 6= α] ≤ T

S , where (SK, V K) = GenO(1n), and
this probability is over the coins of all algorithms (Gen, Sign,Ver, and AT ), and the choice of the
oracle O.

Oracles. In this work, as for the oracle signature schemes, we only use one of the following oracles:
(1) The random oracle returns on input x ∈ {0, 1}n the value f(x) where f is a random function
from {0, 1}n to {0, 1}n.9 (2) The random permutation oracle returns on input x ∈ {0, 1}n the
value f(x) where f is a random permutation on {0, 1}n. (3) The ideal cipher oracle with message
length n, returns on input (k, x, d) where k ∈ {0, 1}∗, x ∈ {0, 1}n and d ∈ {F,B}, fk(x) if d = F
and f−1

k (x) if d = B, where for every k ∈ {0, 1}∗, fk is a random permutation on {0, 1}n. These
three oracles are standard idealizations of (respectively) hash functions, one-way permutations, and
block ciphers (see also Section 7).

4 Proof of the main result

Theorem 4.1. Let (Gen, Sign,Ver) be a one-time oracle signature scheme (with perfect complete-
ness) in random oracle model for the space of messages M in which the total number of oracle

queries asked by Gen, Sign, and Ver is at most q, and |M| ≥ ( q
q/2)
λ . Then there is a (computation-

ally unbounded) adversary which asks at most O(
q2( q

q/2)
λδ2 ) = O( q

1.52q

λδ2 ) oracle queries and breaks the
scheme with probability 1 − (λ + δ). This probability is over the randomness of the oracle as well
as the coin tosses of the key generation algorithm and the adversary.

9More generally, f can be a function from n to `(n) for some function ` : N → N, but using standard padding
arguments we may assume `(n) = n.
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Theorem 4.1 implies Theorem 1.1 via the following corollary:

Corollary 4.2. Let (Gen, Sign,Ver) be a one-time oracle signature for the messagesM = {0, 1}n in
the random oracle model in which the total queries asked by the scheme is at most q where q ≤ n,
then there is an adversary asking 2(1+o(1))q queries breaking the scheme with probability at least
1− o(1) and at least 0.49 for any q ≥ 1.

Proof. Let δ = λ =
( q
q/2

)
/2q = θ(q−1/2) = o(1), so we have |M| = 2n ≥ 2q =

( q
q/2

)
/λ. Therefore

we get an adversary asking O(q3.5
( q
q/2

)
) = O(q32q) = 2(1+o(1))q queries breaking the scheme with

probability 1− o(1). Thus the black-box security of the scheme is at most by 2(1+o(1))q

1−o(1) = 2(1+o(1))q.

For any q ≥ 1, λ can be as small as
(

1
0

)
/21 = 1/2, and by taking δ = 0.01 the success probability

will be at least 0.49.

We now turn to proving Theorem 4.1. Let (Gen, Sign,Ver) be as in the theorem’s statement.
We assume that only Gen is probabilistic, and Sign and Ver are deterministic. We also assume
that all the oracle queries are of length `. Since we assume the signature has perfect completeness,
these assumptions can be easily shown to be without loss of generality. (In the case of imperfect
completeness the verifier algorithm is inherently probabilistic; this case is studied in Section 6.3.)
We will show an adversary that breaks the signature system with probability 1− (λ+O(δ)), which
implies Theorem 4.1 by simply changing δ to δ/c for some constant c.

The adversary’s algorithm. Our adversary Adv will operate as follows:

Input: Key generation. The adversary receives a verification key V K, where (V K, SK) =
Gen(1n).

Step 1: Request signature. Let β0, . . . , βN−1 denote the first N =
( q
q/2)
λ distinct messages (in

lexicographic order) in M. Let α0, . . . , αN−1 be a random permutation of β0, . . . , βN−1. Adv
asks for a signature on α0 and verifies it (note that α0 is chosen independently of the public
key). We denote the obtained signature by σ0, and we denote by T0 the transcript of the
algorithms run so far, which includes the random tape of the key generation algorithm, all
the queries made by the key generation, signing, and verification algorithms, and the answers
to these queries. So T0 completely describes the running of the algorithms so far. (Note that
Adv only has partial information on T0.)

Step 2: Learning query/answer pairs. We denote by L0 the information that Adv currently
has on the oracle O and the randomness of the generation algorithm: that is, L0 consists of
V K, σ0 and the queries made by the verifying algorithm Ver on input V K, σ0, along with the
answers to these queries. Let ε = δ

qN , and M = q
εδ = q2N

δ2 . For i = 1, . . . ,M , do the following:

1. Let Di−1 be the distribution of T0, the transcript of the first step, conditioned on only
knowing Li−1.

2. We let Q(Li−1) denote the queries appearing in Li−1. If there exists a string x ∈
{0, 1}`\Q(Li−1) that is queried with probability at least ε in Di, then Adv lets Li be Li−1

concatenated with the query/answer pair (xi,O(xi)), where xi is the lexicographically
first such string. Otherwise, Li = Li−1.
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Step 3: Sampling a possible transcript. Adv generates a random transcript T̃0 according to
the distribution DM . Note that T̃0 also determines a secret signing key, which we denote by
˜SK ( ˜SK may or may not equal the “true” signing key SK). T̃0 may also determine some

query/answer pairs that were not in LM , and hence may not agree with the the actual answers
of the “true” oracle O. We denote by Õ the oracle that on input x, if x appears as a query
in T̃0 then Õ(x) outputs the corresponding answer, and otherwise Õ(x) = O(x).

Step 4: Forging. For every j = 1, . . . , N − 1, Adv uses ˜SK and the oracle Õ to compute a
signature on the message αj , which it then tries to verify this time using V K and the “true”
oracle O. Adv outputs the first signature that passes verification.

Analysis. The number of queries asked during the attack is at most M + qN = q2N
δ2 + qN ≤

2q2N
δ2 = O(

q2( q
q/2)
λδ2 ). To analyze the success probability of Adv we will prove the following lemma:

Lemma 4.3. For every j ∈ [0..N − 1], let Vj denote the set of queries made by Adv when verifying
the signature on αj. Let G̃ and S̃0 be the sets of queries made by the generation and signing
algorithms according to the transcript T̃0. For every j ≥ 1, let Ej be the event that Vj∩(G̃∪S̃0) ⊆ V0.
Then,

Pr[∪j∈[1..N−1]Ej ] = 1− (λ+ 2δ) .

Note that the event Ej corresponds to the condition that “α0 is useful for αj” described in
Section 2. Lemma 4.3 implies Theorem 4.1 since if the event Ej holds then when verifying the
signature for αj , the verifier never asks a query on which the oracles O and Õ differ (these oracles
can differ only on queries in (G̃ ∪ S̃0) \ V0). But if the verifier uses the same oracle Õ used by the
generation and signing algorithm, then by the definition of a signature scheme, it must accept the
signature.

4.1 Proof of Lemma 4.3

It turns out that using known combinatorial techniques, one can show that ∪jEj holds with high
probability if all signatures and verifications were to use the “true” oracle O and signing key SK (as
opposed to Õ and ˜SK). The idea behind the proof is to show this holds in our case using a hybrid
argument. Specifically, we define four distributions H0,H1,H2,H3, where H0 corresponds to T̃0

joint with all the oracle queries/answers that the adversary gets during the signing and verification
algorithms on αj for j ≥ 1 (we call this information the transcript of the experiment), and H3

corresponds to T0 (the real transcript of the first step) joint with the rest of the system’s transcript
if we use the “true” oracle and signing key (so the adversary is not doing anything in generating
H3). We will prove the lemma by showing that the probability of ∪jEj is almost the same in all
these four distributions.

Definition of hybrid distributions. The four hybrid distributions H0, ..,H3 are defined as
follows:

H0: This is the distribution of T̃0, T1, . . . , TN−1, where T̃0 denotes the transcript sampled by Adv
in Step 3, while Tj (for j ≥ 1) denotes the transcript of the j

th
signature (i.e., the queries

and answers of the signing and verification algorithms on αj) as generated by Adv in Step 4.
Note that T0 and T̃0 describe also the running of the key generation while Tj for j ≥ 1 do
not.
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H1: This is the same distribution as H0, except that now in Step 4 of the attack, the adversary uses
the modified oracle Õ for both signing and verifying the signatures on α1, . . . , αN−1 (recall
that in H0 the oracle Õ is only used for signing).

H2: This is the same distribution as H1, except that we make a slight modification in the definition
of Õ: for every query x that was asked by the generation, signing, and verification algorithms
in the Input step and Step 1 (i.e., for every query in T0), we answer with O(x) only if x also
appears in LM . Otherwise, we answer this query with a completely random value. Note that
all the queries of the verification are in L0 and so in LM as well. In other words, Õ agrees
with O on all the queries that Adv has asked from O till the end of Step 2, and all the others
are answered completely at random.

H3: This is the same distribution as the previous ones, with the difference that T̃0 is chosen equal
to T0 (and so, there is no point in neither Step 2 of the attack nor defining Õ anymore). In
other words, this is the transcript (randomness and all query/answer pairs) of the following
experiment: (1) Generate signing and verification keys (SK, V K) using a random oracle O
(2) for j = 0 . . . N − 1, sign αj and verify the signature using SK, V K and O.

Note that the hybrid distributions Hi are over the coin tosses of the oracle, the key generation
algorithm, and the adversary. Lemma 4.3 follows immediately from the following claims:

Claim 4.4. PrH0 [∪j≥1Ej ] = PrH1 [∪j≥1Ej ].

Claim 4.5. SD(H1,H2) ≤ 2δ. Thus, PrH1 [∪j≥1Ej ] ≥ PrH2 [∪j≥1Ej ]− 2δ.

Claim 4.6. H2 ≡ H3. Thus, PrH2 [∪j≥1Ej ] = PrH3 [∪j≥1Ej ].

Claim 4.7. PrH3 [∪j≥1Ej ] ≥ 1− λ.

4.2 Proof of Claims 4.4 to 4.7

We now complete the proof of Lemma 4.3 by proving Claims 4.4 to 4.7.

Claim 4.4 (Restated). PrH0 [∪j≥1Ej ] = PrH1 [∪j≥1Ej ].

Proof. Suppose we sample the hybrid distributions H0 and H1 using the same oracle O, same
randomness for key generation, and the same randomness for the adversary. Then it is easy to see
that for any j, the event Ej holds for H0 iff it holds for H1 and so is the event ∪j≥1Ej . This shows
that the probability of ∪j≥1Ej happening in both distributions is the same.

Claim 4.5 (Restated). SD(H1,H2) ≤ 2δ. Thus, PrH1 [∪j≥1Ej ] ≥ PrH2 [∪j≥1Ej ]− 2δ.

Proof. Let B be the event that Adv asks a query in Q(T0) \ Q(LM ), where Q(T0) denotes the
queries in the transcript T0. It is easy to see that conditioned on B doesn’t happen H1 and H2 are
identically distributed. That is because if we use the same randomness for key generation, oracle
and the adversary in the sampling of H1 and H2, conditioned on B not happening (in both of
them), the value of H1 and H2 is equal. In particular it shows that the probability of of B is the
same in both distributions. Therefore the statistical distance between H1 and H2 is bounded by
the probability of B. In the following, we show that PrH2 [B] ≤ 2δ. In the the following all the
probabilities will be in the experiment for H2.
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Let ε, δ and M be as in Step 2 of Adv: ε = δ
qN , and M = q

εδ . We start by showing: Pr[C] ≤ δ
where the event C is defined as

C : ∃x 6∈ Q(LM ) that is obtained in DM with prob ≥ ε

and Di is defined, as in Step 2 of Adv to be the distribution of the transcript of the first signature
conditioned on the information in Li.

Proof of Pr[C] ≤ δ. For every possible query x to the random oracle, let qx denote
the probability, taken over both the random oracle and the randomness used by Gen
and Adv, that x is queried when generating a key and then signing and verifying α0.
Then

∑
x qx ≤ q (*) since this sum is the expected number of queries in this process.

Let px denote the probability that x is learned at some iteration of Step 2. Then,
qx ≥ εpx (**). Indeed, if Ai is the event that x is learned at the i

th
iteration, then

since these events are disjoint qx = Pr[x is queried] ≥
∑M

i=1 Pr[x is queried | Ai] Pr[Ai].
But by definition of the learning process , Pr[x is queried | Ai] ≥ ε and hence qx ≥
ε
∑M

i=1 Pr[Ai] = εpx. But the event C only occurs if M distinct queries are learned in
Step 2. Hence, if it happens with probability more than δ then the expected number
of queries learned, which is

∑
x px, is larger than δM . Yet combining (*) and (**), we

get that δM <
∑

x px ≤
∑

x qx/ε ≤ q/ε, contradicting the fact that M = q/(εδ).

Now we will show that Pr[B | ¬C] ≤ δ, and it means that Pr[B] ≥ Pr[¬C] Pr[B | ¬C] ≥
(1− δ)2 > 1− 2δ. Note that Adv makes all its operations in Step 4 based solely on the information
in LM , and the answers chosen for queries Q(T0)\Q(LM ) does not affect it (because even if queries
in Q(T0)\Q(LM ) are asked by Adv, they will be answered at random). So, it means that the value
of H2 is independent of T0, conditioned on knowing LM . Thus, instead of thinking of T0 being
chosen first, then LM computed and then all queries of Step 4 being performed, we can think of
LM being chosen first, then Adv runs Step 4 based on LM to sample H2, and then T0 is chosen
conditioned on LM and H2. But because of the independence of T0 and H2 conditioned on LM ,
the distribution of T0 conditioned on LM and H2 is that conditioned on only LM which has the
distribution DM . Now assume that LM makes the event ¬C happen (note that C is defined by
LM .). Since at most qN queries are made in Step 4, and C has not happened, when T0 is chosen
from DM , the probability that Q(T0) \ Q(LM ) contains one of these queries is at most εqN = δ.
Therefore we get Pr[B | ¬C] ≤ δ, and Pr[B] < 2δ.

Claim 4.6 (Restated). H2 ≡ H3. Thus, PrH2 [∪j≥1Ej ] = PrH3 [∪j≥1Ej ].

Proof. In the sampling of H3 we can think of LM being chosen first (although not needed), and
then T0 being chosen conditioned on LM (i.e., from the distribution DM ), and then Step 4 of the
experiment is done while any query in Q(LM ) ∪ Q(T0) is answered according to LM , T0, and any
other query is answered randomly. (That is we sample LM and T0 in the reverse order.) The point
is that during the sampling process of H2 we are also doing exactly the same thing. Again, we
sample LM first. Then T̃0 is chosen from the distribution DM . Then Step 4 is done while any
query in Q(LM ) ∪Q(T̃0) is answered according to LM , T̃0, and all other queries (even the ones in
Q(T0)\Q(LM )) are answered randomly. Therefore H2 and H3 have the same distribution.

Claim 4.7 (Restated). PrH3 [∪j≥1Ej ] ≥ 1− λ.
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Proof. We will prove that this holds for every fixed oracle and randomness of all parties, as long as
the permutation α0, . . . , αN−1 is chosen at random. For every fixing of the oracle and randomness
and j ∈ [0..N − 1], let Uj = G ∪ Sβj denote the set of queries made by either the key generation
algorithm or the signing algorithm for message βj , and let Vj be the set of queries made by the
verification algorithm while verifying this signature. The proof will follow from this fact:

Combinatorial Lemma: If U1, . . . , UK , V1, . . . , VK are subsets of some universe satisfying |Ui|+
|Vi| ≤ q and Ui ∩ Vj * Vi for every i 6= j then K ≤

( q
q/2

)
.

The Combinatorial Lemma immediately implies Claim 4.7. Indeed, for every i, j with i 6= j,
define the event Ei,j to hold if Ui ∩ Vj ⊆ Vi. Then, there must be at least N −

( q
q/2

)
= N(1 − λ)

number of i’s (i.e., 1−λ fraction of them) such that Ei,j holds for some j (otherwise we could remove
all such i’s and obtain a larger than

( q
q/2

)
-sized family contradicting the combinatorial Lemma).

But, if we choose a permutation α0, . . . , αN−1 such that α0 = βi for such an i then the event ∪jEj
holds.

Thus, all that is left is to prove is the combinatorial lemma. It essentially follows from Bollobás’s
Inequality [Bol65], but we repeat the argument here. Assume for the sake of contradiction that
there is a family U1, . . . , UK , V1, . . . , VK satisfying conditions of the lemma with K >

( q
q/2

)
. First,

we can remove any elements from Ui that are also in Vi, since it will not hurt any of the conditions.
It means that now we have: for every i, j, Ui ∩ Vj = ∅ iff i = j. Now, take a random ordering of
the universe W =

⋃
i(Ui ∪ Vi), and let Ai be the event that all the members of Ui occur before the

members of Vi in this order. The probability of Ai is |Ui|!|Vi|!
(|Ui|+|Vi|)! = 1/

(|Ui|+|Vi|
|Vi|

)
≥ 1/

( q
|Vi|
)
≥ 1/

( q
q/2

)
.

Hence if K >
( q
q/2

)
, there is a positive probability that both Ai and Aj hold for some i 6= j. But

it is not hard to see that in that case, either Ui and Vj are disjoint or Uj and Vi are disjoint,
contradicting our hypothesis.

5 A One-Time Signature Scheme

The following Theorem shows that Theorem 1.1 is tight up to a constant factor in the number of
queries.

Theorem 5.1. There is a one-time signature scheme (Gen,Sign,Ver) for messages {0, 1}∗, using
a total of q queries to a random oracle that has security 2(0.812−o(1))q, where o(1) is a term tending
to 0 with q.

Proof. The scheme is basically Lamport’s Scheme [Lam79] with two changes: (1) we use a more ef-
ficient anti-chain (family of incomparable sets) than Lamport’s scheme (a well-known optimization)
and (2) we use a secret “salt” value for the hash function to prevent a birthday attack.

The Scheme Description. Let c = (3−
√

5)/2 and k be such that (1 + c)k + 4 = q.

• Generate the keys by choosing k random strings xi ∈ {0, 1}q+i for 0 ≤ i ≤ k − 1, and an
additional random string z ∈ {0, 1}2q. 10 The secret key consists of these values, and the
public key is O(x1), . . . ,O(xk),O(z).

• Let h(α) be the first log
(
k
ck

)
bits of O(z, α), which we identify with a ck-sized subset of

0, . . . , k − 1. The signature of α consists of {xi}i∈h(α) and the string z.

10If we choose all of them from {0, 1}q the scheme is still as secure as we claimed, but now the analysis is simpler.
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• To verify a signature, we first verify that O(z) is equal to its alleged value, then we ask O(z, α)
to know h(α), and then we ask ck more queries to check that the released strings are indeed
preimages of the corresponding entries of the public key indexed by h(α).

The number of queries is q = (1 + c)k + 4, while, as we will see, the security is at least

Ω(
(
k
ck

)
) = 2(H(c)−o(1))k = 2

H(c)−o(1)
1+c

q > 2(0.812−o(1))q where H(·) is the Shannon entropy function.
Let T be the total number of oracle queries asked by the adversary and α 6= β be (in order) the

message for which she asks a signature and the message for which she tries to forge a signature.
We assume without loss of generality that T < 2q−1, because 2q−1 �

(
k
ck

)
. We divide the winning

cases for the adversary into three cases:

1. The adversary chooses some z′ ∈ {0, 1}2q, z′ 6= z such that O(z) = O(z′), alleged to be the
real z in the signature of β.

2. The adversary uses the real z in the signature of β and h(α) = h(β).

3. The adversary uses the real z in the signature of β and h(α) 6= h(β).

We will show that the probability that the adversary wins conditioned on being in case 3 is
at most O(T/

(
k
ck

)
), and the probability that either case 1 or case 2 happens at all is also at most

O(T/
(
k
ck

)
). So, the total probability of winning for the adversary will be at most O(T/

(
k
ck

)
) as well.

In case 1, even if we reveal z to the adversary in the first place (xi’s are irrelevant), she has the
chance of at most (1 + T )/2q to find some z′ 6= z such that O(z) = O(z′). That is because she gets
to know at most T oracle query/answer pairs (other than 〈z,O(z)〉), and the probability that she
gets O(z) in one of them is at most T/2q. If she does not see O(z) as an oracle answer, she needs
to guess z′ blindly which succeeds with probability at most 1/2q.

In the case 2, we reveal all xi’s to the adversary at the beginning, although they are indeed
irrelevant to finding a pair α 6= β such that h(α) = h(β) (because they are of length < 2q). Before
the adversary gives us α, it asks at most T queries of length 2q. So, the probability that she
gets some z′ ∈ {0, 1}2q such that O(z′) = O(z) is at most T/22q = o(T/

(
k
ck

)
). Let assume that

this has not happened. So, we can pretend that when we receive α, the value of z is chosen at
random different from the members of {0, 1}2q that are asked from the oracle by Adv. Thus, the
probability that any adversary’s query so far with length more than 2q has the prefix z will be
at most T/(2q − T ) < T/2q−1 = O(T/

(
k
ck

)
). It means that with probability 1 − O(T/

(
k
ck

)
), so far

were no query asked from the oracle which has z as prefix. Assuming this is the case, when we
ask the query (z, α) from the oracle, h(α) is chosen uniformly at random from {0, 1}log ( kck). Hence,
if the adversary asks T more oracle queries of the form (z, γ) where γ 6= α, one of them will give
h(γ) = h(α) with probability at most T/

(
k
ck

)
, and if it does not happen for any of them, a blind

guess β by the adversary will give h(α) = h(β) with probability 1/
(
k
ck

)
. So, the probability of

getting α 6= β, h(α) = h(β) for the adversary is at most O(T/
(
k
ck

)
).

In the case 3, there always is some i ∈ h(β)\h(α). We choose the smallest such i, call it i0,
and change the game slightly by revealing z to Adv from the beginning and revealing all xj ’s for
j 6= i0 to the her after she gives us β. It only might increases her chance of success (although
they are irrelevant because they have different length). For any fixed i ∈ 0, . . . , k − 1, we show
that the probability of the adversary to find a preimage for O(xi) conditioned on i = i0 is at most
(T + 1)/2q+i0 < (T + 1)/2q (which is necessary for her to win), and then by the union bound, the
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probability of success for the adversary in this case will be at most k(T + 1)/2q = O(T/
(
k
ck

)
). The

reason is that the adversary can ask at most T oracle queries after we reveal in order to find a
preimage for O(xi0) . The probability that for one of the queries x among these T queries she asks
we have O(xi) = O(x) is at most (T )/2q+i0 , and when it does not happen, the adversary has to
guess a preimage for O(xi) blindly, which will be correct with probability 1/2q+i0 .

The constant c in the description of the scheme maximizes
(
k
ck

)
, conditioned on q ≈ (1+c)k. The

same ideas show that whenever n ≤ dq where d ≈ 0.812 is obtained as above (d = H(c)/(1 + c)),
then there is a one-time signature scheme for messages {0, 1}n that makes only q queries and
achieved security exponential in the length of its queries.

6 Extensions

Now we prove several extensions of Theorem 1.1.

6.1 Other oracles

Using minor changes to the proof of Theorem 4.1 we can get a similar lower bound for signature
schemes based on the ideal cipher or a random permutation oracles. This is important as these
oracles are also sometimes used to model highly efficient symmetric-crypto primitives, and so it is
an interesting question whether such oracles can be used to construct signatures more efficiently.

Theorem 6.1. Let O be either the ideal cipher oracle. Then, for every one-time signature scheme
for messages {0, 1}n using a total of q ≤ n/4 queries to O there is an adversary making 2(4−o(1))q

oracle queries that breaks the scheme with probability 1 − o(1), where o(1) denotes a term tending
to 0 with q. In case of O being the random permutation oracle, only q ≤ n/2 is needed to get and
adversary asking 2(2−o(1))q queries, breaking the scheme with probability 1− o(1).

Proof. We explain the proof for the ideal cipher oracle. Extending the proof for the random
permutation oracle is straightforward.

We change both the signature scheme and the oracle for the sake of the analysis. We let the new
oracle O′ be the same as O except that O′ does not answer queries of the form (k, x, d) whenever
|x| < 2(q + log q). Instead it answers queries of the type (k, n) where n < 2(q + log q), to which it
returns the long string containing the concatenation of O(k, x,F) for x ∈ {0, 1}n.

We change the signature scheme to get a new scheme (Gen′,Sign′,Ver′) as follows: (1) use O′
instead of O and (2) whenever an algorithm makes a query (k, x, d) and obtains an answer y, it
will also make the “redundant” query (k, y, d̄) (where d̄ = B if d = F and vice versa). Note that
the total number of queries of the new scheme is at most q′ = 2q.

Lemma 6.2. Given the scheme (Gen′,Sign′,Ver′), there is an adversary Adv making at most
poly(q′)2q

′
queries from O′ that breaks the scheme with probability 1− o(1).

Lemma 6.2 implies Theorem 6.1 since any such adversary can be implemented using the oracle
O with at most a q222q factor increase in the number of queries, and the total number of queries
will be poly(q′)2q

′
q222q = 2(4−o(1))q.
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Proof. The description of the attack remains basically the same as that of Theorem 4.1 set by
parameters in Corollary 4.2 (i.e. N = 2q, λ = δ = θ(q−1/2)), and we have the same distributions
H0,H1,H2,H3 as before. However, there are some minor changes as follows:

• During Step 2 of the attack, whenever learn a query, we add both the query and its dual to
Li.

• During Step 4 of the attach we might discover an inconsistency between the guesses we made
in the sampled transcript T̃0 and the answers we receive from the oracle O. That is, we might
get the same answer for two different plain texts with the same key. However, as we will see
this will only happen with small probability, and we ignore this case safely. .

• The definition of H2 needs to change a little. Namely, in the experiment for the distribution
H2, during the signing and verification of α1, . . . , αN , whenever we make a new non-redundant
query (k, x, d), we look at all queries of the form (k, ·, d) appearing either in the transcript of
the system so far (i.e. T̃0, T1, . . . ) or in the learned queries of LM . Then we choose a random
answer y from the set of unused answers and use it as the oracle answer for (k, x, d). The
next redundant query (k, y, d̄) is simply answered by x.

The differences between the proof in this case and the proof of Theorem 4.1 are the following:

• We need to include the condition in the event Ej that the queries made in the j
th

signing
and verification are consistent with (the key generation part of) the transcript T̃0 in the sense
that they do not specify two queries (k, x, d), (k, x′, d), x 6= x′ which map to the same answer
y. The consistency condition guarantees (by definition) that if Ej occurs, then the verifier
will accept the j

th
signature.

The combinatorial condition Vj ∩ (G̃∪ S̃0) ⊆ V0 still guarantees that the j
th

verification does
not ask any query for which we have guessed the answer.11

We can still prove that PrH0 [∃jEj ] = PrH1 [∃jEj ] using basically the same proof as in
Claim 4.4. We just have to note that as long as Ej happens in both experiments, there
is no way to distinguish their jth signing and verification, and the consistency also happens
either in both or in none of them. s

• We again show SD(H1,H2) = o(1). The reason is that the difference between the distributions
H1 and H2 is due to some events which happen with probability o(1). That is there are
events in the experiments of sampling H1 and H2 which happen with probability o(1) and
conditioned on they not happening, H1 and H2 have the same distribution.

– Similar to Claim 4.5 one of the differences between the distributions H1,H2 might be
because of Adv asking a query in Q(T0) \Q(LM ). Because of the same analysis given in
the proof of Claim 4.5 the probability that we ask any such query (in both experiments)
is at most 2δ = o(1). So, in the following we assume that this case does not happen.

11This also guarantees that there is no inconsistency between the j
th

verification and the transcript T̃0, but later
we will show that the total consistency happens with good probability
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– In experiment of sampling H1, when a new non-redundant query (k, x, d) is asked in
the 1 ≤ ith signing or verification, the returned answer y might be equal to a guessed
answer for a query (k, x′, d) of T̃0 (we call this event F1), but it is never equal to the
answer of a query (k, x′′, d) ∈ Q(T0) \Q(LM ). The situation for H2 is the reverse: On a
new non-redundant query (k, x, d) during the 1 ≤ ith signing or verification, the answer
is never equal to a guessed answer for a query (k, x′, d) in T̃0, but it might be equal to
the answer of a query (k, x′′, d) ∈ Q(T0) \ Q(LM ) (we call this event F2). Note that
(H1 | ¬F1) ≡ (H2 | ¬F2). As we will see, Pr[Fi] = o(1) for i = 1, 2 which shows that
SD(H1,H2) = o(1).
The reason for Pr[F1] = o(1) is that whenever we have a new non-redundant query
in the 1 ≤ ith signing or verification, its answer is chosen from a set of size at least
q222q−q′2q′ which might hit a guessed answer for a query in T̃0 with probability at most
q′/(q222q − q′2q′) = o(1). The same argument holds for Pr[F2] = o(1).

• Claim 4.6 still holds with the similar proof because of the way we defined H2 for the case of
ideal cipher.

• Claim 4.7 is still correct with the same proof. Note that all the signing and verifications are
consistent.

A similar and simpler proof works for the case of a random permutation oracle. In this case,
we again change the oracle by merging small queries into a single query with a huge answer, but
we don’t have the issue of adding “dual” queries, and therefore the condition q ≤ n/2 (rather than
q ≤ n/4) is enough to get an adversary who breaks the scheme with probability 1− o(1) by asking
2(2−o(1))q queries (rather than 2(4−o(1))q queries).

6.2 Implementing Adversary in BPPNP.

If the signature scheme is efficient, using an NP oracle, our adversary can run in time poly(n, 2q),
where n is the length of messages to be signed.12 That is, we prove the following lemma:

Lemma 6.3. If the signature scheme is efficient, the adversary of the proof of Theorem 4.1 can be
implemented in poly(n, 2q) time using an oracle to an NP-complete problem.

Lemma 6.3 can be interpreted as saying that a non-black-box proof of security for a signature
scheme more efficient than the lower bounds provided by Theorem 4.1 will necessarily imply a proof
that P 6= NP.
The only place in which the adversary uses its unbounded computational power is in Step 2 where
it chooses xi to be the lexicographically first unlearned string in {0, 1}l such that xi is queried in
Di with probability at least ε, and in Step 3 when it samples a random T̃0 from DM .

We show that:
12In general, the security parameter could be different from the length of the messages n. For example, in Section 5,

the security parameter was q (so the security was 2Ω(q)), and the running time of the algorithms was poly(n, q). Here,
for simplicity, we assume that ` = poly(n), and all the algorithms’ queries are of length `.
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• Using an NP oracle, we can sample from a distribution D′i in expected poly(n, 2q) time such
that SD(D′i,Di) ≤ ε, where ε is as defined in Step 2.

• Using the D′i sampler, we can implement the adversary in poly(n, 2q) time with similar success
probability.

We first show how to use a D′i sampler to implement the adversary efficiently and then will
show how to sample from D′i efficiently using an NP oracle.

Efficient adversary using a Di approximate-sampler. So, here we assume that we can
sample efficiently from a distribution D′i such that SD(D′i,Di) ≤ ε. In order to choose xi in the
ith step of the learning phase, we do the following. Let m = (l + logM − log δ)/ε2. We sample m
times from D′i to get D1

i , . . . , D
m
i . Then we choose xi to be the lexicographically first unlearned

query (i.e. not in Li−1) which appears in at least 2ε fraction of Q(Dj
i )’s.

Claim 6.4. With probability at least 1 − δ we get the following: For every x ∈ {0, 1}l, and every
1 ≤ i ≤M :

1. If Pr[x ∈ Q(Di)] ≥ 3ε, then x appears in more than 2ε fraction of Q(Dj
i )’s.

2. If Pr[x ∈ Q(Di)] ≤ ε, then x appears in less than 2ε fraction of Q(Dj
i )’s.

If the event above happens, it means that the learning algorithm learns all the 3ε-heavy queries
in its M rounds with probability at least 1−δ (using the same argument as before). Therefore we get
a weaker, yet strong enough, version of Claim 4.6 saying that the SD(H1,H2) ≤ 3δ + δ + δ = o(δ).

The Claim 6.4 follows from the Chernoff bound. The probability that any specific x violates
the claim’s condition in any of the rounds is at most e−mε

2
< 2−mε

2
= 2−l−logM+log δ. By union

bound, the probability that the event is not violated at most M2l2−l−logM+log δ = δ.

Sampling D′i efficiently using an NP oracle. Note that Li which captures our knowledge
of the system after the ith round of the learning phase can be encoded with poly(n, 2q) bits. The
number of random bits used by the adversary till the end of the ith round of the learning phase is
also poly(n, 2q). For some technical reason which will be clear later, we add the randomness used by
the adversary to the description of Li. Similarly, any (possible) transcript D which Pr[Di = D] > 0
can be represented with poly(n, q) < poly(n, 2q) bits. In the following we always assume that such
encodings are used to represent Li and D.

In order to sample from a distribution close to Di we use the following Lemma:

Lemma 6.5. There is a function f : {0, 1}∗ × {0, 1}∗ 7→ N which is efficiently computable (i.e.
time poly(n, 2q)), with the following properties:

1. f(Li, D) = bcP[Di = D]c for some constant c depending on Li. So we have f(Li, D) = 0 if
Pr[Di = D] = 0.

2. f(Li, D) ≥ 10/ε whenever Pr[D = D] > 0 where ε is as defined in Step 2.

.
Before proving the lemma, we see how it is used.
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Corollary 6.6. We can sample from a distribution D′i such that SD(Di,D′i) ≤ ε in time poly(n, 2q)
(where the time poly(n, 2q) is independent of i for 1 ≤ i ≤M).

Proof. Let Wi = {(D, j) | 1 ≤ j ≤ f(Li, D)} be the set of “witnesses” for Li, where f is the function
in Lemma 6.5. Lemma 6.5 shows that the relation R = {(Li, w) | w ∈ Wi} is an NP relation. It
is known [BGP00] that for any NP relation, there is a witness-sampling algorithm that given any
x, samples one of the witnesses of x uniformly in expected poly(|x|) time. Therefore, we sample a
random w = (D, j) such that w ∈Wi in expected poly(n, 2q)-time, and output D. It is easy to that
the distribution D′i of our output has statistical distance at most ε from the distribution Di.

Proof. (Lemma 6.5) Recall that Di is the distribution of transcripts T0 conditioned on the infor-
mation given in Li. Let the event E(Li) be the event that during the running of the system (and
our attack) adversary’s knowledge about the system and its randomness after the ith round of the
learning is what Li denotes. Similarly, let E(D) be the event that D = T0 is the case in our
experiment. Thus, for every transcript D, Pr[Di = D] = Pr[E(D) | E(Li)]. If we could compute
Pr[E(D) | E(Li)], we could somehow use it in the Lemma 6.5, but instead of doing that, we will
rather compute Pr[E(D)∧E(Li)] which is proportional to Pr[E(D)|E(Li)] up to a constant factor
depending on Li, and will scale it up to some big integer.

Given Li and D, in order to compute Pr[E(D) ∧ E(Li)], we track the whole experiment from
the beginning in the following order:

• Key Generation

• Signing α0

• The attack (which includes the verification of α0 as its first step) to the end of the ith round
of the Learning.

At any moment that some coin tossing is involved (i.e. in the key generation algorithm, in the
attack, or fin an oracle answer), the result is determined by the description of Li and D. Thus, we
can calculate the probability that given values of Li and D will be the ones in the real running of the
experiment13. More quantitatively, during the simulation of the experiment, we receive any specific
oracle answer with probability at least 2−l whenever it is a possible answer and the probability of
getting a specific random tape for the key generation and the adversary is at least 2−poly(n,2q). Since
the total probability of Pr[E(D)∧E(Li)] is the multiplication of all those probabilities that we get
during the simulation of the system, and because the number of oracle queries that we examine
is at most 2O(q), we get Pr[E(D) ∧ E(Li)] > 2−poly(n,2q) whenever Pr[E(D) ∧ E(Li)] 6= 0. Note
that ε in the attack is 2−O(q). Therefore, for a big enough constant c = poly(n, 2q), the function
f(Li, D) = bcPr[E(D) ∧ E(Li)]c is computable in time poly(n, 2q) and we have f(Li, D) > 10/ε as
well.

6.3 Handling imperfect completeness

While the typical definition of a signature scheme stipulates that a valid signature (generated by
the signing algorithm with the correct key) should be accepted with probability one, it makes sense

13For the case of ideal cipher or random permutation oracles, we need to keep track of the oracle answers so far
during the simulation of the experiment, in order to know what is that probability of receiving a specific answer from
the oracle at any point.
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to consider (especially in the context of negative results) also signatures where the verifier may
reject such signatures with small probability, say 1/10. We are able to extend our result to this
case as well:

Theorem 6.7. For every one-time signature scheme for messages {0, 1}n, accepting correct signa-
tures with probability at least 0.9 (over the randomness of the verifier), and asking a total q ≤

√
n/20

queries to a random oracle, there is (1) an adversary making 2(1+o(1))q queries that breaks the
scheme with probability at least 2−q and (2) an adversary making 2O(q2) oracle queries that breaks
the scheme with constant probability.

The proof of part (1) is a straightforward extension of the proof of Theorem 4.1 and so we
bring here the proof of part (2):

Lemma 6.8. For every one-time signature scheme with imperfect completeness (i.e., verifier can
reject valid signatures with probability at most 1/10 over its coins) there is an adversary asking 2O(q2)

queries that finds with probability 1 − o(1) a message/signature pair which passes the verification
with probability at least 0.7. 14

Proof. The main difference between the proof of this lemma compared to that of Theorem 4.1 is
the way we define the sets Vj ’s. They are not simply the queries that the verifications ask from
the oracle. For sake of analysis, for every j, we define the set Vj to be the set computed by the
following process: run the jth verification algorithm on the generated message/signature pair m =
times (for m to be defined later), and let Vj be the set of queries that appeared in at least a 1/(20q)
fraction of these verifications. Hence, we have |Vj | ≤ 20q2. Note that the definition of Vj depends
on the oracle used to do the verifications. We will treat the sets Vj ’s in the analysis similar to
what we did to them with their previous definition. So, we define the new parameter r = 20q2 to
the upper bound on |G| + |Sj | + |Vj |, while q is still an upper bound for |G| + |Sj |. As we will
see, the proof will be similar to that of Theorem 4.1 and the parameters are set similar to those

of Corollary 4.2: N = 2r, λ = δ =
( r
r/2)
2r = θ(r−1/2) = θ(1/q),m = 203q4, ε = δ

mqN ,M = q
εδ . Other

than the parameters, the differences compared to the previous attack are:

1. When obtaining the signature σ0 in Step 1, we run the verification algorithm m times and
record in L0 all the resulting query/answer pairs.

2. In Step 4 we test q3 times each generated message/signature pair and output the first signature
that passes the verification at least a 0.75 fraction of these q3 times.

We also define the set Uj to be the set of queries that the jth verification asks from the oracle
with probability at least 1/(10q) over its own randomness after we fix the random oracle. Hence
we have |Uj | ≤ 10q2

We say that Ej holds if (as before) Vj ⊆ (G̃ ∪ S̃0) ∩ V0. We also say that the event E holds if
Uj ⊂ Vj for every j.

Claim 6.9. If Ej ∧ E holds, then the j
th

signature will be accepted by the verifier with probability
at least 0.9− 0.1 = 0.8 over the randomness of the verifier.

14The probability 0.7 could be substituted by any constant less than 0.9 with changing the constants in the proof.
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Proof. The only way this won’t happen is that with probability at least 1/10, the verifier makes a
query in the (at most q-sized) set G̃ ∪ S̃0 \ V0. But if this happens, then there is a query in that
set that is queried first with probability at least 1/(10q), yet because E holds that means that it
will be contained in Uj ⊂ Vj , contradicting Ej .

For any specific 1 ≤ j < N , by Chernoff bound, the probability that the fraction of times that
we accept the generated signature for αj is 0.05 far from its real probability of being accepted by
the verifier is at most e−0.052q3

and by union bound, the probability that it happens for some j is
at most 220q2

e−q
3/400 = o(1). Now suppose Ej ∧ E holds for some j = j0. So by Claim 6.3, fistly

we will output a pair of message and signature, and secondly this pair is accepted by the verifier
with probability at least 0.7.

Claim 6.10. We have Pr[E] ≥ 1− o(1).

Proof. By the Chernoff bound, the probability that a particular member of Uj is not in Vj is at most

e
−( 1

20q
)2m = e−20q2

. By union bound over the members of Uj , and j we have Pr[(2) fails for some j] ≤
10q2220q2

e−20q2
= o(1).

Now that we know E holds almost always, it only remains to show that with high probability Ej
happens for some j. This time we define the four hybrid distributions H0,H1,H2,H3 a bit different.
Instead of putting in Hi the query/answer pairs that we received during one verification, we put
in Hi all such pairs that we get at some point during the m times that we run the verification.

The proofs of Claims 4.4–4.7 also work basically in the same way as before:

• Claim 4.4 still holds with the same proof.

• Claim 4.5 still holds with the same proof because of the new smaller value of ε that we used.

• Claim 4.6 still holds with the same proof.

• Claim 4.7 is still correct with the same proof because the condition q ≤
√
n/20 guarantees

that there is enough room to choose N ≤ 2n different messages in the attack.

So, our adversary asks at most Nmq + M + Nq3 = poly(q)2r = 2O(q2) queries, and with
probability 1 − o(1) finds a pair of message/signature passing the verification with probability at
least 0.7.

We note that the combination of all the above extensions holds as well (e.g., we can implement
in BPPNP an adversary that breaks any signature scheme with imperfect completeness that is
based on the ideal cipher).

6.4 Efficiency of the verifier

Because the signing and verification algorithms are run more often than the key generation, lower
bounds on their own efficiency is still meaningful. In Section 5 we saw that the signing algorithm
can be very efficient while the total number of queries was almost optimal. Here we show that if
we want to get an efficient verifier and exponential security at the same time, it makes the total
number of queries to be inefficient.
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Theorem 6.11. For every one-time signature scheme for messages M with total q oracle queries

where, if the verification asks at most v, v ≤ q/2 oracle queries and |M| ≥ (qv)
λ then there is an

adversary asking at most O(
q2(qv)
λδ2 ) queries that breaks the scheme with probability at least 1−λ− δ.

Before going over the proof note that for any v, k ∈ N, where 3 ≤ v ≤ q
2 (i.e. 1 ≤ v − 2 ≤ k

where v + k + 2 = q) the scheme of Section 5 can be simply changed to get a new scheme in
which the verifier asks v queries by revealing v − 2 sized subsets of xi’s as the signature rather
than ck sized ones. A similar proof to that of Theorem 5.1 shows that this new scheme has
security Ω(

(
k
v−2

)
) = Ω(

(
q−v−2
v−2

)
). So, if v = dq for constant d, the maximum security S one

can get by asking at most v = q/d queries in verification and q queries totally is bounded as
H( 1

d−1)(1 − 1/d) − o(1) ≤ logS
q ≤ H(1

d) + o(1) where H(·) is the Shannon’s entropy function and
o(1) goes to zero with q.

Proof. (Theorem 6.11) The proof is almost the same as that of Theorem 4.1. The only difference
is in Claim 4.7 in which we have a restriction that |Vj | ≤ v, and we conclude that K ≤

(
q
v

)
.

The only difference in the proof of Claim 4.7 is that now the event Ai has probability at least
|Ui|!|Vi|!

(|Ui|+|Vi|)! = 1/
(|Ui|+|Vi|
|Vi|

)
≥ 1/

( q
|Vi|
)
≥ 1/

(
q
v

)
because v ≤ q/2.

7 Lower bounds on black-box constructions

In a construction for signature schemes, one might use a standard primitive (e.g., one way function)
rather than one with ideal security (e.g., random function). These constructions could have different
levels of “black-boxness” discussed thoroughly in [RTV04]. What we will call black-box, is called
fully black-box in [RTV04]. Here we give a more quantitative definition of such constructions.
For simplicity we only define the black-box constructions of signature schemes from hard one-way
functions, and the others are similar. After giving the formal definitions we will prove strong lower
bounds on the efficiency of signature schemes from symmetric primitives when the construction is
black-box.

Definition 7.1. Let F` denote the set of all functions f : {0, 1}` → {0, 1}` over ` bits. We call a
family of functions {f` | ` ∈ N, f` ∈ F`}, s-hard (to invert), if for any probabilistic algorithm A
running in time at most s(`), we have Prx←R{0,1}` [A(f(x)) ∈ f−1(f(x))] ≤ 1

s(`) where the probability
is over the choice of x and the coin tosses of A.

By S-hard functions, for a set of functions S, we mean all those which are s-hard for some
s ∈ S. (Think of S as the set of all the functions which are super-polynomial, quasi-polynomial, or
exponential etc...) So, we will keep the notation that the capital S denotes a set of functions.

For simplicity we use n, the length of the messages to be signed, as the security parameter of
the signature scheme (i.e, the efficient schemes will run in time poly(n) and for larger values of n
the scheme becomes more secure).

Definition 7.2. A black-box construction of one-time signature schemes for n-bit messages from
S-hard one-way functions, with security parameter contraction `(n) is made of the following two
families of reductions for all n ∈ N:

• The implementation reduction I = (Gen,Sign,Ver) has three components which are algo-
rithms running in time poly(n) (Gen is probabilistic) and If = (Genf , Signf ,Verf ) satisfies in
Definition 3.5 by setting O = f for any f ∈ F`(n).
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• We call A a If -breaker if A is a (not necessarily efficient) adversary who breaks the security
of If with non-negligible probability over its own randomness by playing in the game defined
in Definition 3.6. The security reduction R is an algorithm running in time t(n) where: (1):
For any f ∈ F`(n) and any If -breaker A, Prx←R{0,1}`(n) [RA,f (f(x)) ∈ f−1(f(x))] ≥ 1

w(n) where
the probability is over the choice of x and the coin tosses of R and A, (2): t(n)p(n) < s(`(n))
for any p(n) = poly(n), any s(·) ∈ S and and large enough n, and (3): w(n) < s(`(n)) for
any s ∈ S and large enough n.

The security parameter contraction factor `(n) in Definition 7.2 measures how small the length of
the function used in the reduction is (i.e., the security parameter of the primitive used) compared to
n (i.e., the security parameter of the signature scheme). The term “security parameter expansion”
is used in [HHRS07] for the inverse of the contraction parameter.

Note that having such a reduction, the existence of any efficiently computable family of functions
f : {0, 1}` → {0, 1}` which is s-hard to invert for some s ∈ S implies the existence of (efficient)
one-time signature schemes which are secure against polynomial-time adversaries. That is because
(1): We get an efficient implementation of the scheme by efficiently implementing f for If , and
(2): If A is a If -breaker running in time poly(n), the reduction R combined with its subroutine A
breaks the s-hardness of f which is not possible.

Now we prove a strong lower bound on the efficiency of signature schemes relying on the
efficiency of strong one-way functions. Then we will show how it generalizes to any symmetric
primitive and also functions with many hard-core bits.

Theorem 7.3. Let E denote the set of functions E = {f(`) | f = 2Ω(`)}. Any black-box construc-
tion of one-time signature schemes for n-big messages from E-hard one-way functions with security
parameter contraction `(n) needs to ask min(Ω(`(n)), n) queries from the one-way function.

Before going over the proof we make two observations. First, if construction uses E-hard
functions, it means that we should have t(n) = 2o(`(n)) and w(n) = 2−o(`(n) in the security reduction.
Another point is that the existence of such a reduction regardless of how many queries it asks,
makes `(n) to be ω(log n) for otherwise the condition t(n)poly(n) < s(`(n)) in Definition 7.2 will
be violated. Therefore without loss of generality, we assume that q ≥ log n, because otherwise we
can ask logn redundant queries in the key generation algorithm without changing the condition
q ≤ min(Ω(`(n)), n).

Proof. For sake of contradiction suppose that there is a black-box construction of signature schemes
(I,R) where I asks q ≤ n queries from the one-way function and log n ≤ q = o(`(n)).

The proof will go in two steps. We will first show that any such construction results in a
(computationally unbounded) adversary asking 2o(`) queries from a a random function f ←R F`
and inverting it on a random point with probability at least 2−o(`) (where this probability is also
over the choice of f). Then we will show that it is not possible to have such an adversary, namely
any adversary asking 2`/3 queries has chance of at most 2−`/3 for doing so.

Step 1. Let A be the adversary of Corollary 4.2 for the implementation of the signature scheme
I (note q ≤ n) asking at most 2(1+o(1))o(`(n)) queries from the function f (note q ≤ o(`(n)) and
breaking If with probability at least 1− o(1) when f is chosen at random f ←R F`(n) where o(1)
goes to zero with q. For large enough `(n), n becomes large enough too, and so does q (because
q ≥ log n). Therefore A asks at most 2o(`(n)) queries from f and breaks the scheme with probability
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at least 3/4 when f ←R F`(n) for large enough `(n). By an average argument, with probability at
least 1/2 over the choice of f , A breaks If with probability at least 1/2 over its own randomness. We
call such f ’s the good ones. Whenever f is good, RA

f ,f inverts f on a random point with probability
at least 2−o(`(n)), and because f is good with probability at least 1/2, RA,f inverts f on a random
point with probability at least 2−o(`(n)) for a randomly chosen f ←R F`(n) where the probability is
over the choice of f , the choice of the image to be inverted, and the randomness of A. By merging
the code of R with A, we get an adversary B = RA who asks at most 2o(`(n))2o(`(n)) = 2o(`(n))

queries from f ←R F`(n) and inverts it on a random point (i.e., y = f(x) for x←R {0, 1}`(n)) with
probability at least 2−o(`(n)).

Step 2. Suppose B is an adversary asking 2`/3 queries from a random function f ←R F` trying to
find a preimage for f(x) where x←R {0, 1}`. We can pretend that the value of f at each point is
determined at random whenever it is asked for the first time. So, at first x is chosen, f(x) is chosen,
and it is given to B. At first B does not have any information about x, so the probability that B
asks x in any of its 2`/3 queries is at most 2−2`/3. Assuming it does not ask x, the probability that B
receives the answer f(y) = f(x) by asking any y 6= x is at most 2−2`/3. Assuming that none of the
mentioned events happens, if it outputs y differen from all queries it has asked from f , f(y) = f(x)
happens with probability 2−`. So its chance of winning is at most 2−2`/3 + 2−2`/3 + 2−` < 2−`/3

(for ` ≥ 4).

As it is clear from the theorem, our lower bound becomes stronger for larger values of `(n)
which is also the case in the similar (unconditional) lower bound results [HHRS07, Wee07].

In order to extend the lower bound to other symmetric primitives (and functions with many
hard-core bits) we can follow the same steps of the proof of Theorem 7.3 using the following lemma.

Lemma 7.4. Let P be a symmetric primitive (i.e, one-way function, one-way permutation, collision
resistent hash function, pesudorandom generator, pseodorandom function, message authentication
code, or block cipher) , or the primitive of functions f : {0, 1}` → {0, 1}` with `/2 hard-core bits.
Then, there is an implementation for P for security parameter ` with access to either, random
oracle, random permutation oracle, or ideal cipher oracle which asks only a constant number of
queries of length θ(`) from the oracle, and any (computationally unbounded) adversary Adv who
asks at most 2o(`) queries from the oracle has chance of at most 2−Ω(`) of breaking it (over the
randomness of Adv and the oracle used).

Proof. We will describe the natural implementations and will show the proof of security only for
the case that P is the primitive of functions with `/2 hard-core bits. The security proofs for other
implementations are also easy to get (in fact, we already gave the proof for the case of one-way
function in the proof of Theorem 7.3).

• One-way function using random oracle: To define the value of the function f on input
x ∈ {0, 1}`, we simply use the oracle’s answer: f(x) = O(x).

• One-way permutation using random permutation oracle: To define the value of the per-
mutation p on input x ∈ {0, 1}`, we simply use the oracle’s answer: p(x) = O(x).

• Collision resistent hash function using random oracle: The value of the hash function h
on input x ∈ {0, 1}` is made by using the first `/2 bits of the oracle’s answer: h(x) = b1 . . . b`/2
where O(x) = b1 . . . b`.
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• Pseudorandom generator using random oracle: The stretched output of the generator g
on input x ∈ {0, 1}` is the output of the oracle on the padded query: g(x) = O(x|0`).

• Pseudorandom function using random oracle: Using the key k ∈ {0, 1}` on input x ∈
{0, 1}`, the output of the function will be the first ` bits of the oracle’s answer on the query
made by attaching k and x: fk(x) = b1 . . . b` where O(k|x) = b1 . . . b2`.

• Message Authentication Code using random oracle: Using the key k ∈ {0, 1}`, the
authentication code of the message x ∈ {0, 1}` is defined similar to that of pseudorandom
function. The verification is clear.

• Block cipher using ideal cipher oracle: Using the key k ∈ {0, 1}` and the input x ∈ {0, 1}`,
and the direction d we simply use the oracle’s answer O(k, x, d) as our cipher.

• Function with `/2 hard-core bits using random oracle: The value of the function f on
input x = x1 . . . x` uses the oracle’s answer: f(x) = O(x) and the hard-core bits for x will be
the first `/2 bits of it: HC(x) = x1 . . . x`/2.

Now we prove the claim for the last primitive (i.e., functions with `/2 hard-core bits). Suppose
the adversary A asks at most 2`/4 queries from the function f . Again, we assume that f chooses
its answers randomly whenever asked for the first time. In order to break the hard-core property
of the function f , the adversary A needs to distinguish between two experiments. In the first one
she is given (f(x), U`/2) as in put, and in the second one she is given (f(x), HC(x)), and in both
of the experiments f ←R F` and x←R {0, 1}` are chosen at random. Note that as long as A does
not ask x from the oracle, the two experiments are the same. At the beginning A does not knows
the second half of the bits of x. So the probability that she asks x from the oracle in one of her 2`/4

queries is at most 2`/42−`/2 = 2−`/4. Hence, if the probability that she outputs 1 in the experiment
i is pi (for 1 ≤ i ≤ 2), we have |p1 − p2| ≤ 2−`/4.

So by using Lemma 7.4 and following the steps of the proof of Theorem 7.3 we get the following
theorem:

Theorem 7.5. Let E denote the set of functions E = {f(`) | f = 2Ω(`)}, and P be either a sym-
metric primitive or the primitive of functions with `/2 hard-core bits. Any black-box construction of
one-time signature schemes for n-bit messages from an E-hard primitive P with security parameter
contraction `(n) needs to ask min(Ω(`(n)), n/4) queries from the primitive P .

8 Conclusions and open questions

We believe that lower bounds of this form— the efficiency of constructing various schemes using
black box idealized primitives— can give us important information on the efficiency and optimality
of various constructions. In particular, three natural questions related to this work are:

• Can one pinpoint more precisely the optimal number of queries in the construction of one-
time signature schemes based on random oracles? In particular, perhaps our lower bound can
be improved to show that the variant of Lamport’s scheme given in Section 5 is optimal up
to lower order terms.
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• What is the threshold d that whenever n ≤ dq, we can get signature schemes for messages
{0, 1}n using q oracle queries, and arbitrary large security? Again, it seems that the variant
of Lamport’s scheme given in Section 5 (working for log

(
k
ck

)
bit messages without hashing)

gives this threshold (i.e., d ≈ 0.812).

• Can we obtain a 2O(q)-query attack succeeding with high probability against signature schemes
with imperfect completeness?

• Are there stronger bounds for general (not one-time) signatures? A plausible conjecture is
that obtaining a T -time signature with black-box security S requires Ω(log T logS) queries.

Acknowledgements: We thank David Xiao for useful discussions.
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