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Abstract

I survey some of the recent progress on software obfuscation spurred
by the exciting paper of Garg, Gentry, Halevi, Raykova, Sahai and Wa-
ters [GGH+13]. This is a preprint version of a review article [Bar16]
appearing in the Communications of the ACM. That article was writ-
ten for a general computing audience, and is also not up to date on
the latest research in this fast-moving field since it was mostly writ-
ten in 2014. Nevertheless, I thought it might still be of interest to
cryptographers.

Computer programs are arguably the most complex objects ever con-
structed by humans. Even understanding a 10-line program such as the one
depicted in Figure 1 can be extremely difficult. The complexity of programs
has been the bane (as well as the boon) of the software industry, and taming
it has been the objective of many efforts in industry and academia. Given
this, it is not surprising that both theoreticians and practitioners have been
trying to “harness this complexity for good” and use it to protect sensitive
information and computation. In its most general form this is known as
software obfuscation, and it is the topic of this survey.

In a certain sense, any cryptographic tool such as encryption or authen-
tication can be thought of harnessing complexity for security, but with soft-
ware obfuscation people have been aiming for something far more ambitious:
a way to transform arbitrary programs into an “inscrutable” or obfuscated
form. By this we don’t mean that reverse engineering the program should
be cumbersome but rather that it should be infeasible, in the same way that
recovering the plaintext of a secure encryption cannot be performed using
any reasonable amount of resources.
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def isprime(p):

return all(p % i for i in range(2,p-1))

def Goldbach(n):

return any( (isprime(p) and isprime(n-p))

for p in range(2,n-1))

n = 4

while True:

if not Goldbach(n): break

n+= 2

print "Hello world!"

Figure 1: The following Python program prints "Hello world!" if and only
if Goldbach’s conjecture is false

Obfuscation, if possible, could be the cryptographer’s “master tool”—
as we’ll see it can yield essentially any crypto application one can think of.
Therefore it is not surprising that both practitioners and theoreticians have
been trying to achieve it for a great while. However, over the years many
practical attempts at obfuscation (such as the DVD Content Scrambling
System) had been broken (e.g., see [JBF03, Gre14]). Indeed in 2001, in work
with Impagliazzo, Goldreich, Rudich, Sahai, Vadhan, and Yang [BGI+01],
we proved that achieving such a secure transformation is impossible. So,
why isn’t this the shortest survey in CACM history?

The key issue is what does it mean to be “secure”. In our 2001 work,
we proved impossibility of a notion of security for such “obfuscating compil-
ers”, which we termed as virtual black box security and will describe more
formally in Section 1 below. While virtual black-box is arguably the most
natural notion of security for obfuscators, it is not the only one. Indeed in
the same work [BGI+01] we suggested a weaker notion called indistinguisha-
bility obfuscation or IO for short. We had no idea if IO can be achieved,
nor if it is useful for many of the intended applications. But in 2013 Garg,
Gentry, Halevi, Raykova, Sahai and Waters [GGH+13] used some recent
cryptographic advances to give a candidate construction of obfuscators sat-
isfying the IO definition. Moreover, their work, and many followup works,
have shown that this weaker notion is actually extremely useful, and can
recover many (though not all) the applications of virtual black-box obfusca-
tors. These applications include some longstanding cryptographic goals that
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before Garg et al’s work seemed far out of reach, and so the cryptographic
community is justifiably excited about these new developments, with many
papers and several publicly funded projects devoted to exploring obfuscation
and its applications.

What is an indistinguishability obfuscator? how is it useful? and what
do I mean by a ”candidate construction”? Read the rest of this survey to
find out.

1 Obfuscating compilers and their potential appli-
cations

Obfuscation research is in many ways in an “embryonic stage”, where, as
we discuss in Section 2 below, so far we only have theoretical “proofs of
concept” that are extremely far from practical efficiency. Even with the
breakneck pace of research on this topic, it may take years, if not decades,
until such obfuscators can be deployed at scale, and as we’ll see, beyond the
daunting practical issues there are some fundamental theoretical challenges
we’ll need to address as well. Thus, while eventually one might hope to
obfuscate large multi-part programs, in this survey we focus on the task
of obfuscating a single function, mapping an input to an output without
any side effects (though there is recent research on obfuscating more general
computational models). Similarly, given that the overhead in translating
a program from one (Turing complete) programming language to another
pales in comparison to the current inefficiencies, for the purposes of this
survey we can imagine that all programs are represented in some simple
canonical way.

An obfuscating compiler is an algorithm that takes as input a program
P and produces a functionally-equivalent program P ′. So far, this does not
rule out the compiler that simply outputs its input unchanged, but we’ll
want the program P ′ to be “inscrutable” or “obfuscated”. Defining this
requirement formally takes some care, and as we will see, there is more than
one way to do so. Our guiding principle is that the output program P ′

will not reveal any more information about the input P than is necessarily
revealed by the fact that the two programs are functionally equivalent. To
take two extreme examples, if you wrote a program P that outputs your
credit card number when given the number 0 as input, then no matter how
obfuscated P ′ is, it will still reveal the same information. In contrast, if the
program P contained the credit number as a comment, with no effect on its
functionality, then the obfuscated version P ′ should not reveal it. Of course,
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we want an obfuscator compiler to do much more than strip all comments.
Specifically, we say that a compiler transforming P to P ′ is virtual black-box
secure if for any attacker A that learns some piece of information x from
P ′, x could have been learned by simply treating P ′ (or P ) as a black box
and querying it on various inputs and observing the outputs. More formally,
the definition requires that for every (polynomial-time) algorithm A, there
is another polynomial time algorithm S (known as a simulator in crypto
parlance) such that the random variables A(P ′) and SP are computationally
indistinguishable, where A(P ′) denotes the output of A given the code of the
obfuscated program P ′, while SP denotes the output of S given black-box
(i.e. input/output) access to P (or to the functionally equivalent P ′).

Let us imagine that had a practically efficient obfuscating compiler that
satisfied this notion of virtual black-box security. What would we use it for?
The most obvious application is software protection— publishing an ob-
fuscated program P ′ would be the equivalent of providing a physical “black
box” that can be executed but not opened up and understood. But there are
many other applications. For example, we could use an obfuscator to design
a “selective decryption scheme”1— a program that would contain inside it a
decryption key d but would only decrypt messages satisfying very particular
criteria. For example, suppose that all my email was encrypted, and I had
an urgent project that needed attention while I was on vacation. I could
write a program P , such as the one of Figure 2, that given an encrypted
email email as input, uses my secret decryption key to decrypt it, checks if
it is related to this project and if so outputs the plaintext message. Then, I
could give my colleague an obfuscated version P ′ of P , without fearing that
she could reverse engineer the program, learn my secret key and manage to
decrypt my other emails as well.

There are many more applications for obfuscation. The example of func-
tional encryption could be vastly generalized. In fact, almost any crypto-
graphic primitive you can think of can be fairly directly derived from ob-
fuscation, starting from basic primitives such as public key encryption and
digital signatures to fancier notions such as multiparty secure computation,
fully homomorphic encryption, zero knowledge proofs, and their many vari-
ants. There are also applications to obfuscation that a priori seem to have
nothing to do with cryptography; e.g., one can use it to design autonomous
agents that would participate on your behalf in digital transactions such as
electronic auctions, or to publish patches for software vulnerabilities without
worrying that attackers could learn the vulnerabilities by reverse-engineering

1The technical name for this notion is functional encryption [BSW12].
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def DecryptEmail(EncryptedMsg):

SecretKey = "58ff29d6ad1c33a00d0574fe67e53998"

m = Decrypt(EncryptedMsg,SecretKey)

if m.find("Foosball table")>=0: return m

return "Sorry Yael, this email is private"

Figure 2: A “selective decryption” program. Black-box access to this program
enables a user to decrypt only messages that match some particular pattern,
and hence obfuscating such a program can be used to obtain a functional
encryption scheme.

the patch.
So, virtual black-box obfuscation is wonderful, but does it exist? This is

what we set to find out in 2001, and as already mentioned, our answer was
negative. Specifically, we showed the existence of inherently unobfuscatable
functions— this is a program P whose source code can be recovered from any
functionally equivalent program P ′ though curiously it cannot be efficiently
recovered using only black-box access to P .

In the intervening years, cryptography has seen many advances, in par-
ticular achieving constructions of some of the cryptographic primitives that
were envisioned as potential applications of obfuscation, most notably fully
homomorphic encryption [Gen09] (see also Section 3 and Figure 4).In par-
ticular, in 2012 Garg, Gentry and Halevi [GGH12] put forward a candidate
construction for an object they called “cryptographic multilinear maps”,
and which in this survey I’ll somewhat loosely refer to as a “homomorphic
quasi encryption” scheme. Using this object, Garg et al [GGH+13] showed a
candidate construction of a general-purpose indistinguishablity obfuscators.2

2 Indistinguishability obfuscators

An indistinguishability obfuscator (IO) hones in on one property of vir-
tual black box obfuscators. Suppose that P and Q are two functionally-
equivalent programs. It is not hard to verify that virtual black-box security
implies that an attacker should not be able to tell apart the obfuscation P ′

2Even prior to the works [GGH12, GGH+13] there were papers achieving virtual black-
box obfuscation for very restricted families of functions. In particular, independently
of [GGH+13], Brakserski and Rothblum [BR13] used [GGH12]’s construction to obtain
virtual black-box obfuscation for functions that can be represented as conjunctions of
input variables or their negations.
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of P from the obfuscation Q′ of Q. Indistinguishability obfuscation requires
only this property to hold.

Indistinguishability obfuscators were first defined in our original pa-
per [BGI+01], where we noted that this notion is weak enough to avoid our
impossibility result, but we did not know whether or not it can be achieved.
Indeed, a priori, one might think that indistinguishable obfuscators capture
the “worst of both worlds”. On one hand, while the relaxation to IO secu-
rity does allow to avoid the impossibility result, such obfuscators still seem
incredibly hard to construct. For example, assuming Goldbach’s Conjecture
is correct, the IO property implies that the obfuscation of the Goldbach(n)

subroutine of the program in Figure 1 should be indistinguishable from the
obfuscation of the function that outputs True on every even n > 2; design-
ing a compiler that would guarantee this seems highly non-trivial. On the
other hand, it is not immediately clear that IO is useful for concrete ap-
plications. For example, if we consider the “selective decryption” example
mentioned above, it is unclear that the IO guarantee means that obfuscating
the program P that selectively decrypts particular messages would protect
my secret key. After all, to show that it does, it seems we would need to
show that there is a functionally-equivalent program P ′ that does not leak
the key (and hence by the IO property, since P and P ′ must have indistin-
guishable obfuscations, the obfuscation of P would protect the key as well).
But if we knew of such a P ′, why didn’t we use it in the first place?

It turns out that both these intuitions are (probably) wrong, and that in
some sense IO may capture the “best of both worlds”. First, as I mentioned,
despite the fact that it seems so elusive, Garg et al [GGH+13] did manage
to give a candidate construction of indistinguishability obfuscators. Second,
[GGH+13] managed to show that IO is also useful by deriving functional
encryption from it, albeit in a less direct manner. This pattern has repeated
itself several times since, with paper after paper showing that many (though
not all) of the desirable applications of virtual black-box obfuscation can be
obtained (using more work) via IO. Thus indistinguishability obfsucation is
emerging as a kind of “master tool” or “hub” of cryptography, from which
a great many of our other tools can be derived (see Figure 3).

So now all that is left is to find out how do we construct this wonderful
object, and what is this caveat of “candidate construction” that I keep
mentioning?

I will start with describing the construction and turn later to discussing
the caveat. Unfortunately, the construction is rather complex. This is both
in the colloquial sense of being complicated to describe (not to mention im-
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Figure 3: In the two years since the candidate construction, Indistinguisha-
bility Obfuscation is already emerging as a “hub” for cryptography, implying
(when combined with one way functions) a great many other cryptography
primitives.

plement) and in the computational complexity sense of requiring very large
(though still polynomial) space and time resources. Indeed, this complexity
is the main reason these constructions are still at the moment theoretical
“proof of concepts”, as opposed to practical compilers. The only implemen-
tation of obfuscators I know of at the time of this writing was by Apon et
al [AHKM14], and their obfuscation blows up a circuit of 16 OR gates to
31GB. (The main source of inefficiency arises from the constructions of “ho-
momorphic quasi-encryption schemes” described below.) That said, making
these schemes more efficient is the object of an intensive research effort, and
I am sure that we will see many improvements in the coming years. It is a
testament to the excitement of this field that in the short time after the first
candidate construction of IO, there are already far more works than I can
mention that use IO for exciting applications, study its security or efficiency,
consider different notions of obfuscation, and more.

While I will not be able to describe the actual construction, I do hope to
give some sense into the components that go into it, and the rather subtle
questions that arise in exploring its security.

3 Fully homomorphic encryption and “quasi en-
cryption”

In 2009, Craig Gentry rocked the world of cryptography by presenting a
construction for fully homomorphic encryption scheme. What is this ob-
ject? Recall that a traditional encryption scheme is composed of two func-
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tions: the encryption operation Enc— mapping the secret plaintexts into
the “scrambled” cyphertexts— and the decryption operation Dec that per-
forms the inverse of Enc (and requires the secret decryption key to com-
pute). A fully homomorphic encryption supports two additional opera-
tions ⊕,⊗ which correspond to “multiplying” and “adding” ciphertexts.
Specifically they satisfy the equations for every a, b ∈ {0, 1}: Enc(a)
⊕Enc(b) = Enc(a+ b (mod 2))
Enc(a)⊗ Enc(b) = Enc(ab (mod 2))

Since NOT a = 1 + a (mod 2)
aANDb = ab (mod 2)
a OR b = a + b + ab (mod 2) these two operations allow us to compute
from encryptions Enc(a1), . . . ,Enc(an) the value Enc(P (a1, . . . , an)) given
any program P that maps {0, 1}n to {0, 1}. Note that crucially, the ⊗ and
⊕ operations do not require knowledge of the secret key to be computed
(indeed, otherwise they would be trivial to implement by writing c ⊕c′ =
Enc(Dec(c) + Dec(c′) (mod 2))
c⊗ c′ = Enc(Dec(c)Dec(c′) (mod 2))

Fully homomorphic encryption was first envisioned in 1978 by Rivest,
Adleman, and Dertouzos [RAD78], but they gave no constructions and for
many years it was not at all clear whether the existence of such operations
is compatible with security until Gentry [Gen09] came up with the first
plausibly-secure construction. [RAD78] were motivated by client-server ap-
plications (now known as “cloud computing”). Indeed one can see that such
an encryption scheme could be very useful in this setting, where for example
a client could send to the server an encryption Enc(a) = Enc(a1) · · ·Enc(an)
of its private data a, so that the server could use the ⊕ and ⊗ operations
to compute some complicated program P on this encryption and return
Enc(P (a)) to the client, without ever learning anything about a.

The astute reader might notice that fully homomorphic encryption is
an immediate consequence of (virtual black-box) obfuscation combined with
any plain-old encryption. Indeed, if secure obfuscation existed then we could
implement ⊕ and ⊗ by obfuscating their trivial programs (3) and (3). One
might hope that would also work in the other direction— perhaps we could
implement obfuscation using a fully homomorphic encryption. Indeed let F
be the “program interpreter” function that takes as input a descrptyion of
the program P and a string a and maps them to the output P (a). Perhaps
we could obfuscate the program P by publishing an encryption P ′ = Enc(P )
of the description of P via a fully homomorphic encryption. The hope
would be that we could use P ′ to evaluate P on input a by encrypting a
and then invoking F on the encrypted values Enc(P ) and Enc(a) using the
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While the integer factoring problem is perhaps the most well known mathematical basis
for cryptosystems, many recent constructions, including those used by fully homomorphic
encryption and obfuscation, use computational problems related to integer lattices.

The fundamental observation behind these problems is that classical linear algebraic algo-
rithms such as Gaussian elimination are incredibly brittle in the sense that they cannot
handle even slight amounts of noise in their data. One concrete instantiation of this obser-
vation is Regev’s Learning With Errors (LWE) conjecture [Reg05] that there is no efficient
algorithm that can recover a secret random vector x ∈ {0, . . . , p − 1}n given noisy linear
equations on x (i.e., a random matrix A and the vector y = Ax+ e (mod p) where e is a
random error vector of small magnitude). This has been shown to be essentially equivalent
to the question of trying to “error correct” a vector in Rn that sampled from a distribution
that is very close to, but not exactly contained in, a discrete subspace (i.e., a Lattice) of Rn.

The LWE problem turns out to be an even more versatile basis for cryptography than discrete
log and integer factoring and it has been used as a basis for a great many cryptographic
schemes. It also has the advantage that, unlike factoring and discrete log, it is not known
to be breakable even by quantum computers.

We now give a very rough sketch of how LWE can be used to obtain a fully homomorphic
encryption scheme, following the paper [GSW13]. See Gentry’s excellent survey [Gen14] for
an accessible full description of this scheme. The basic starting point of [GSW13]’s scheme is
the following candidate encryption: the secret key is some vector s ∈ {0, . . . , p−1}n, and to
encrypt the message λ ∈ {0, . . . , p− 1} we generate a random matrix A such that As = λs
(mod p). Note that this scheme is obviously homomorphic— if As = λs (mod p) and
A′s = λ′s (mod p) then (A + A′)s (mod p) = (λ + λ′)s (mod p) and (AA′)s = λλ′s
(mod p). Unfortunately, it is also obviously insecure— using Gaussian elimination we can
recover s from sufficiently many encryptions of zero. [GSW13] fix this problem by adding
noise to these encryptions, hence fooling the Gaussian elimination algorithm. Managing the
noise so that it doesn’t blow up too much in the homomorphic operations requires delicate
care and additional ideas, and this is the reason why Gentry called his survey “computing
on the edge of Chaos”.

Figure 4: Lattice based cryptography and fully homomorphic encryption
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homomorphic operations. However, a moment’s thought shows that if we
do that, we would not get the value P (a) but rather the encryption of this
value. Thus P ′ is not really a functionally equivalent form of P , as (unless
one knows the decryption key) access to P ′ does not allow to compute P
on chosen inputs. Indeed, while fully homomorphic encryption does play
a part in the known constructions of obfuscation, they involve many other
components as well.

In some sense, the problem with using a fully homomorphic encryption
scheme is that it is “too secure”. While we can perform various opera-
tions on ciphertexts, without knowledge of the secret key we do not get any
information at all about the plaintexts, while obfuscation is all about the
“controlled release” of particular information on the secret code of the pro-
gram P . Therefore the object we need to construct is what I call a “fully
homomorphic quasi-encryption” which is a riff on an encryption scheme
that is in some sense less secure but more versatile than a standard fully
homomorphic encryption.3

3.1 Homomorphic quasi-encryption

A “fully homomorphic quasi-encryption scheme” has the same Enc, Dec,
⊗ and ⊕ operations as a standard fully homomorphic encryption scheme,

but also an additional operation
?
= which satisfies that Enc(a)

?
= Enc(b)

is true if a = b and equals false otherwise. Moreover, instead {0, 1},
the plaintexts will be in {0, 1, . . . , p − 1} for some very large prime p (of a
few thousand digits or so), and the ⊕ and ⊗ operations are done modulo p
instead of modulo 2. Note that a quasi-encryption scheme is less secure than

standard encryption, in the sense that the
?
= operation allows an attacker

to perform tasks, such as discovering that two ciphertexts correspond to the
same plaintext, that are infeasible in a secure standard encryption. Indeed,
the notion of security for a quasi-encryption scheme is rather subtle and is
very much still work-in-progress.4 A necessary condition is that one should
not be able to recover a from Enc(a) but this is in no way sufficient. For
now let us say that the quasi encryption scheme is secure if an attacker

3This is a non-standard name used for this exposition; the technical name is a crypto-
graphic multilinear map or a graded encoding scheme.

4In fact, the same paper [GGH12] proposing the first candidate construction for such
a quasi-encryption scheme also gave an attack showing that their scheme does not satisfy
some natural security definitions, and followup works extended this attack to other set-
tings. Finding a candidate construction meeting a clean security definition that suffices
for indistinguishability obfuscation is an important open problem.
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cannot learn anything about the plaintexts beyond what could be learned

by combining the ⊗,⊕ and
?
= operations.5

One example of a “partially homomorphic quasi-encryption” scheme is
modular exponentiation. That is, given some numbers g, q such that gp =
1 (mod q), we can obtain a quasi-encryption scheme supporting only ⊕
(and not ⊗) by defining Enc(a) = ga (mod q) for a ∈ {0, . . . , p− 1} (with
Dec its inverse— i.e. the discrete log modulo q).6 We define c ⊕ c′ =

cc′ (mod q) which indeed satisfies that ga ⊕ ga′ = ga+a
′
, and define

?
= to

simply check if the two ciphertexts are equal. Modular exponentiation has
been the workhorse of cryptography since Diffie and Hellman (following a
suggestion of John Gill) used it as a basis for their famous key exchange
protocol [DH76]. In 2000 Joux [Jou00] suggested (using different language)
to use exponentiation over elliptic curve groups which support the so called
“Weil and Tate pairings” to extend this quasi-encryption scheme to support
a single multiplication. Surprisingly even a single multiplication turns out to
be extremely useful and a whole sub-area of cryptography, known as “pairing
based cryptography”, is devoted to using these partially homomorphic quasi-
encryptions for a great many applications. But the grand challenge of this
area has been to obtain fully homomorphic quasi-encryption [BS02] (or in
their language a multi-linear map, as opposed to the bi-linear pairing). An
exciting approach toward this grand challenge was given by the work of
Garg, Gentry and Halevi [GGH12]. On a very high level, they showed how

one can modify a fully homomorphic encryption scheme to support the
?
=

operation by publishing some partial information on the secret decryption
key, that at least as far as we know, only allows to check for plaintext-
equality of ciphertexts without revealing any additional information. The
main challenge remaining is that the security of their scheme has yet to be
proven (and in fact we have yet to even find the right definitions for security).
I discuss this issue more below in Section 4. But even with this caveat their
work is still a wonderful achievement, and provides cryptography with a
candidate construction for one of the most versatile tools with which one
can achieve a great many cryptographic objectives.

5As an aside, a similar notion to quasi encryption, without homomorphism, is known
as deterministic encryption and is used for tasks such as performing SQL queries on
encrypted data bases (e.g., see [PRZB12]).

6The Dec operation is not efficiently computable, but this turns out not to be crucial
for many of the applications.
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Enc(𝐴1) Enc(𝐴2) Enc(𝐴𝑚)…

Enc(𝐴𝜋𝑥(1)) …Enc(𝐴𝜋𝑥(2)) Enc(𝐴𝜋𝑥(𝑚))

Figure 5: We use Barrington’s Theorem to encode a program F computable
by a logarithmic depth circuit into a sequence of m matrices A1, . . . , Am
and publish the quasi-encryptions of these matrices’ entries. Every input x
corresponds to a permutation πx such that if we multiply the matrices in
this order, the top left element in the resulting matrix will equal F (x).

3.2 From quasi-encryption to obfuscation

As mentioned, the construction of obfuscation from a fully homomorphic
quasi-encryption is rather complicated, but I will attempt to outline some
of the ideas behind it. I will not even try to argue about the security of
the obfuscation construction, but rather simply give some hints of how one
might use the quasi-encryption scheme to represent a program P in a form
that at least intuitively seems very hard to understand. At a high level
the obfuscation of a program P consists simply of the quasi-encryptions
(which we’ll call encodings) of N numbers a1, . . . , aN . To make this a valid
representation, we need to supply a way to compute P (x) from these en-
codings for every input x. The idea is that every input x would correspond
to some formula fx involving additions and multiplications modulo p such
that P (x) = 0 if and only if fx(a1, . . . , am) = 0 (mod p). Since we can

test the latter condition using the ⊕, ⊗ and
?
= operations, we can find out

if P (x) = 0 or P (x) = 1. This results in an obfuscation of programs with
one bit of output, but can be generalized to handle programs with larger
outputs.

How do we construct this magical mapping of inputs to formulas? We
cannot present it fully here, but can describe some of the tools it uses.
One component is the naive approach described above of constructing an
obfuscation scheme from a fully homomorphic encryption. As we noted,
this approach does not work because it only allows to compute the output
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of the program in encrypted form, but it does essentially reduce the task of
obfuscating an arbitrary function to the task of obfuscating the decryption
function of the concrete encryption scheme. The crucial property for us
is that this decryption function can be computed via a logarithmic depth
circuit. This allows us to use some of the insights that have been obtained in
the study of logarithmic depth circuits (which had been developed towards
obtaining circuit lower bounds, without envisioning any cryptographic or
other practical applications whatsoever). In particular, Barrington [Bar86]
proved in 1986 the following beautiful but seemingly completely abstract
result (see also Figure 5):

Theorem 1 If F : {0, 1}n → {0, 1} is a function computable by a log-
depth circuit, then there exists a sequence of m = poly(n) 5 × 5 matrices
A1, . . . , Am′ with entries in {0, 1} and a mapping x 7→ πx from {0, 1}n into
the set of permutations of [m′] such that for every x ∈ {0, 1}n

F (x) =

(
m′∏
i=1

Aπx(i)

)
1,1

. (1)

(That is, F (x) is equal to the top left element of the product of matrices
according to the order πx.)

This already suggests the following method for obfuscation: if we want
to obfuscate the decryption function F , then we construct the corresponding
matrices A1, . . . , Am, encode all N = 25m of their entries (which we will call
a1, . . . , aN ), and then define for every x the formula fx to be the right-hand
side of (1). This is a valid representation of the program P , since by using the
homomorphic properties of the quasi-encryption we can compute from the N
encodings of numbers the value of F (x) (and hence, by combining this with
our previous idea, also the value of P (x)) for every input x. However, it is not
at all clear that this representation doesn’t leak additional information about
the function. For example, how can we be sure that we cannot recover the
secret decryption key by multiplying the matrices in some different order?

Indeed, the actual obfuscation scheme of [GGH+13] is more complicated
and uses additional randomization tricks (as well as a more refined variant of
quasi-encryption schemes that is called graded encoding) to protect against
such attacks. Using these tricks, we were able to show in work with Garg,
Kalai, Paneth and Sahai [BGK+14] (see also [BR14]) that it is not possible

to use the ⊕, ⊗ and
?
= operations to break the obfuscation. This still does

not rule out the possibility of an attacker using the raw bits of the encoding
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(which is in fact what is used in the [BGI+01] impossibility result) but it is
a promising sign.

4 “Post modern” cryptography

So far I have avoided all discussion of the security of homomorphic quasi-
encryption schemes and obfuscation and indeed their status is significantly
subtler than other cryptographic primitives such as encryption and digital
signatures. To understand these issues, it is worth while to take a step
back and look at the question of security for cryptographic schemes in gen-
eral. The history of cryptography is littered with the figurative corpses of
cryptosystems believed secure and then broken, and sometimes with the ac-
tual corpses of people (such as Mary queen of Scots) that have placed their
faith in these cryptosystems. But something changed in modern times. In
1976 Diffie and Hellman [DH76] proposed the notion of public key cryptog-
raphy and gave their famous Diffie-Hellman key exchange protocol, which
was followed soon after by the RSA cryptosystem [RSA78]. In contrast to
cryptosystems such as Enigma, the description of these systems is simple
and completely public. Moreover, by being public key systems, they give
more information to potential attackers, and since they are widely deployed
on a scale more massive than ever before, the incentives to break them are
much higher. Indeed, it seems reasonable to estimate that the amount of
manpower and computer cycles invested in cryptanalysis of these schemes
today every year dwarves all the cryptanalytic efforts in pre-1970 human
history. And yet (to our knowledge) they remain unbroken.

How can this be? I believe that the answer lies in a fundamental shift
from “security through obscurity” to “security through simplicity”. To un-
derstand this consider the question of how could the relatively young and
unknown Diffie and Hellman (and later Rivest, Shamir and Adleman) con-
vince the world that they have constructed a secure public key cryptosys-
tem, an object so paradoxical that most people would have guessed could
not exist (and indeed a concept so radical that Merkle’s first suggestion of
it was rejected as an undergraduate project in a coding theory course). The
traditional approach towards establishing something like that was “security
through obscurity”— keep all details of the cryptosystem secret and have
many people try to cryptanalyze it in-house, in the hope that any weakness
would be discovered by them before it is discovered by your adversaries. But
this approach was of course not available to Diffie and Hellman, working by
themselves without much resources, and publishing in the open literature.
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Of course the best way would have been to prove a mathematical the-
orem that breaking their system would necessarily take a huge number of
operations. Thanks to the works of Church, Turing and Gödel, we now know
that this statement can in fact be phrased as a precise mathematical asser-
tion. However, this assertion would in particular imply that P 6= NP and
hence proving it seems way beyond our current capabilities. Instead what
Diffie and Hellman did (aided by Ralph Merkle and John Gill) was to turn
to “security by simplicity”— base their cryptosystem on a simple and well
studied mathematical problem, such as inverting modular exponentiation or
factoring integers, that has been investigated by mathematicians for ages
for reasons having nothing to do with cryptography. More importantly, it
is plausible to conjecture that there simply does not exist an efficient algo-
rithm to solve these clean well-studied problems, rather than it being the
case that such an algorithm has not been found yet due to the problem’s
cumbersomeness and obscurity. Later papers, such as the pioneering works
of Goldwasser and Micali [GM82], turned this into a standard paradigm and
ushered in the age of modern cryptography, whereby we use precise defini-
tions of security for our very intricate and versatile cryptosystems and then
reduce the assertion that they satisfy these definitions into the conjectured
hardness of a handful of very simple and well known mathematical problems.

I wish I could say that the new obfuscation schemes are in fact secure
assuming that integer factoring, computing discrete logarithm, or another
well-studied problem (such as the LWE problem mentioned in the sidebar)
is computationally intractable. Unfortunately, nothing like that is known.
At the moment, our only arguments for the security of the constructions of
the homomorphic quasi-encryption and indistinguishability obfuscator con-
structions is that (as of this writing) we do not know how to break them.
Since so many potential crypto applications rely on these schemes one could
worry that we are entering (to use a somewhat inaccurate and overloaded
term) a new age of “post-modern cryptography” where we still have precise
definition of security, but need to assume an ever growing family of conjec-
tures to prove that our schemes satisfy those definitions. Indeed, following
the initial works of [GGH12, GGH+13] there have been several attacks on
their schemes showing limitations on the security notions they satisfy, (e.g.,
see [CGH+15, Cor15]) and it is not inconceivable that by the time this article
is printed they would be broken completely.

While this suggests the possibility that all the edifices built on obfus-
cation and quasi-encryption could crumble as a house of cards, the ideas
behind these constructions seem too beautiful and profound for that to be
the case. Once cryptographers have tasted the “promised land” of the great
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many applications enabled by IO, there is every hope that (as they have
so many times before) they would rise to this challenge and manage to
construct indistinguishability obfuscators and quasi-encryption based on a
single well-studied conjecture, thus placing these objects firmly within the
paradigm of modern cryptography. Indeed, this is the focus of an intensive
research effort. More than that, one could hope that by following the path
these constructions lead us and “going boldly where no man has gone be-
fore”, we cryptographers will get new and fundamental insights on what is
it that separates the easy computational problems from the hard ones.

Thanks to Dan Boneh, Craig Gentry, Omer Paneth, Amit Sahai, Brent Wa-
ters and the anonymous CACM reviewers for helpful comments on previous
versions of this article. Thanks to Oded Regev for providing me with the
figure for the “Learning with Errors” problem.
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