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Abstract

The simulation paradigm is central to cryptography. A simulator is an algorithm that tries
to simulate the interaction of the adversary with an honest party, without knowing the private
input of this honest party. Almost all known simulators use the adversary’s algorithm as a
black-box. We present the first constructions of non-black-box simulators. Using these new
non-black-box techniques we obtain several results that were previously shown to be impossible
to obtain using black-box simulators.

Specifically, assuming the existence of collision-resistent hash functions, we construct a new
zero-knowledge argument system for NP that satisfies the following properties:

1. This system has a constant number of rounds with negligible soundness error.

2. It remains zero knowledge even when composed concurrently n times, where n is the
security parameter.

Simultaneously obtaining Properties 1 and 2 has been proven to be impossible to achieve
using black-box simulators.

3. It is an Arthur-Merlin (public coins) protocol.

Simultaneously obtaining Properties 1 and 3 has also been proven to be impossible to
achieve with a black-box simulator.

4. It has a simulator that runs in strict polynomial time, rather than in expected polynomial
time.

All previously known zero-knowledge arguments satisfying Property 1 utilized expected
polynomial-time simulators. Following this work it was shown that simultaneously obtain-
ing Properties 1 and 4 is also impossible to achieve with a black-box simulator.

Keywords: cryptography, complexity theory, zero knowledge, black box, non-black-box, concur-
rent zero knowledge , CS proofs, universal arguments
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1 Introduction

The simulation paradigm is one of the most important paradigms in the definition and design of
cryptographic primitives. For example, this paradigm arises in a setting in which two parties,
Alice and Bob, interact and Bob knows a secret. We want to make sure that Alice hasn’t learned
anything about Bob’s secret as the result of this interaction, and do so by showing that Alice could
have simulated the entire interaction by herself. Therefore, she has gained no further knowledge as
the result of interacting with Bob, beyond what she could have discovered by herself.

The canonical example of the simulation paradigm is its use in the definition of zero-knowledge
proofs, as presented by Goldwasser, Micali and Rackoff [GMR85]. Suppose that both Alice and
Bob know a public graph G, and in addition Bob knows a Hamiltonian cycle C in this graph. In
a zero-knowledge proof, Bob manages to prove to Alice that the graph G contains a Hamiltonian
cycle, and yet Alice has learned nothing about the cycle C, as she could have simulated the entire
interaction by herself.

A crucial point is that we do not want Alice to gain knowledge even if she deviates arbitrarily
from the protocol when interacting with Bob. This is usually formalized in the following way: for
every algorithm V ∗ that represents the strategy of the verifier (Alice), there exists a simulator M∗

that can simulate the entire interaction of the verifier and the honest prover (Bob) without access
to the prover’s auxiliary information (i.e., the Hamiltonian cycle). That is, the simulator only has
access to the public information (i.e., the graph) that was known to the verifier (Alice) before she
interacted with the prover (Bob).

Consider the simulator’s task even in the easier case in which Alice does follow her prescribed
strategy. One problem that the simulator faces is that, in general, it is impossible for it to generate
a convincing proof that the graph G is hamiltonian, without knowing a Hamiltonian cycle in the
graph. How then can the simulator generate an interaction that is indistinguishable from the actual
interaction with the prover? The answer is that the simulator has two advantages over the prover,
which compensate for the serious disadvantage of (the simulator’s) not knowing a Hamiltonian
cycle in the graph. The first advantage is that, unlike in the true interaction, the simulator has
access to the verifier’s random-tape. This means that it can actually determine the next question
that the verifier is going to ask. The second advantage is that, unlike in the actual interaction, the
simulator has many attempts at answering the verifier’s questions. This is because if it fails, it can
simply choose not to output this interaction but rather retry again and output only the “take” in
which it succeeds. This is in contrast to an actual proof, where if the party attempting to prove
failed even once to answer a question then the proof would be rejected. The difference is similar
to the difference between a live television show and a taped show. For example, if someone has a
10% probability of success in shooting a basketball, then he will probably never have 10 straight
hits in his life. In contrast, using video-editing, it is very easy to create a film where this person
has 10 straight hits. This second technique is called rewinding because the simulator that fails to
answer a question posed by the verifier, simply rewinds the verifier back and tries again.

All previously known zero-knowledge protocols made use of this rewinding technique in their
simulators. However this technique, despite all its usefulness, has some problems. These problems
arise mainly in the context of parallel and concurrent compositions. For example, using this tech-
nique it is impossible to show that a constant-round zero-knowledge proof1 remains zero-knowledge
under concurrent composition [CKPR01]. It is also impossible to construct a constant-round zero-
knowledge proof with a simulator that runs in strict polynomial time (rather than expected polyno-

1Here and throughout this paper, we only consider zero-knowledge proofs or arguments that have negligible
soundness error.
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mial running time) or a constant-round proof of knowledge with a strict polynomial time knowledge
extractor (see the subsequent work [BL02]).

The reason that all the known simulators were “confined” to the rewinding technique is that it is
very hard to take advantage of the knowledge of the verifier’s random-tape when using the verifier’s
strategy as a black-box. Let us expand a little on what we mean by this notion. As noted above, to
show that a protocol is zero knowledge, one must show that a simulator exists for every arbitrary
algorithm V ∗ that represents the verifier’s strategy. Almost all the known protocols simply used a
single generic simulator that used the algorithm V ∗ as an oracle (i.e. as a black-box subroutine).
Indeed it seemed very hard to do anything else, as using V ∗ in any other way seemed to entail some
sort of “reverse-engineering” that is considered a very hard (if not impossible) thing to do.

It can be shown that for black-box simulators, the knowledge of the verifier’s random-tape does
not help the simulator, because a verifier can have its randomness “hardwired” into its algorithm
(for instance in the form of a description of a hash/pseudorandom function). Therefore, black-box
simulators are essentially restricted to using the rewinding technique, and so suffer from its conse-
quences. Indeed, as mentioned above, several negative results have been proved about the power
of black-box simulators, starting with the results of Goldreich and Krawczyk [GK90] regarding
non-existence of black-box 3-round zero-knowledge proofs and constant-round Arthur-Merlin zero-
knowledge proofs, to the recent result of Canetti, Kilian, Petrank and Rosen [CKPR01] regarding
impossibility of black-box constant-round concurrent zero-knowledge.

1.1 Our Results

We show that the belief that one can not construct non-black-box simulators is false. That is,
given the code of a (possibly cheating) efficient verifier as an auxiliary input, the simulator may
significantly use this code in other ways than merely running it, and so obtain goals that are
provably impossible to obtain when using the verifier only as a black-box. Specifically, assuming
the existence of collision-resistent hash functions2, we construct a new zero-knowledge argument
(i.e., a computationally-sound proof) for any language in NP that satisfies the following properties:

1. It is zero-knowledge with respect to non-uniform adversaries with auxiliary information.

2. It has a constant number of rounds and negligible soundness error.

3. It remains zero-knowledge even if executed concurrently n times, where n is the security
parameter. We call a protocol that satisfies this property a bounded concurrent zero-knowledge
protocol.3

4. It is an Arthur-Merlin (public coins) protocol.

5. It has a simulator that runs in strict probabilistic polynomial-time, rather than expected
probabilistic polynomial-time.

The above protocol should be contrasted with the following impossibility results regarding black-
box zero-knowledge arguments for non-trivial languages: Goldreich and Krawczyk [GK90] showed

2Actually in this paper we require that there exist hash functions that are collision-resistent against adversaries
of size that is some fixed “nice” super-polynomial function (e.g., nlogn or nlog logn). This requirement can be relaxed
to standard (i.e., secure against polynomial-sized circuits) collision-resistent hash functions as is shown in [BG01].

3The choice of n repetitions is quite arbitrary and could be replaced by any fixed polynomial (e.g. n3) in the
security parameter. This is in contrast to a standard concurrent zero-knowledge protocol [DNS98, RK99] that remains
zero-knowledge when executed concurrently any polynomial number of times.
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that such protocols cannot satisfy both Properties 2 and 4. Canetti, Kilian, Petrank and Rosen
[CKPR01] showed that such protocols cannot satisfy both Properties 2 and 3. Subsequently to this
work, Barak and Lindell [BL02] showed that such protocols cannot satisfy Properties 2 and 5.

1.2 Our approach

Our zero-knowledge argument is constructed using a technique, which we call the FLS technique,
that has been used before in the design of zero-knowledge arguments (its first explicit use was by
Feige, Lapidot and Shamir [FLS99]). In the FLS technique, we take an interactive proof/argument
for a language L and modify it so that if the prover knows some trapdoor information σ, then the
prover will be able to “cheat” and convince the verifier that any string x is in L, even without
knowing a witness for x and even when x is actually not in L. Naturally, to preserve soundness, one
must ensure that it is infeasible to obtain this trapdoor information σ when interacting with the
honest verifier. Although at first this may seem to make the modification pointless, this modification
is in fact crucial to obtaining the zero-knowledge property. The reason is that although the trapdoor
information σ is infeasible to obtain in an actual interaction with the verifier, one can construct
the protocol such that it will be easy to obtain by the simulator. This will allow the simulator
to produce a “real-looking” (and in particular accepting) proof, even though it does not get the
witness as input.

Protocols following the FLS technique are usually constructed to ensure that using black-box
access to the next-message function of the verifier (or in other words, using the power to “rewind”
the verifier) it would be easy to obtain the trapdoor information σ (e.g., this is the case in [FS89,
RK99, KP00]). Our protocol also uses the FLS technique but with a twist. We construct our
protocol in such a way that our trapdoor information σ will simply be the description of the verifier’s
next-message function (i.e., the verifier’s code). Thus a non-black-box simulator has (trivially)
access to this trapdoor information. Note that because the verifier’s next-message function may
be a function that is hard to learn (e.g., a pseudorandom function) it may be very hard for a
black-box simulator to obtain the trapdoor information. Indeed, our protocol will not be black-box
zero-knowledge (as mentioned above every argument system for a non-trivial language satisfying
Properties 1–5 can not be black-box zero-knowledge).

The techniques of Feige, Lapidot and Shamir [FLS99] allow to use as trapdoor information the
witness for any NP language. However, it turns out that for our purpose of making the trapdoor
information be the verifier’s code, this is not sufficient. Loosely speaking, the problem is that the
running time of the verifier is not a-priori bounded by any fixed polynomial. This problem is similar
to a problem that Canetti, Goldreich and Halevi [CGH98] encountered previously, when they tried
to construct a counter-example for the Random Oracle Methodology. We solve this problem in a
similar way to [CGH98], using universal arguments. Loosely speaking, a universal argument system
is a computationally-sound proof system for NEXP.4 Using universal arguments we are able to
extend the technique of [FLS99] and use as trapdoor information a witness for any Ntime(T (n))
language for some super-polynomial function T (·) (e.g., T (n) = nlog logn).

4The name and definition of universal arguments is borrowed from the subsequent work by Barak and Goldreich
[BG01]. Universal arguments are a hybrid of interactive CS proofs [Mic94] and arguments [BCC88]. Their construc-
tion follows [Kil92, Kil95] which is based on the multi-prover (PCP) proof system for NEXP [BFL91]. See Section 3
for more details.
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1.3 Related Work

Zero-knowledge proofs were introduced by Goldwasser, Micali and Rackoff in [GMR85]. Goldreich,
Micali and Wigderson [GMW86] gave a zero-knowledge proof for any language in NP, and showed
the wide applicability of such proofs to solving protocol problems. Constant-round zero-knowledge
arguments and proofs for any language in NP were first presented by Feige and Shamir [FS89],
Brassard , Crépeau and Yung [BCY89], and Goldreich and Kahan [GK96].

All of the above protocols utilized black-box simulators (see also [GO87]). Goldreich and
Krawczyk [GK90] showed that no language outside of BPP has a constant-round Arthur-Merlin
zero-knowledge proof or argument system with a black-box simulator. They also showed that no
language outside of BPP has a general (i.e., not necessarily Arthur-Merlin) three-round zero-
knowledge proof or argument system with a black-box simulator.

A non-black-box zero-knowledge argument was suggested by Hada and Tanaka [HT99]. How-
ever, they used a highly non-standard assumption that in itself was of a strong “reverse-engineering”
flavor.

Some of our techniques (i.e., the use of CS proofs for trapdoor information) were first used by
Canetti, Goldreich and Halevi [CGH98] for the purpose of constructing cryptographic schemes that
are secure in the Random Oracle Model [BR93] but are insecure under any implementation of this
model. CS proofs were defined and constructed by Kilian [Kil92, Kil95] and Micali [Mic94](see
more discussion on Section 3).

Subsequent work. Following this work, Barak and Goldreich [BG01] were able to strengthen the
results of this paper, and prove that a zero-knowledge protocol satisfying all of the Properties 1–
5 exists under the assumption of standard collision-resistent hash function. That is, under the
assumption that there exists a hash function that is collision-resistant against polynomial-sized
circuits (instead of T (n)-sized circuits for a “nice” super-polynomial function T (·) such that T (n) =
nlogn).

Barak, Goldreich, Goldwasser and Lindell [BGGL01] used the results of this paper to obtain a
new results in the resettable model of Canetti et al.[CGGM00]. They constructed a resettably-sound
zero-knowledge argument. Their protocol also has a non-black-box simulator and they show that
it is impossible to obtain such an argument using a black-box simulator. Using this argument they
constructed a resettable zero-knowledge argument of knowledge. This argument of knowledge uses
a non-black-box knowledge extractor. It was observed by [CGGM00] that it is impossible to obtain
such an argument using a black-box extractor.

Barak and Lindell [BL02] used the results of this paper to obtain a zero-knowledge argument
of knowledge with a strict probabilistic polynomial-time knowledge extractor. They also showed
that strict probabilistic polynomial-time extraction and simulation is impossible when restricted
to black-box techniques.

We discuss additional related works in the relevant sections.

1.4 Organization

Section 2 contains some notations and definitions of the basic cryptographic primitives that we use.
Section 3 describes universal arguments which are one of our main tools.

The construction of our zero-knowledge protocol is described in three stages. In Section 4, we
construct a zero-knowledge protocol satisfying Properties 2, 4 and 5 of the introduction. That
is, we construct a protocol that is constant-round Arthur-Merlin and has a strict polynomial-time
simulator. However, it will not be zero-knowledge with respect to auxiliary input (i.e., non-uniform
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zero-knowledge). Rather, it will only be zero-knowledge with respect to verifiers whose strategy
can be implemented by a uniform probabilistic polynomial-time Turing machine. In Section 4.4
we present an alternative construction for a uniform-verifier generation protocol, which is the main
component in this construction. This alternative construction is somewhat simpler and more round-
efficient.

In Section 5, we modify the protocol of Section 4 and obtain a protocol that is zero-knowledge
with respect to non-uniform verifiers. In Section 6 we make yet another modification to obtain a
protocol that remains zero-knowledge under bounded-concurrent composition.

Section 7 contains conclusions and open problems.

2 Preliminaries

2.1 Standard Notation

In this section we state for completeness some of the notations we use. Since this subsection contains
only standard notations, the reader may want to skip to Section 2.2 and return to this subsection
only if necessary.

Basic notation. We use the standard O-notations (O,Ω, o, ω,Θ). For a finite set S ⊆ {0, 1}∗,
we write x ←R S to say that x is distributed uniformly over the set S. We denote by Un the
uniform distribution over the set {0, 1}n. A function µ(·), where µ : N → [0, 1] is called negligible
if µ(n) = n−ω(1) (i.e., µ(n) < 1

p(n) for all polynomials p(·) and large enough n’s). We say that

an event happens with overwhelming probability if it happens with probability 1 − µ(n) for some
negligible function µ(·).

Languages and witnesses. Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation. We define L(R)
def
=

{x | ∃y s.t. (x, y) ∈ R}. If x ∈ L(R) and y is a string such that (x, y) ∈ R then we say that y
is a witness for the fact that x ∈ L(R). We denote the set of witnesses to x by R(x). That is,
R(x) = {y | (x, y) ∈ R}. Let T : N→ N be some function. We say that L ∈ Ntime(T (n)) if there
exists a relation R such that L = L(R) and a Turing machine M such that on input (x, y), the
machine M runs for at most T (|x|) steps and output 1 if (x, y) ∈ R and 0 otherwise.

Algorithms. If A is a probabilistic algorithm, then we let A(x; r) denote the output of A on
input x and random-tape r. We let A(x) denote the random variable that represents A(x; r) for a
randomly chosen r of appropriate length. We identify algorithms with their description as either
Turing machines or boolean circuits. For example, A(A) denotes the output of the algorithm A,
when given as input the string that describes A.

Computational indistinguishability. Let X and Y be random variables over {0, 1}n and let
s ≥ n. We say that X and Y are indistinguishable by s-sized circuits if for every circuit D of size
s, it holds that |Pr[D(X) = 1]−|Pr[D(Y ) = 1]| < 1

s . A probability ensemble is a sequence {Xi}i∈I
of random variables, where I is an infinite subset of {0, 1}∗ and Xi ranges over {0, 1}p(|i|) for some
polynomial p(·). We say that two probability ensembles {Xi}i∈I and {Yi}i∈I are computationally
indistinguishable, denoted by {Xi}i∈I ≡C {Yi}i∈I , if for every polynomial p(·) and every sufficiently
large i, Xi and Yi are indistinguishable by p(|i|)-sized circuits. An equivalent formulation is that
{Xi}i∈I and {Yi}i∈I are computationally indistinguishable if there exists a negligible function µ :
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N→ [0, 1] such that Xi and Yi are indistinguishable by 1
µ(|i|) -sized circuits. We will sometimes abuse

notation and say that the two random variables Xi and Yi are computationally indistinguishable,
denoted by Xi ≡C Yi, when each of them is a part of a probability ensemble such that these
ensembles {Xi}i∈I and {Yi}i∈I are computationally indistinguishable. We will also sometimes drop
the index i from a random variable if it can be inferred from the context. In most of this cases, the
index i will be of the form 1n where n is called the security parameter. We will use the following
basic facts regarding computational indistinguishability:

Proposition 2.1. Let M be a probabilistic polynomial-time Turing machine. If {Xi}i∈I and {Yi}i∈I
are computationally indistinguishable then so are {M(Xi)}i∈I and {M(Yi)}i∈I .

We call a probability ensemble {Xi}i∈I efficiently sampleable if there exists a probabilistic
polynomial-time Turing machine S and a polynomial p(·) such that Xi = S(i, Up(|i|)). We have the
following two facts about efficiently sampleable ensembles:

Proposition 2.2. Let {Xi}i∈I , {Yi}i∈I , {Ui}i∈I and {Ti}i∈I be four efficiently sampleable proba-
bility ensembles. If {Xi}i∈I is computaionally indistinguishable from {Yi}i∈I and {Ui}i∈I is compu-
tationally indistinguishable from {Ti}i∈I then the ensemble {(Xi, Ui)}i∈I is computationally indis-
tinguishable from the ensemble {(Yi, Ti)}i∈I , where (Xi, Ui) (resp. (Yi, Ti)) represents a pair (x, u)
(resp. (y, t)) such that x (resp. y) is sampled from Xi (resp. Yi) and u (resp. t) is independently
sampled from Ui (resp. Ti).

Proposition 2.3. Let {Xi}i∈I and {Yi}i∈I be two efficiently sampleable and computationally indis-

tinguishable probability ensembles. Let p(·) be some polynomial. Then, the ensembles {(X(1)
i , . . . , X

(p(|i|))
i )}i∈I

and {(Y (1)
i , . . . , Y

(p(|i|))
i )}i∈I are computationally indistinguishable, where (X

(1)
i , . . . , X

(p(|i|))
i ) (resp.

(Y
(1)
i , . . . , Y

(p(|i|))
i )) represents p(|i|) independent copies of Xi (resp. Yi).

2.2 Uniform and non-uniform adversaries

Our standard way to model an efficient adversary strategy will be a family of polynomial-sized
circuits. However, we also consider other models such as T (n)-sized circuits for a super-polynomial
function T : N → N (e.g., T (n) = nlogn). We will also consider uniform adversaries. That is,
adversaries that are described using probabilistic polynomial-time Turing machines. Further more,
we will also consider a “hybrid model” of adversaries with bounded non-uniformity. Such adversaries
are described by a probabilistic polynomial-time Turing machine that on inputs of size n gets an
advice string of length l(n) where l : N→ N is some fixed function that is polynomially related to
n. We stress that the running time of such adversaries may be any polynomial and so in particular
may be larger than l(n).

Notes:

• It is well known that in almost all cryptographic settings, when considering non-uniform
adversaries, without loss of generality, we can restrict ourselves to deterministic adversaries.
This is justified by “hardwiring” into the description of the adversary a “best” random tape
which exists by an averaging argument (e.g., see [Gol01b, Sec. 1.3.3]). This is not necessarily
the case when talking about uniform algorithms, or algorithms with bounded non-uniformity.
However, we will see in Section 4 that we can still reduce a probabilistic adversary into a
deterministic adversary in the case of bounded non-uniformity. We will do so first reducing the
size of the adversary’s random tape using a pseudorandom generator and then“hardwiring”
into the description of the adversary a “best” random tape (which will now be short enough
so that the adversary will still have bounded non-uniformity).
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• In most cryptographic works, a proof of security for uniform adversaries, can be extended to
yield a proof of security for non-uniform adversaries (under appropriate complexity assump-
tions). However, this is only because these works use black-box reductions in their proof of
security. In contrast, since in this work we will utilize non-black-box techniques, our proofs
of security against uniform adversaries do not extend automatically into proofs of security
against non-uniform adversaries. Indeed, we will need to introduce some additional ideas in
order to extend the results of Section 4, which address with uniform adversaries, to the case
of non-uniform adversaries (see Section 5).

2.3 Protocols and interaction

Next-message function, view and transcript. We consider only two-party protocols. A view
of a party in particular step of a protocol contains the public input, the party’s private input and
random-tape, and the list of messages that this party received up to this step. The next-message
function of a party is a function that maps a view in a particular step of the protocol to the party’s
message in the next step. An interactive algorithm is an algorithm that computes the next-message
function of a party. If I is an interactive algorithm, and v is a view of the protocol up to a particular
step s, then the residual algorithm I with respect to the view v is the algorithm I with the view v
“hardwired in”. That is, this is a function that takes a list of messages sent after the step s, and
computes I’s response to them, assuming that the messages sent up to step s are as described in
v. A transcript of a protocol consists of the public input and the list of all messages exchanged
in the protocol (but does not include the parties’ private inputs and random-tapes). That is, the
transcript of an execution is the public information seen by both parties in the execution. For
any interactive algorithm I, and any view v of I, the transcript τ of the protocol can always be
computed from the view v. We say in this case that the transcript τ is contained in the view v.

Notation. If A and B are interactive algorithms, then 〈A(x, y), B(x, z)〉 is a random variable
representing the execution of A and B on public input x when A’s private input is y and B’s
private input is z. We let viewA〈A(x, y), B(x, z)〉 denotes A’s view in this execution, and let
outA〈A(x, y), B(x, z)〉 denotes A’s output at the end of the execution. We define viewB and outB
in the symmetric way. We let transcript〈A(x, y), B(x, z)〉 denote the transcript of the execution.

Prescribed versus cheating parties. For a two-party protocol, the prescribed or honest strat-
egy for a party is the strategy it should use if it follows the protocol. However, we will usually
analyze the execution of the protocol also when one of the parties may not be following its pre-
scribed strategy. We will sometimes call such a party “cheating”. Part of the description of any
protocol are conventions on who is the first party to send a message and on the length of each mes-
sage. We assume, without loss of generality, that even “cheating” parties follow these conventions
(e.g., if a party sends a message that is too short or too long then we assume that it is padded or
truncated to the proper length).

2.4 Interactive proof and argument systems

An interactive proof [GMR85] is a two-party protocol, where one party is called the prover and
the other party is called the verifier. We use the following definition:

Definition 2.4 (Interactive proofs). An interactive protocol (P, V ) is called an interactive proof
system for a language L if the following conditions hold.
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1. (Efficiency) The number and total length of messages exchanged between P and V are poly-
nomially bounded and V is a probabilistic polynomial-time machine.

2. (Perfect Completeness) If x ∈ L, then Pr[(P, V )(x) = 1] = 1.

3. (Soundness) If x /∈ L, then for any P ∗, Pr[(P ∗, V )(x) = 1] ≤ µ(|x|) where µ(·) is some
negligible function.

An interactive proof system is called Arthur-Merlin [BM88] (a.k.a. public-coins) if the verifier’s
messages consist only of random strings and acceptance is computed as a deterministic polynomial-
time function of the interaction’s transcript. An interactive proof system that is not Arthur-Merlin
is called private-coins.

The number of rounds in an interactive proof is the total number of messages exchanged in the
interaction (that is, both prover messages and verifier messages).

Let L ∈ NP, a proof system for L has an efficient prover strategy if the completeness property
of the system can be satisfied by a probabilistic polynomial-time algorithm that when proving that
x ∈ L gets as auxiliary input a witness to this fact.

Let L ∈ NP, an interactive argument for L [BCC88] is the following variation on the definition
of an interactive proof:

• The soundness requirement is relaxed to quantify only over prover strategies P ∗ that can be
implemented by a polynomial-sized circuit.

• The system is required to have an efficient prover strategy.

Honest verifier conventions. We say that an execution of a two-party protocol is completed
successfully if no party aborted. For a proof (or argument) system, we assume that if a verifier
rejects the proof then it aborts, and so an execution of a proof system is completed successfully only
if the verifier accepts. If a proof system uses another proof system as a subprotocol, then we assume
that in case the verifier of the subprotocol rejects, then execution is aborted and thus the verifier for
the larger proof system will also reject. If we do not specify the verifier’s acceptance condition, then
it is assumed that the verifier accepts if and only if all the subprotocols were completed successfully.

2.4.1 Zero-knowledge

Informally, we say that a proof/argument system for L is zero-knowledge [GMR85] if after seeing a
proof that x ∈ L, the verifier does not learn anything about x that it didn’t know before. We require
this to hold even if the verifier does not follow its prescribed strategy for the proof system, as long
as its strategy can be implemented by an efficient algorithm. This is formalized by requiring that
there exists an efficient algorithm called the simulator, that given the verifier’s prior knowledge (i.e.,
the string x, the verifier’s strategy and private inputs) can compute (or closely approximate) the
verifier’s state after viewing a proof that x ∈ L. The formal definition is below. Note that we define
two variants of zero-knowledge: uniform and non-uniform, based on the classes of algorithms that
we allow the cheating verifier to employ. Note also that in our definition we require the simulator
to be universal. That is, the simulator is a single algorithm for all possible verifier’s strategies, that
gets the strategy as an additional input.

Definition 2.5 (Zero-knowledge). Let L = L(R) be some language and let (P, V ) be an interactive
argument for L. We say that (P, V ) is (non-uniform) zero-knowledge if there exists a probabilistic
polynomial-time algorithm S such that for every polynomial-sized circuit family {V ∗n }n∈N and every
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sequence {(xn, yn)}n∈N, where xn ∈ {0, 1}n ∩ L and (xn, yn) ∈ R the following two probability
ensembles are computationally indistinguishable:

•
{
viewV ∗n 〈P (xn, yn), V ∗n (xn)〉

}
n∈N

and

•
{
S(V ∗n , xn)

}
n∈N

We say that (P, V ) is uniform zero-knowledge if there exists a probabilistic polynomial-time
algorithm S such that for every polynomial t(·), every probabilistic t(n)-time Turing machine V ∗

every sequence {(xn, yn)}n∈N, where xn ∈ {0, 1}n∩L and (xn, yn) ∈ R the following two probability
ensembles are computationally indistinguishable:

•
{
viewV ∗〈P (xn, yn), V ∗(xn)〉

}
n∈N

and

•
{
S(V ∗, 1t(n), xn)

}
n∈N

In either case we say that S is a black-box simulator if the only use it makes of its first input
(i.e., V ∗) is to call it as a subroutine.

We remark that we use a somewhat stronger definition than the standard definition of uniform
zero-knowledge [Gol93]: we allow both the input generation and the distinguisher to be non-uniform.

2.4.2 Witness indistinguishability

Like zero-knowledge, a witness-indistinguishable proof/argument system [FS90] also guarantees
some secrecy property to the prover, but it is a weaker property than zero-knowledge. In a witness-
indistinguishable proof system we do not require that the verifier does not learn anything about x
after seeing a proof that x ∈ L. Rather, we only require that if both y and y′ are witnesses that
x ∈ L, then it is infeasible for the verifier to distinguish whether the prover used y or y′ as auxiliary
input. The formal definition is below: (we only make the definition in the non-uniform setting)

Definition 2.6. Let L = L(R) be some language and let (P, V ) be an interactive argument for L.
We say that (P, V ) is witness-indistinguishable if for every polynomial-sized circuit family {V ∗n }n∈N
and every sequence {(xn, yn, y′n)}n∈N, where xn ∈ {0, 1}n and (xn, yn), (xn, y

′
n) ∈ R the following

two probability ensembles are computationally indistinguishable:

•
{
viewV ∗n 〈P (xn, yn), V ∗n (xn)〉

}
n∈N

and

•
{
viewV ∗n 〈P (xn, y

′
n), V ∗n (xn)〉

}
n∈N
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Witness indistinguishability is a weaker property than zero-knowledge. That is, if a protocol
is zero-knowledge then it is also witness-indistinguishable [FS90]. Also, under standard assump-
tions, there exist protocols that are witness-indistinguishable but not zero-knowledge (as a trivial
example, note that for any language L where each x ∈ L has a single witness, the trivial NP
proof system of sending the witness is witness-indistinguishable). Unlike zero-knowledge, witness
indistinguishability is known to be closed under concurrent (and in particular parallel) composition
[Fei90]. Using this fact, parallel repetition of the “basic protocol” of [GMW86], yields the following
theorem:

Theorem 2.7 ([FS90]). Suppose that one-way functions exist. Then, for every language L ∈ NP
there exist a constant-round Arthur-Merlin witness-indistinguishable proof system for L.

2.4.3 Proofs of knowledge

In a proof/argument system, the prover convinces the verifier that some string x is a member of a
language L. In a proof/argument of knowledge [FFS87, BG93, GMR85, TW87] the prover should
convince the verifier that it also knows a witness to the fact that x ∈ L. This is formalized by
requiring that if the verifier is convinced with some probability p by some (possibly cheating) prover
strategy, then by applying an efficient algorithm, called the knowledge extractor to the cheating
prover’s strategy and private inputs, it is possible to obtain a witness to the fact that x ∈ L, with
probability (almost equal to) p. The formal definition is below:

Definition 2.8. Let L = L(R) and let (P, V ) be an argument system for L. We say that (P, V ) is
an argument of knowledge for L if there exists a probabilistic polynomial-time algorithm E (called
the knowledge extractor) such that for every polynomial-sized prover strategy P ∗ and for every
x ∈ {0, 1}n

Pr[E(P ∗, x) ∈ R(x)] ≥ Pr[outV 〈P ∗(x), V (x)〉 = 1]− µ(n)

where µ : N→ [0, 1] is a negligible function.

We will sometimes consider a generalized definition where we allow both the cheating prover
P ∗ and the extractor E to run in time T (n)O(1) where T (·) is some super-polynomial function.

We say that an argument of knowledge has a black-box extractor if the knowledge extractor
algorithm E uses its first input (i.e., P ∗) as a black-box subroutine (i.e., oracle). We note that in
this paper we will only use black-box extractors.

2.5 Cryptographic primitives

2.5.1 Pseudorandom generators and functions

We will use the standard definitions of pseudorandom generators [?, Yao82] and functions [GGM86].
That is, we say that a determinstic polynomial-time computable function PRG (where |PRG(s)| =
n(|s|) for some function n(·) such that n(l) > l) is a pseudorandom generator if the random vari-
able PRG(Ul) is computationally indistinguishable from Un(l). We say that an efficiently evaluat-

able function ensemble {fα}α∈{0,1}∗ is a pseudorandom function ensemble (where fα : {0, 1}|α| →
{0, 1}|α|) if it is infeasible for a polynomial-sized circuit to distinguish between oracle access to fUn

and oracle access to a function H chosen randomly of the set of functions from {0, 1}n to {0, 1}n.
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2.5.2 Commitment schemes

In this paper we will use statistically-binding commitment schemes. A non-interactive statisti-
cally binding commitment scheme can be constructed based on any one-way permutation [Blu82].
Naor [Nao89] showed a construction of an interactive (two-round) statistically-binding commitment
scheme based on any one-way function . For simplicity of presentation we will define commitment
schemes in this paper to be non-interactive; however, all of our results still hold if the non-interactive
commitment is replaced by Naor’s construction.

Definition 2.9. A polynomial-time computable function Com : {0, 1}×{0, 1}n → {0, 1}p(n) (where
p(·) is some polynomial) is a bit commitment scheme if it satisfies the following properties:

Computational Hiding The random variables Com(0;Un) and Com(1;Un) are computationally
indistinguishable.

Statistical Binding The supports of the above random variables are disjoint.

Notation. We denote by Com(b) the random variable Com(b;Un). We define Com−1(y) = b
where b is the unique bit such that y = Com(b; r) for some r if such b exists; otherwise, we define
Com−1(y) = ⊥. One can convert a bit commitment scheme into a string commitment scheme by
concatenating independent commitments for each of the input bits. Thus for x = x1 . . . xl ∈ {0, 1}l
and r = r(1) · · · r(l) ∈ {0, 1}nl we define Com(x; r) = Com(x1; r

(1)) · · ·Com(xl; r
(l)). Similarly, for

such a string x we will denote by Com(x) the random variable Com(x;Unl) and define Com−1(y) = x
where x is the unique string such that y = Com(x; r) for some r if such x exists; otherwise, we
define Com−1(y) = ⊥.

2.5.3 Collision-resistent hash functions

We will use the following definition of collision-resistent hash functions [?]

Definition 2.10. Let H = {hα}α∈{0,1}∗ be an efficiently computable function ensemble where
hα : {0, 1}2α → {0, 1}α. We say that H is collision-resistent against T (n)-sized circuits if for every
circuit family {A∗n}n∈N where |A∗n| ≤ T (n), it holds that

Pr
α←R{0,1}n

[A∗(α) = (x, x′) s.t. x 6= x′ ∧ hα(x) = hα(x′)] <
1

T (n)

2.6 Computational Assumptions

Throughout this paper we will make the assumption that there exists a family of hash functions
that is collision-resistent against circuits of size nlogn where n is the security parameter. The choice
of nlogn is somewhat arbitrary and in fact our result holds under the weaker assumption that there
exist hash functions that are collision-resistent against f(n)-sized circuits for some function f(·)
that is super-polynomial (i.e., f(n) = nω(1)) and polynomial-time computable. Following this
work, Barak and Goldreich [BG01] showed that our result holds also under the weaker (and more
standard) assumption that that there exist hash functions that are collision-resistent against all
polynomial-sized circuits.
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3 Universal arguments

Universal arguments are a variant of (interactive) CS proofs, as defined and constructed by Micali
[Mic94] and Kilian [Kil92]. Loosely speaking, a universal argument is an interactive argument
of knowledge for proving membership in Ntime(T (n)) ⊇ NP for a super-polynomial function
T (·). Note all of the languages in NP can be reduced to a single language in Ntime(T (n)) via
a reduction that preserves the length of the instance. Therefore, an argument system for this
“universal” Ntime(T (n)) language allows us to use a single protocol to prove membership in all
NP languages, rather than use a different protocol for each language; hence the name universal
arguments.

In a subsequent work, Barak and Goldreich [BG01] constructed universal arguments under a
weaker assumption than the one we use here (namely, they constructed universal arguments under
the assumption that there exist hash functions that are collision-resistent against polynomial-sized
circuits). The definition we present here is slightly different than the one of [BG01]. This is due to
the fact that we use a stronger assumption, which enables us to use a slightly simpler definition.

Defining universal arguments. It will be convenient to define universal arguments for a single
“universal” language. We define the following relation RU . We say that (〈M,x, t〉, w) ∈ RU , where
M is a description of a Turing machine, x,w are strings and t is a number (represented in binary
form), if M accepts (x,w) within t steps. We define TM (x,w) to be the number of steps made by
M on input (x,w). Note that if (〈M,x, t〉, w) ∈ RU then TM (x,w) ≤ t. Note that under suitable

encoding |〈M,x, t〉| = |x|+ log t+O(1). Let LU
def
= L(RU ). Note that LU ∈ Ntime(2n).

Let T : N → N be a super-polynomial function (e.g. T (n) = nlog logn). We define the relation
RU

T (n) as follows: (〈M,x, t〉, w) ∈ RU
T (n) if (〈M,x, t〉, w) ∈ RU and t ≤ T (|〈M,x, t〉|). We let

LU
T (n) def

= L(RU
T (n)). Note that LU

T (n) ∈ Ntime(T (n)O(1)). Also note that RU
2n = RU and

LU
2n = LU .
A universal argument system for Ntime(T (n)) is basically an argument system of knowledge

for LU
T (n) with the following modifications:

• We make a stronger requirement on the honest prover’s efficiency. Rather than only placing
an upper bound on the prover’s complexity on all inputs of a specified length, we require that
the prover’s running time on public input 〈M,x, t〉 and auxiliary input w will be polynomial
in TM (x,w) and so in particular it should be polynomial in t.

• Because the length of the witness w may be T (n), polynomial-time may not be sufficient to
write it down. Thus, we allow the knowledge extractor to run in time T (n)O(1). We remark
that this is a weaker condition than the one used by Barak and Goldreich [BG01]. They
require the knowledge extractor to run in polynomial-time (but allow it to output an implicit
representation of the witness).5

Below is the formal definition:

Definition 3.1 (universal argument). A universal-argument system for Ntime(T (n)) is a pair of
strategies, denoted (P, V ), that satisfies the following properties:

5We remark that superficially, our proof of knowledge condition appears to be stronger than the condition of
[BG01] because they allow the knowledge extractor to output a witness in probability that is only polynomially
related to the acceptance probability. However, once one allows the knowledge extractor to run in time T (n) then it
is possible to verify the witness, and amplify the acceptance probability. Thus, their condition is indeed stronger.
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Efficient verification: V is a probabilistic polynomial-time interactive algorithm.

Completeness by a relatively-efficient prover: For every y = 〈M,x, t〉 ∈ LU
T (n) and w ∈

RU
T (n)(y),

Pr[outV 〈P (y, w), V (y)〉 = 1] = 1

Furthermore, there exists a polynomial p(·) such that the total time spent by P (y, w),is at
most p(TM (x,w)) (which in turn is at most p(t)).

Computational Soundness: For every polynomial-size circuit family {P ∗n}n∈N, and every y =
〈M,x, t〉 ∈ {0, 1}n \ LUT (n),

Pr[outV 〈P ∗(y), V (y)〉 = 1] < µ(n)

where µ : N→ [0, 1] is a negligible function.

Proof of Knowledge: There exists a probabilistic T (n)O(1)-time oracle machine E such that for
every polynomial-sized circuit family {P ∗n}n∈N and every string y = 〈M,x, t〉 ∈ {0, 1}n,

Pr[EP
∗
n (y) ∈ RUT (n)(y)] ≥ Pr[outV 〈P ∗(y), V (y)〉 = 1]− µ(n)

where µ : N→ [0, 1] is a negligible function.

We have the following theorem:

Theorem 3.2 (based on [Kil92, Mic94]). Suppose that there exists a hash function ensemble that
is collision-resistent against circuits of size nlogn. Then there exists a universal argument system
for Ntime(nlog logn). Furthermore, this system has the following additional properties:

1. The system is constant-round and Arthur-Merlin.

2. The system is witness-indistinguishable.

Moreover, for every ε > 0, there exists such a system with total communication complexity of
mε, where m is the instance length (i.e., m = |〈M,x, t〉|).

The choice of Ntime(nlog logn) is quite arbitrary and was taken for simplicity of presentation.
We can replace it by Ntime(f(n)) for any function f(·) such that f(n) = no(logn). Following this
work, Barak and Goldreich [BG01] proved a stronger theorem in which they showed that a universal
argument for the language LU (and hence for NEXP) exists under the standard assumption of
hash functions that are collision-resistent against polynomial-sized circuits.

Because the proof of Theorem 3.2 closely follows the proofs in [Kil92, Mic94], and because
Theorem 3.2 has been superseded by the results of [BG01], we omit its proof here. See Appendix A
for a proof sketch.

We remark that it is very unlikely that it will be possible to strengthen the soundness condition
of the universal argument system to statistical soundness that holds against even inefficient prover
strategies. This is because if L has an interactive proof with a polynomial-time verifier then
L ∈ PSPACE, while it is believed that Ntime(nlog logn) * PSPACE.
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4 A Uniform Zero-Knowledge Argument

In this section we construct a constant-round Arthur-Merlin argument system for NP that is zero-
knowledge for uniform verifiers (i.e., verifiers whose strategy is implemented by a Turing machine
without advice). The protocol of this section will utilize a non-black-box simulator that runs in
strict probabilistic polynomial-time. This protocol falls short of satisfying all the properties 1–5
stated in Section 1.1 because it is only zero-knowledge against uniform verifiers and we do not
know whether or not it remains zero-knowledge under bounded concurrent composition. However,
it does illustrate the main ideas of our construction.

4.1 FLS-type protocols

In our construction, we use a general technique that has been used before in the design of zero-
knowledge protocols. We call this technique the FLS technique, since it was introduced in a paper
by Feige, Lapidot and Shamir [FLS99].

The FLS technique allows to reduce the problem of constructing a zero-knowledge proof (or argu-
ment) system to the problem of constructing two simpler objects: a witness-indistinguishable (WI)
proof/argument system and (what we call here) a generation protocol. Witness-indistinguishable
proof and argument systems are described in Section 2.4.2. Generation protocols are defined later
on (See Definition 4.1).

Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”)
w
↓

x
↓

P V
Prover’s auxiliary input: w (a witness that x ∈ L)

Steps P,V1.x (Generation protocol): Prover and verifier engage
in a generation protocol GenProt . We denote the transcript
of the execution by τ .

1n
↓

GenProt
↓
τ

Steps P,V2.x (WI Proof): Prover proves to verifier using its
auxiliary input w via a witness-indistinguishable (WI)
proof/argument system that either x ∈ L or τ ∈ Λ, where Λ is
a fixed language (which is part of the protocol’s specification).6

w
↓

x, τ
↓

WI-proof
x ∈ L
or τ ∈ Λ

↓
0/1

The verifier accepts if the WI proof of the second stage is completed
successfully (i.e., if the verifier algorithm for the WI proof accepts).

The right column contains a schematic description of the protocol as defined in the left column.

Figure 1: A generic FLS-type zero-knowledge protocol

We call a zero-knowledge protocol that is constructed using the FLS technique an FLS-type
protocol. Figure 1 describes a generic FLS-type zero-knowledge protocol. The general outline of
such a protocol is that when proving some statement of the form “x ∈ L” first the prover and
the verifier engage in a generation protocol. Then the prover proves to the verifier using a WI
system that either the statement “x ∈ L” is true, or a different statement about the transcript of

6Formally, the prover proves that 〈x, τ〉 ∈ L′ where the language L′ is defined as follows: 〈x, τ〉 ∈ L′ if x ∈ L or
τ ∈ Λ.
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the generation protocol is true. To obtain a specific protocol one needs to specify the generation
protocol (GenProt) to be used in Steps P,V1.x, the language Λ, and the WI proof (or argument)
to be used in Steps P,V2.x. We stress that there are also black-box zero-knowledge arguments that
use the FLS technique (e.g., [RK99, KP00]).

Note that the generation protocol does not take the statement x as an input, and so honest
parties do not use x in computing their strategies for the first phase. (Although cheating parties
may choose to do so.) Intuitively, one may think of the generation protocol as a game that the
prover and verifier play. The prover’s objective in this game is to make the transcript τ of the
protocol in the language Λ, while the verifier’s objective is to ensure that τ will not be in Λ. By the
way an FLS-type protocol is set up, if the prover “wins” in the generation phase, then he doesn’t
need to prove that x ∈ L in the second phase. Thus, for the proof to be sound, it is important that
an honest verifier will win this game with high probability, no matter what strategy the prover may
use. However, we will need to require some additional properties from the generation protocol in
order to make it useful in this setting.7

Defining generation protocols. We now turn to formally defining what is a generation protocol.
Our definition is motivated by our intended application. Therefore, we make requirements from a
generation protocol that will ensure that when a generation protocol is plugged into the generic
construction of Figure 1, the result would be a zero-knowledge proof or argument system. We define
a uniform-verifier generation protocol since in this section we are only interested in obtaining a
protocol that is zero-knowledge against verifiers whose strategy can be implemented by a uniform
probabilistic polynomial-time Turing machine. The formal definition follows:

Definition 4.1 (Uniform-verifier generation protocol). Let GenProt be a two-party protocol
where we call one party the prover and the other party the verifier. Let Λ ⊆ {0, 1}∗ be some
language in Ntime(T (n)) for some (polynomial-time computable) function T : N → N (e.g.,
T (n) = nlog logn or T (n) = n3). We say that GenProt is a (uniform-verifier) generation protocol
(with respect to the language Λ) if it satisfies the following two requirements:

Soundness (This requirement ensures that the protocol that GenProt will be plugged into will be sound.) Let
τ denote the transcript of the execution of GenProt. If the verifier follows its prescribed
strategy then, regardless of the prover’s (efficient or inefficient) strategy, it holds that Pr[τ ∈
Λ] < µ(n) for some negligible function µ : N→ [0, 1].

Simulation of uniform verifiers (This requirement ensures that the protocol that GenProt will be plugged

into will be zero-knowledge against uniform verifiers.) There exists a simulator SGenProt that satisfies
the following:

Let V ∗ be an interactive strategy for the verifier that runs in polynomial-time and can be
described using less than 2n bits where n is the security parameter. Then on input the
description of V ∗, SGenProt runs for time polynomial in the running time of V ∗ and outputs
a pair (v, σ) such that:

1. v is computationally indistinguishable from the view of V ∗ in an execution of GenProt
with the prescribed prover algorithm.

7In particular, it will have the property, useful for demonstrating that the larger protocol is zero-knowledge, that
if the prover knows the strategy and random tape of the verifier then he can always win the game.
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2. Let τ denote the transcript that is contained in the view v. Then it holds that τ ∈ Λ
and σ is a witness to this fact. Furthermore, we require that the time to verify that σ is
a witness for τ is polynomial in the running time of V ∗.8

Note that the two requirements together imply that Λ is a hard language. This is because in a
real execution with the honest verifier it is almost always the case that the transcript τ is not in
Λ while in the computationally indistinguishable simulated execution it is always in Λ. Note also
that the simulator SGenProt is given the description of V ∗ as input and so may possibly make a
non-black-box use of this description.

We can now prove the main theorem that we need about the FLS technique:

Theorem 4.2. Let GenProt be a generation protocol with respect to an Ntime(T ) language Λ
(where T : N → N is a polynomial-time computable function). Let WIProtbe a WI proof or
argument system for NP ∪Ntime(T ) languages. Let L be an NP language and let FLSProt be
the argument for L that is the result of plugging in GenProt and WIProt into the construction
of Figure 1. Then FLSProt is a uniform zero-knowledge argument for L.

Note that we deliberately stated Theorem 4.2 in a way that allows to treat in a uniform way both
the case that Λ ∈ NP (i.e., the case that T (·) is a polynomial) and the case that Λ ∈ Ntime(T )\NP
for some super-polynomial function T (·). In the former case it is sufficient to use a standard WI
proof system for NP such as the one of [FS90]. In the latter case one needs to use a WI universal
argument (see Section 3). Note that previous FLS-type protocols used languages Λ ∈ NP but we
will need to use Λ ∈ Ntime(T (·)) for some super-polynomial T (·).

4.1.1 Proof sketch of Theorem 4.2

We only sketch the proof of Theorem 4.2 since it will be superseded by a non-uniform analogue
(Theorem 5.2). To show that FLSProt is a zero-knowledge argument one needs to show three
properties: completeness, soundness, and zero-knowledge.

Completeness. Completeness follows from the fact that if the public input x is in L then the
statement “x ∈ L or τ ∈ Λ” is true. Furthermore, the witness w for x can serve as a witness for this
statement. Therefore completeness follows from the completeness with efficient prover condition
of the WI proof/argument system. Note that since L ∈ NP, if x ∈ L then verifying that either
x ∈ L or τ ∈ Λ can be done in non-deterministic polynomial-time, even if deciding Λ takes non-
deterministic super-polynomial time. This is because the witness w for x is also a witness for the
combined statement.

Soundness. Suppose that x 6∈ L. Let τ denote the transcript of the first stage (Steps P,V1.x) of
FLSProt. By the soundness property of GenProt with very high probability τ 6∈ Λ. Therefore
the combined statement “x ∈ L or τ ∈ Λ” will be false with very high probability and so the prover
will not succeed in convincing the verifier by the soundness of the WI proof/argument system.

8This requirement is important when considering Λ ∈ Ntime(T (·)) for a super-polynomial function T (·).
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Input:

• x ∈ {0, 1}n: statement (simulate proof for “x ∈ L”)

• V ∗: description of the Turing machine of verifier.

Let V ∗∗ denote the verifier V ∗ with x “hardwired” into it. Note that
since V ∗ is a Turing machine we can assume that the description of V ∗∗

takes at most 2n bits.9

Simulated Steps P,V1.x (Simulated generation protocol):
Let (v, σ) ← SGenProt(V ∗∗) where SGenProt is the simulator
for the generation protocol GenProt. Let τ denote the
transcript contained in the view v. We let V ∗∗∗ denote the
residual verifier V ∗∗ with the view v hardwired in.

1n
↓

simulated
GenProt
↓
σ

↓
τ

↓
v

Simulated Steps P,V2.x (Honest WI Proof): Run an execu-
tion of WIProt between the verifier V ∗∗∗ and the honest
prover algorithm for the WI system WIProt the statement
proved is “x ∈ L or τ ∈ Λ” using the witness σ. Let v′ denote
V ∗∗∗’s view in this execution.

σ
↓

x, τ
↓

WI-proof
x ∈ L
or τ ∈ Λ

↓
v′

Output the combined view (v, v′) of the two stages
This is a non-interactive algorithm. The right side contains a schematic description of the steps simulated

in the left side.

Algorithm 4.3. A simulator for the FLS-type protocol FLSProt.

Uniform zero-knowledge. To show that FLSProt is zero-knowledge against uniform verifiers
one should exhibit a simulator. Algorithm 4.3 is such a simulator. The simulator’s operation can
be summarized as follows: it uses the simulator SGenProt of the generation protocol GenProt to
obtain both a simulation v for the first stage along with a witness σ that τ ∈ Λ where τ is the
transcript that v contains. Then, it uses the honest prover algorithm of the WI system WIProt
to prove the true statement “x ∈ L or τ ∈ Λ”, while using the witness σ as auxiliary input to the
prover algorithm of WIProt. The first stage (running the simulator SGenProt) can certainly be
done in time that is polynomial in the running time of V ∗. The second step (running the honest
prover algorithm) can be done in time that is a fixed polynomial in the size of the statement if
Λ ∈ NP. However, even if Λ 6∈ NP, this step can still be performed in time polynomial in the
time to verify that σ is a witness that τ ∈ Λ (using the completeness with efficient property of
universal arguments, see Section 3). This is polynomial in the running time of V ∗ by Item 2 in
the uniform-verifier simulation condition of GenProt. Item 1 of the uniform-verifier simulation
condition of GenProt, along with the witness indistinguishability property of WIProt, ensure
that the output of our simulator will indeed be computationally indistinguishable from the view of
the verifier in a real interaction.

9Note that we do not need to assume that V ∗ is a completely uniform Turing machine but only that its description
is at most n-bits long.
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Public input: 1n: security parameter
1n
↓

P V

Step P1 (Commitment to “junk”): Prover computes z ←R

Com(03n) and sends z to the verifier.
z = Com(03n)

−−−−−−−−−−−−−→

Step V2 (Send random string): The verifier selects a string
r ←R {0, 1}n and sends it.

r ←R {0, 1}n←−−−−−−−−−−−−

The transcript of the protocol is the pair τ = (z, r).

Protocol 4.4. A uniform-verifier generation protocol

4.2 A uniform-verifier generation protocol

Now that we have described the FLS technique we see that to describe our zero-knowledge protocol
we should only specify the two components used (i.e., the WI system and generation protocol). Since
we want the zero-knowledge to have a constant number of rounds and to be of the Arthur-Merlin
type we must ensure that both components are indeed constant-round and Arthur-Merlin. For
the WI system we will use the constant-round Arthur-Merlin WI universal argument described in
Section 3. By Theorem 3.2, under our assumptions, there exists such a system for Ntime(nlog logn).
Thus, our main challenge is to construct a constant-round Arthur-Merlin generation protocol with
respect to some language Λ ∈ Ntime(nlog logn). We construct such a generation protocol now.
We remark that a reader that just wants to get the flavor of our techniques may want to look
at Section 4.4, where we present a somewhat simpler generation protocol. However, the current
protocol generalizes more easily to the non-uniform case, which is why we choose to focus on it.

Protocol 4.4 is our uniform-verifier generation protocol. It consists of two rounds where in the
first message the prover sends a commitment to a “junk” string (i.e., 03n) and in the second message
the verifier sends a random string of length n. However, to fully specify the generation protocol
one needs to specify the language Λ, which is what we do next.

Definition of the language Λ. We shall now specify the language Λ. Recall that for a string
y, Com−1(y) denotes the unique x such that y is a commitment to x or ⊥ if no such x exists. That
is x = Com−1(y) if there exists s such that Com(x; s) = y. We define Λ in the following way: let
τ = (z, r) is in Λ iff on input z, the Turing machine described by Com−1(z) halts and outputs
r within |r|log log |r|/5 steps.10 (If Com−1(z) = ⊥ or Com−1(z) does not describe a valid Turing
machine then τ = (z, r) 6∈ Λ.) In other words, Λ is defined as follows:

(z, r) ∈ Λ ⇐⇒ Π(z) outputs r within |r|log log |r|/5 steps, where Π = Com−1(z)

As a first observation, note that Λ ∈ Ntime(nlog logn). Indeed, using non-determinism it is
possible to obtain Π = Com−1(z) and then we have enough time to simulate the Turing machine
described by Π for nlog logn/5 steps.

We can now present the main theorem of this section:

10Again, we chose |r|log log |r|/5 rather arbitrarily. We just need to ensure that Λ will be in Ntime(nlog logn).
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Theorem 4.5. Protocol 4.4 is a uniform-verifier generation protocol (as per Definition 4.1).

To prove Theorem 4.5, one needs to prove that Protocol 4.4 satisfies both the soundness and
the uniform-verifier simulation properties. We start with the soundness:

Claim 4.5.1. Let P ∗ be any (possibly cheating) prover strategy for Protocol 4.4. Let τ denote the
transcript of P ∗’s execution with the honest verifier. Then Pr[τ ∈ Λ] ≤ 2−n.

Proof. For every first prover message z, we define f(z) to be the output of the Turing machine
described by Com−1(z) on input z after nlog logn/5 steps if Com−1(z) is a valid Turing machine that
on input z halts within this number of steps; otherwise, we define f(z) = ⊥. For every string z, if
f(z) = ⊥ then (z, r) 6∈ Λ for every r. If f(z) 6= ⊥, then (z, r) ∈ Λ iff r = f(z). yet, the probability
that a random r ←R {0, 1}n will be equal to f(z) is at most 2−n. Therefore, regardless of the
prover’s first message the probability that the transcript (z, r) will be in Λ is at most 2−n.

We now turn to the simulation condition:

Claim 4.5.2. There exists a simulator SGenProt for Protocol 4.4 such that for every probabilistic
polynomial-time verifier V ∗ whose description takes at most 2n bits, SGenProt(V ∗) = (v, σ) such
that

1. v is computationally indistinguishable from V ∗’s view in an execution of Protocol 4.4.

2. σ is a witness that the transcript τ contained in the view v is in Λ. Furthermore, it is possible
to verify that σ is such a witness in time that is polynomial in the running time of V ∗.

Proof. Algorithm 4.6 is a simulator for Protocol 4.4. The output of Algorithm 4.6 is a pair (v, σ)
such that v = (s, z) and σ contains Π such that Π(z) = V ∗s (z) and a witness to the fact that
z = Com(Π).

The properties that we require from (v, σ) are:

1. v is computationally indistinguishable from V ∗’s view in a real execution. This follows from
the fact that PRG is a pseudorandom generator and so its output s is computationally
indistinguishable from V ∗’s random-tape in a real execution and from the fact that Com is a
commitment scheme and so Com(Π) is indistinguishable from Com(03n).

2. The transcript τ contained in v is in Λ and σ is a witness to this fact. The transcript
corresponding to v is (z, V ∗s (z) = r). It is indeed in Λ because z = Com(Π) such that on
input z, Π outputs r within a polynomial (and therefore less than nlog logn/5) number of steps.
The string σ contains Π and the random coins of the commitment z and so is a witness to
this fact. Note that since Π is basically the verifier’s strategy V ∗ with some inputs hardwired
in, the fact that σ is a witness for τ can be verified in time that is a fixed polynomial in the
running time of V ∗.

Note that Algorithm 4.6 is a non-black-box simulator that takes the description of the verifier
as input and uses it in other ways than simply as a black-box or oracle. Note also that it runs in
strict probabilistic polynomial-time.
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Input:

• 1n: security parameter.

• V ∗: description of a probabilistic polynomial-time Turing ma-
chine. The length of V ∗ is at most 2n.

(Choose randomness for V ∗): Let m denote the number of ran-
dom bits V ∗ uses. Let PRG : {0, 1}n/2 → {0, 1}m be a pseudo-
random generator. Choose u←R {0, 1}n/2 and let s = PRG(u).
We denote by V ∗∗ the residual verifier V ∗ with the randomness
s hardwired into it.

Simulated step P1 (Commitment to V ∗’s program): Let Π
denote the next message algorithm of V ∗∗. Note that Π can
be described using less than 3n bits (the description of V ∗, the
description of PRG and the seed u). Compute z ←R Com(Π).

z = Com(Π)
−−−−−−−−−−−−→

Simulated Step V1 (Compute V ∗’s response): Compute the
verifier V ∗’s response with randomness s to the message z.
That is, r = Π(z).

r = Π(z) = V ∗∗(z)
←−−−−−−−−−−−−−−−−−

The output of the simulator is the pair (v, σ) where v is the view (s, z)
and σ is the witness that (z, r) is in Λ (i.e., σ contains the program Π
and the coins used in computing the commitment z).

Algorithm 4.6. A simulator for Protocol 4.4.
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Public input: 1n: security parameter
1n
↓

P V

Step V1 (Send random string): The verifier selects a string
r ←R {0, 1}6n and sends it.

r ←R {0, 1}6n←−−−−−−−−−−−−−

The transcript of the protocol is the string r.

Protocol 4.7. An alternative uniform-verifier generation protocol

4.3 Summing up

When we plug into the construction of Figure 1 our generation protocol (Protocol 4.4) and the
universal argument system for Ntime(nlog logn) presented in Section 3, we obtain a zero-knowledge
argument system for NP. This system has a constant number of rounds and is of the Arthur-
Merlin type. The simulator of this zero-knowledge argument is a non-black-box simulator that runs
in strict probabilistic polynomial-time.

In fact, the protocol we obtain is not just zero-knowledge against fully uniform verifiers but
even against verifiers that have a bounded amount of non-uniformity. That is, verifiers that can
be described in n/2 bits where n is the security parameter.11 Note that although the results of
Goldreich and Krawczyk [GK90] are stated for non-uniform zero-knowledge, their proofs can be
extended for the case of bounded non-uniformity.12 Therefore any constant-round Arthur-Merlin
argument (such as ours) for a non-trivial language cannot be black-box zero-knowledge. This means
that our simulator is inherently a non-black-box simulator.

Thus, the protocol of this section is sufficient for the purpose of separating black-box from non-
black-box zero-knowledge. However, for other purposes, a uniform zero-knowledge protocol (or
even a bounded non-uniform zero-knowledge protocol) is not completely satisfactory. For example,
we don’t know how to prove a sequential composition theorem for uniform or even bounded-non-
uniformity zero-knowledge arguments [GK90]. In contrast, such a theorem is known to hold for
non-uniform (a.k.a. auxiliary input) zero-knowledge protocols. Thus, for many application it is
preferred to have such a protocol. In the next section we show how to modify our construction to
obtain a non-uniform zero-knowledge argument system for NP.

4.4 An Alternative Uniform-Verifier Generation Protocol

In this section, we sketch an alternative uniform-verifier generation protocol. This alternative
generation protocol, Protocol 4.7, has the advantage of being extremely simple and round efficient
(consisting of only a single round, in which the verifier sends a random string). However, it has
the disadvantage of being harder to generalize to the non-uniform case than Protocol 4.4. This
protocol is not used in any other place in this work.

Definition of the language Λ. To fully specify Protocol 4.7, one should also specify the language
Λ. Loosely speaking, we want Λ to be the language of strings with low Kolmogorov complexity (i.e.,
strings can be computed by a Turing machine with small description). However, in order to make

11The value n/2 is quite arbitrary: by “scaling” the security parameter for every polynomial p(·) we can obtain an
argument system that is secure against verifiers that can be described using at most p(n) bits.

12This holds also for other black-box zero-knowledge lower bounds (e.g., [CKPR01, BL02]).
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Λ decidable in time nlog logn, we will restrict ourselves to machines that on input of size n, halt
within nlog logn/5 steps. Formally, Λ is defined as follows:

r ∈ Λ ⇐⇒ ∃TM M s.t. |M | < |r|
2 and M() outputs r within |r|log log |r|/5 steps. 13

We now sketch why Protocol 4.7 is indeed a uniform-verifier generation protocol:

Soundness By a simple counting argument, it can be shown that a random string r has high (and

in particular higher than |r|
2 ) Kolmogorov complexity, and so r will not be a member of Λ

with very high probability.

Simulation of a uniform-verifier Let V ∗ be a possibly cheating verifier whose strategy can be
described in 2n bits, and suppose that V ∗ uses a random tape of size q(n). To simulate the
view of V ∗, the simulator will use a pseudorandom generator PRG : {0, 1}0.1n → {0, 1}q(n),
and compute s = PRG(u) where u←R {0, 1}0.1n. It will then let r be V ∗’s output on input
security parameter 1n and random tape s. Because r can be computed in polynomial time
from a machine whose description is at most the sum of the description of V ∗, of PRG, and
of u, which is less than 3n, it follows that not only r ∈ Λ but also the simulator has a witness
to this fact. Furthermore, r is distributed in a computationally indistinguishable way from
the output of V ∗ in a real interaction.

5 Coping with Non-Uniform Verifiers

In this section we construct a non-uniform zero-knowledge argument with the properties of the
protocol of Section 4. That is, we construct an argument system for NP with the following
properties:

1. It is zero-knowledge with respect to non-uniform adversaries with auxiliary information.

2. It has a constant number of rounds and negligible soundness error.

3. It is an Arthur-Merlin (public coins) protocol.

4. It has a simulator that runs in strict polynomial-time, rather than expected polynomial-time.

That is, this protocol satisfies all the properties stated in Section 1.1 except for Property 3
(bounded concurrent zero-knowledge). A modification of this protocol that satisfies Property 3 is
described in Section 6.

5.1 FLS’-type protocols

Like the uniform-verifier protocol of Section 4, our non-uniform protocol will also use the FLS
technique. However, we will need a slight relaxation of the soundness condition of the generation
protocol (Definition 4.1). This time, we will allow the possibility that the transcript τ is in Λ with
non-negligible probability. However, we require that even in this case, it will be infeasible to come
up with a witness that τ is indeed in Λ. Such a generation protocol is sufficient to be plugged
in the construction of Figure 1, if we use a WI proof (or argument) of knowledge in the second

13We use M() to denote M executed on the empty input.
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stage (Steps P,V2.x), rather than just a proof of membership. In contrast, we will strengthen the
simulation condition of Definition 4.1 and require simulation even of non-uniform verifiers. We will
call a protocol that satisfies this modified definition a non-uniform verifier generation protocol,
although we will usually drop the qualifier and simply use the name generation protocol for the
non-uniform case.

We call a protocol that uses a generation protocol and a WI proof/argument of knowledge in
this way an FLS’-type protocol. For completeness, we include a description of FLS’-type protocols
in Figure 2.

Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”)
w
↓

x
↓

P V
Prover’s auxiliary input: w (a witness that x ∈ L)

Steps P,V1.x (Generation protocol): Prover and verifier engage
in a non-uniform verifier generation protocol GenProt . We
denote the transcript of the execution by τ .

1n
↓

GenProt
↓
τ

Steps P,V2.x (WI Proof of knowledge): Prover proves to veri-
fier using a witness-indistinguishable (WI) proof (or argument)
of knowledge system that either x ∈ L or τ ∈ Λ where Λ is
a fixed language, which is part of the protocol’s specification.
Verifier accepts if proof is completed successfully.

w
↓

x, τ
↓

WI-POK
x ∈ L
or τ ∈ Λ

↓
0/1

Figure 2: A generic FLS’-type zero-knowledge protocol

The formal definition of non-uniform generation protocols is as follows:

Definition 5.1 ((Non-uniform verifier) generation protocol). Let GenProt be a two-party pro-
tocol where we call one party the prover and the other party the verifier. Let Λ ⊆ {0, 1}∗ be
some language in Ntime(T (n)) for some (polynomial-time computable) function T : N → N. We
say that GenProt is a (non-uniform) generation protocol (with respect to the language Λ) if it
satisfies the following two requirements:

Computational soundness For every T (n)O(1)-sized (possibly cheating) prover P ∗ the following
holds: let τ denote the transcript of the execution of GenProtbetween P ∗ and the prescribed
verifier. The probability that P ∗ succeeds in outputting at the end of the interaction a witness
that τ ∈ Λ is negligible.

Simulation of a non-uniform verifier There exists a probabilistic polynomial-time simulator
SGenProt that satisfies the following:

Let V ∗ be a polynomial-sized verifier. Then on input the description of V ∗, SGenProt outputs
a pair (v, σ) such that:

1. v is computationally indistinguishable from the view of V ∗ in an execution of GenProt
with the prescribed prover algorithm.

2. Let τ denote the transcript that is contained in the view v. Then it holds that τ ∈ Λ
and σ is a witness to this fact. Furthermore, we require that the time to verify that σ is
a witness for τ is polynomial in the running time of V ∗.
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Note that the computational soundness requirement refers to T (n)O(1)-sized adversaries rather
than polynomial-sized adversaries. Indeed if Λ is in Ntime(T (n)) for a super-polynomial function
T (·) then it may take a super-polynomial number of steps just to write down a witness. Also note
that, unlike Definition 4.1, this definition does not imply that deciding Λ is hard but rather only
that the search problem corresponding to Λ (of coming up with a witness) is hard.

We now state and prove the non-uniform analogue of Theorem 4.2:

Theorem 5.2. Let GenProt be a non-uniform generation protocol with respect to the Ntime(T )
language Λ (where T : N → N is a polynomial-time computable function). Let WIProt be a WI
proof or argument system of knowledge for NP∪Ntime(T ) languages. Let L be an NP language
and let FLSProt be the argument for L that is the result of plugging in GenProt and WIProt
into the construction of Figure 2. Then FLSProt is a non-uniform zero-knowledge argument for
L.

5.2 Proof of Theorem 5.2

The proof of Theorem 5.2 is similar to the proof of Theorem 4.2 sketched in Section 4.1.1. To prove
that FLSProt is a zero-knowledge argument one needs to prove three properties: completeness,
soundness, and zero-knowledge. We will start with the soundness, since this is the main difference
between this proof and the proof of Theorem 4.2.

5.2.1 Soundness

Let PFLSProt be a polynomial-sized prover for FLSProt and suppose that for some x 6∈ L, the
execution of PFLSProt and the honest verifier is accepting with some probability ε. We will use
PFLSProt to construct a cheating prover PGenProt for the generation protocol GenProt that,
after interacting with the honest verifier, will be able to output a witness for the transcript with
probability that is polynomially related to ε. Thus, if ε is non-negligible then this contradicts the
computational soundness of GenProt.

The prover PGenProt works in the following way: when interacting with the verifier of protocol
GenProt, the prover PGenProt will use the strategy that the prover PFLSProt uses in the first
stage of FLSProt on input x. Let τ denote the transcript of this interaction and let v denote the
view of the prover in this interaction. After the interaction is completed, the prover PGenProt will
compute the residual prover PFLSProt with state v. We denote this residual prover by PWIProt

since it specifies a strategy for the second stage of FLSProt: the WI proof stage. The prover
PGenProt then applies the knowledge extractor of the WI system to the PWIProt. Note that this
takes T (n)O(1) steps. If the case the extraction is successful PGenProt will obtain a witness to the
statement “x ∈ L or τ ∈ Λ”. Since we assume that x 6∈ L this means that in this case we obtain a
witness to the fact that τ ∈ Λ.

We see that to get a contradiction to the computational soundness of GenProt, all we need
to show is that the extraction will be successful with probability that is polynomially related to
ε. (Where ε is the overall success of PFLSProt in an execution with the honest verifier.) Indeed,
for at least an ε/2 of the executions of the first stage, there is an ε/2 probability that the second
stage will finish successfully. This implies that with ε/2 probability, the computed prover PWIProt

will have ε/2 probability of convincing the verifier that “x ∈ L or τ ∈ Λ”. Yet when this happens,
by the proof of knowledge condition of WIProt, the knowledge extractor succeeds in extracting a
witness with probability very close to ε/2, and this finishes the proof.

26



Input:

• x ∈ {0, 1}n: statement (simulate proof for “x ∈ L”)

• V ∗: description of a polynomial-sized verifier.

Let V ∗∗ denote the verifier V ∗ with x “hardwired” into it.

Simulated Steps P,V1.x (Simulated generation protocol):
Let (v, σ) ← SGenProt(V ∗∗) where SGenProt is the simulator
for the generation protocol GenProt. Let τ denote the
transcript contained in the view v. We let V ∗∗∗ denote the
residual verifier V ∗∗ with the view v hardwired in.

1n
↓

simulated
GenProt
↓
σ

↓
τ

↓
v

Simulated Steps P,V2.x (Honest WI Proof of knowledge):
Run an execution of WIProt between the verifier V ∗∗∗ and
the honest prover algorithm for the WI system WIProt the
statement proved is “x ∈ L or τ ∈ Λ” using the witness σ. Let
v′ denote V ∗∗∗’s view in this execution.

σ
↓

x, τ
↓

WI-POK
x ∈ L
or τ ∈ Λ

↓
v′

Output the combined view (v, v′) of the two stages

Algorithm 5.4. A simulator for the FLS’-type protocol FLSProt.

Remark 5.3. Note that we have actually proven that the resulting zero-knowledge system is not
only sound, but actually also satisfies a weak proof of knowledge property (in the sense that if a
cheating prover convinces the verifier to accept with some non-negligible probability ε then one can
extract with probability that is polynomially related to ε).

5.2.2 Completeness

The proof for completeness follows the proof in the uniform case (See Section 4.1.1). Recall the
description of the honest prover’s algorithm on Figure 2. When given public input x and a witness
w to the fact that x ∈ L, the honest prover algorithm for FLSProt runs the honest prover
algorithm for GenProt and then runs the honest prover algorithm for the WI system to prove the
combined statement “x ∈ L or τ ∈ Λ” using the witness w. Note that the witness w serves also
as a witness for the combined statement, and this witness can be verifier in polynomial-time (since
L ∈ NP). Thus, by the completeness with efficient prover property of the WI system, the honest
prover algorithm runs in probabilistic polynomial-time.

5.2.3 Zero-Knowledge

The proof for zero-knowledge also follows the proof in the uniform case (See Section 4.1.1). The
simulator for GenProt is Algorithm 5.4. The simulator’s operation follows the simulator in the
uniform case (Algorithm 4.3). The simulator uses the simulator SGenProt of the generation protocol
GenProt to obtain both a simulation v for the first stage along with a witness σ that is consistent
with the transcript that v contains. Then, it uses the honest prover algorithm of the WI system
WIProt to prove the true statement “x ∈ L or τ ∈ Λ”. It uses the witness σ as auxiliary input to
the prover algorithm of WIProt.
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What we need to prove is the following claim:

Claim 5.4.1. Let V ∗ be a polynomial-sized verifier for FLSProt. Let x ∈ L. Let (VR, V
′
R) be the

random variable that is the view of V ∗ when interacting with the honest prover on input x (where
VR is the view in the first stage and V ′R is the view in the second stage, R stands for real as opposed
to simulated execution.) Let (VS , V

′
S) be the random variable that is the output of the Algorithm 5.4

on input x. Then, (VR, V
′
R) and (VS , V

′
S) are computationally indistinguishable.

Proof. The proof follows from an hybrid argument. We will prove that both distributions are
computationally indistinguishable from the hybrid distribution (VS , V

′
R) where VS represents the

simulation of the first stage and V ′R represents the real execution of the second stage. That is,
(VS , V

′
R) is the output of a “hybrid simulator” that uses the simulator of GenProt in the first

stage but uses the witness w for x (instead of the witness σ for τ) as input to the WI prover
algorithm in the second stage.

• The distribution (VS , V
′
R) is computationally indistinguishable from (VS , V

′
S) due to the WI

property of the WI system WIProt.
Indeed, if there there is an algorithm D that distinguishes between these two distributions
with probability ε then in particular there must exist a particular view v for the first stage such
that D distinguishes between (VS , V

′
R) and (VS , V

′
S) conditioned on VS = v with probability

ε. Let τ be the transcript contained in v and let σ be the witness for τ as provided by the
simulator. Let Dv be the distinguisher D with v hardwired as its first input and let V ∗v be
the residual verifier V ∗ with the state v hardwired. Then, Dv can distinguish between an
interaction of V ∗v and the honest prover of the WI system that uses σ as auxiliary input and
an interaction of V ∗v and the honest prover of the WI system that uses w (the witness for x)
as auxiliary input with probability ε. Thus, ε is negligible by the WI condition of WIProt.

• The distribution (VS , V
′
R) is computationally indistinguishable from (VR, V

′
R) due to the sim-

ulation condition of the generation protocol GenProt.
Indeed, suppose that there is an algorithm D that distinguishes between these two distribu-
tions with probability ε. Then we can construct a distinguisher D′ to contradict the simula-
tion condition of the generation protocol in the following way. The distinguisher D′ has the
witness w for x hardwired in. When it gets a string v as input, it runs the honest prover
algorithm of the WI proof for the statement “x ∈ L or τ ∈ Λ” (where τ is the transcript
contained in v) using the witness y. It plays the part of the verifier using the residual verifier
V ∗ with state v. Let v′ denote the view of the verifier in the WI proof. The distinguisher D′

returns D(v, v′). We see that D′ distinguishes between the view of V ∗ in a real interaction
of GenProt and the output of SGenProt(V ∗) with probability ε and so ε is negligible by the
simulation condition of GenProt.

5.3 A Non-Uniform Verifier Generation Protocol

Once we have Theorem 5.2, all that is left to do is to construct a non-uniform verifier generation
protocol with respect to some Ntime(nlog logn) language Λ. Our non-uniform verifier generation
protocol will be based on the uniform-verifier generation protocol of the previous section (Proto-
col 4.4).
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Public input: 1n: security parameter
1n
↓

P V

Step V1 (Choose hash-function): Verifier chooses a random
hash function h←R Hn and sends h to prover.

h←R Hn←−−−−−−−−−−

Step P2 (Commitment to hash of“junk”): Prover computes
z ←R Com(h(0n)) and sends z to verifier.

z = Com(h(0n)
−−−−−−−−−−−−−−→

Step V3 (Send random string): The verifier selects a string
r ←R {0, 1}n and sends it.

r ←R {0, 1}n←−−−−−−−−−−−−
The transcript of the protocol is the pair τ = (h, z, r).

Protocol 5.5. A non-uniform verifier generation protocol

Recall how we proved that Protocol 4.4 satisfies the uniform simulation condition. The first
message of the protocol was supposed to be a commitment to 03n. However, the simulator (Algo-
rithm 4.6) simulated this message by commitment z to the next-message function of the verifier.
This may be problematic if we try to use the same protocol and simulator in the non-uniform
setting. The problem is that since a commitment scheme is statistically binding, then it necessarily
holds that the length of the commitment z will be longer than the length of the description of the
next message function. However, once we consider non-uniform verifiers then we must allow for
the next-message function’s description to be of any polynomial length, and in particular it may be
larger than the communication complexity of our protocol. The solution is quite simple. Instead of
using a statistically binding commitment scheme, we will use a computationally binding commit-
ment scheme. A computationally binding commitment scheme that allows to commit to messages
that are longer than its output can be constructed by composing a standard, statistically binding
commitment scheme, with a collision-resistent hash function. One can see why we had to relax
the soundness condition of the definition of a generation protocol: once we use a computationally
binding commitment scheme, we will only be able to prove that are protocol is computationally
sound. This is the intuition that we follow in both the construction of the generation protocol and
the definition of the corresponding language Λ. Protocol 5.5 is our generation protocol.

Definition of the language Λ. We define the language Λ as follows: τ = (h, z, r) is in Λ if
there exists a program Π such that z = Com(h(Π)) and Π(z) outputs r within |r|log log |r|/5 steps.
This can be verified in Ntime(nlog logn/5). A witness that (h, z, r) ∈ Λ is a couple (Π, s) such that
z = Com(h(Π); s) and Π(z) outputs r within |r|log log |r|/5 steps. Note that it may be the case that Λ
is easy to decide (in fact it may be that Λ = {0, 1}∗) but the soundness condition of Definition 5.1
refers only to the infeasibility of coming up with a witness.

Theorem 5.6. Protocol 5.5 is a (non-uniform verifier) generation protocol with respect to the
language Λ (as per Definition 5.1).

5.4 Proof of Theorem 5.6

To prove that Protocol 5.5 meets Definition 5.1 we need to show that it satisfies two properties:
computational soundness and non-uniform simulation.
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5.4.1 Computational Soundness

Let P ∗ be a nO(log logn)-sized prover strategy for Protocol 5.5. Let τ denote the transcript of P ∗’s
execution with the honest verifier. We claim that the probability that P ∗ writes a witness that
τ ∈ Λ on its auxiliary tape is negligible.

Indeed, suppose otherwise that P ∗ manages to output a witness with non-negligible probability
ε. Then, for at least an ε/2 fraction of the h ∈ Hn, it holds that P ∗ manages to output a witness
for the transcript starting with h with probability ε/2. Fix such an h ∈ Hn. Since P ∗ is a non-
uniform algorithm, we can assume without loss of generality that P ∗ is deterministic. Thus the
message z, which is the prover P ∗’s response to h, is also fixed. By our assumption, if we choose
r ←R {0, 1}n, then with probability ε/2 the prover will be able to output a program Π such that z
is a commitment to h(Π) and Π(z) = r (within |r|log log |r|/5 steps). This means that if we choose
two independent r, r′ ←R {0, 1}n, then with probability ε2/4, we obtain two programs Π,Π′ such
that z is a commitment to both h(Π) and h(Π′) and Π(z) = r, Π′(z) = r′. Since Com(·) is a
statistically binding commitment scheme, it follows that h(Π) = h(Π′). Yet, since we can assume
that r 6= r′ (as this holds with 1 − 2−n probability), it follows that Π(z) 6= Π′(z) and so Π and
Π′ are different programs. This means that Π and Π′ are a collision for h. This means that we
have a nO(log logn)-sized algorithm that, for an ε/2 fraction of h ∈ Hn, obtains a collision for h with
probability O(ε2). This contradicts the collision-resistence against nlogn-sized adversaries of the
family Hn.

5.4.2 Simulation of a non-uniform verifier

The proof that Protocol 5.5 satisfies the simulation requirement is quite similar to its uniform analog
(Claim 4.5.2). What we need to show is that there exists a simulator SGenProt for Protocol 5.5
such that for every polynomial-sized verifier V ∗, SGenProt(V ∗) outputs a pair (v, σ) such that
v is computationally indistinguishable from V ∗’s view and σ is a witness that the transcript τ
compatible with v is in Λ.

Algorithm 5.7 is a simulator for Protocol 5.5. As we can see, when simulating an execution
with transcript (h, z, r), the output of Algorithm 5.7 is a pair (z, σ) and σ = (Π, s) is such that
z = Com(h(Π); s). The two properties that we require from (z, σ) are:

1. z is computationally indistinguishable from V ∗’s view in a real execution. In a real exe-
cution the verifier sees a single message which is Com(h(0n)). The message z is equal to
Com(h(Π)). Thus this property follows immediately from the computational hiding property
of the commitment scheme Com.

2. The transcript τ corresponding to v is in Λ and σ is a witness to this fact. The transcript
corresponding to v is (h, z, r) (where h = V ∗() and r = H(z)). The pair σ = (Π, s) is indeed
a witness that (h, z, r) ∈ Λ since z = Com(h(Π); s) and Π(z) outputs r in a polynomial (and
so less than |r|log log |r|/5) number of steps. Note that indeed the time to verify that σ is a
witness for τ is polynomial in the running time of V ∗.

Note that Algorithm 5.7, like Algorithm 4.6, is a non-black-box simulator. Note also that it
runs in strict probabilistic polynomial-time.

This finishes the proof of Theorem 5.6. By using this generation protocol in Theorem 5.2 we
obtain a non-uniform zero-knowledge argument with all the desired properties.
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Input:

• 1n: security parameter.

• V ∗: a polynomial-sized circuit (without loss of generality V ∗ is
deterministic).

Simulated Step V1 (Choose hash-function): Compute h: the
V ∗’s first message.

h = V ∗()
←−−−−−−−−−

Simulated step P2 (Commitment to V ∗’s program): Let
Π denote the next message algorithm of V ∗. Compute
z = Com(h(Π); s) where s←R {0, 1}poly(n) are coins chosen for
the commitment scheme.

z = Com(h(Π))
−−−−−−−−−−−−−−→

Simulated Step V3 (Compute V ∗’s response): Compute the
verifier V ∗’s response to the message z. That is, r = Π(z).

r = Π(z) = V ∗(z)
←−−−−−−−−−−−−−−−−

The output of the simulator is the pair (z, σ) where z is the simulated
verifier’s view and σ = (Π, s) is the witness that (h, z, r) is in Λ.

Algorithm 5.7. A simulator for Protocol 5.5.

6 Achieving Bounded-Concurrent Zero-Knowledge

The condition that a proof/argument system is zero-knowledge guarantees the prover that a pos-
sibly malicious verifier will not be able to gain any new knowledge about the statement that is
being proved. However, somewhat surprisingly, it turns out that this may not be the case if the
prover is proving two or more related statements at the same time [GK90]. To guarantee secu-
rity for the prover in this (quite realistic) setting, one needs a stronger form of zero-knowledge.
This stronger form, called concurrent zero-knowledge, was introduced by Dwork, Naor and Sahai
[DNS98]. Loosely speaking, a protocol is concurrent zero-knowledge if it remains zero-knowledge
even when any polynomial number of possibly related statements are being proved simultaneously,
with the scheduling of messages chosen (possibly in a malicious way) by the verifier.

Dwork et al.[DNS98] constructed a concurrent zero-knowledge argument for NP in the timing
model, which is a model that assumes a some known time bounds on the delivery of messages
in the communication network (See also [Gol01a]). Richardson and Kilian [RK99] were the first
to construct a concurrent zero-knowledge argument for NP in the standard (pure asynchronous)
model. Their protocol used a polynomial number of rounds. This was later improved by Kilian
and Petrank to a polylogarithmic number of rounds [KP00] and further improved by Prabhakaran,
Rosen and Sahai to a slightly super-logarithmic number of rounds [PRS92]. This is essentially the
best one can obtain using black-box simulation as shown by Canetti, Kilian, Petrank and Rosen
[CKPR01] (improving on [KPR98] and [Ros00]).

In this section, we show how to modify the zero-knowledge protocol of the last section as
to obtain a protocol that is bounded concurrent zero-knowledge. A zero-knowledge protocol is
bounded-concurrent zero-knowledge if it remains zero-knowledge when executed up to n times
concurrently, where n is the security parameter. Since the security parameter can be “scaled”, this
means that for every fixed polynomial p(·), we can construct a protocol that remains zero-knowledge
when executed p(n) times. However, this protocol will depend on p(·) and in particular it will have
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communication complexity greater than p(n). This is in contrast with the notion of (unbounded)
concurrent zero-knowledge described above, where there is a single protocol that remains zero-
knowledge when executed p(n) times for every polynomial p(·). We stress that the negative results
of [CKPR01] regarding concurrent black-box zero-knowledge hold also for bounded concurrent zero-
knowledge. In particular, there does not exist a constant-round bounded-concurrent zero-knowledge
proof/argument (for a non-trivial language) that utilizes a black-box simulator.

Formally, we define bounded-concurrent zero-knowledge as follows:

Definition 6.1 (Concurrent execution). Let (P, V ) be a two-party protocol. Let V ∗ be an inter-
active machine. Let {(ai, bi)}ti=1 be a set of t inputs to the protocol (P, V ). A t-times concurrent
execution of (P, V ) coordinated by V ∗ on inputs {(ai, bi)}ti=1 is the following experiment:

1. Run t independent copies of P with the ith copy getting ai as input.

2. Provide V ∗ with the b1, . . . , bt.

3. On each step V ∗ outputs a message (i,m). The ith copy of P is given with the message m.
The verifier V ∗ is given the prover’s response.

Definition 6.2 (Bounded-concurrent zero-knowledge). Let (P, V ) be an interactive proof orargument
system for a language L = L(R). We say that (P, V ) is bounded-concurrent zero-knowledge if there
exists a probabilistic polynomial-time algorithm S such that for every polynomial-sized V ∗, and ev-
ery list {(xi, yi)}ni=1 such that (xi, yi) ∈ R, the following two random variables are computationally
indistinguishable:

1. The view of V ∗ in an n-times concurrent execution of (P, V ) with inputs {(xi, yi)}ni=1.

2. S(V ∗, x1, . . . , xn)

Our protocol will be an FLS’-type protocol, and will use a (non-uniform verifier) generation
protocol which is very similar to Protocol 5.5. In fact, the only difference between the generation
protocol of this section and Protocol 5.5 will be that we will use a longer string r as the verifier’s
message (Step V2). That is, we will use r ←R {0, 1}n

4
rather than r ←R {0, 1}n.14 Protocol 6.3 is

the modified generation protocol.

Definition of the language Λ. We use a somewhat different language Λ that the one used in
the previous section. We define Λ as follows: τ = (h, z, r) is in Λ iff there exists a program Π such
that z = Com(h(Π)) and there exists a string y such that |y| ≤ |r|/2 and Π(z, y) outputs r within
|r|log log |r|/5 steps. This can be verified in Ntime(nlog logn/5). A witness that (h, z, r) ∈ Λ is a triple
(Π, s, y) such that z = Com(Π; s), |y| ≤ |r|/2 and Π(z, y) outputs r within |r|log log |r|/5 steps. That
is, we’ve changed the language so that the committed program Π that outputs r can get not only
z as input but is also allowed an additional input y, as long as it is not too long (i.e., as long as
|y| ≤ |r|/2).

The following theorem states that the modified protocol is still a generation protocol:

Theorem 6.4. Protocol 6.3 is a (non-uniform verifier) generation protocol with respect to Λ

14The value n4 is also somewhat arbitrary. We have not tried to optimize the relation between the communication
complexity and the number of concurrent sessions.
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Public input: 1n: security parameter
1n
↓

P V

Step V1 (Choose hash-function): Verifier chooses a random
hash function h←R Hn and sends h to prover.

h←R Hn←−−−−−−−−−−

Step P2 (Commitment to hash of“junk”): Prover computes
z ←R Com(h(0n)) and sends z to verifier.

z = Com(h(0n)
−−−−−−−−−−−−−−→

Step V3 (Send long random string): The verifier selects a
string r ←R {0, 1}n

4
and sends it.

r ←R {0, 1}n
4

←−−−−−−−−−−−−−
The transcript of the protocol is the pair τ = (h, z, r).

Protocol 6.3. A generation protocol for bounded concurrent zero-knowledge.

Proof Sketch: We only sketch the proof because it is almost identical to the previous section (the
proof of Theorem 5.6 in Section 5.4). The fact that the message r is longer does not change anything
in the proof, and so we only need to see that the modification to Λ did no harm.

Indeed, the proof of the non-uniform simulation requirement is unchanged, since the simulator
presented in the proof of Theorem 5.6 (Algorithm 5.7) is also a simulator for Protocol 6.3. The
witness this simulator outputs is a valid witness also for the modified language of this section (it
simply uses the empty word for the string y).

The proof of the computational soundness is slightly changed but still works. Recall that the
proof there (in Section 5.4.1) relied on converting a cheating prover into an algorithm to find
collision for the hash functions. We used there the following observation: if for some value z ,Π is
a program such that Π(z) = r and we choose a random r′ ←R {0, 1}n and obtain with probability
ε a program Π′ such that Π′(z) = r′, then Π will be different from Π′ with probability at least
ε− 2−n. We used this observation to show that we can use a cheating prover to obtain a collision
pair Π and Π′ for the hash function.

The key observation we need to use now is the following: if for some value z, Π is a program
such that ∃y∈{0,1}m/2Π(z, y) = r and we choose a random r′ ←R {0, 1}m and obtain with probability
ε a program Π′ such that ∃y′∈{0,1}m/2Π′(z, y′) = r′, then Π will be different from Π′ with probability

at least ε − 2−m/2. This is because if Π′ = Π then it must hold that r′ ∈ Π(z, {0, 1}m/2) which
happens with probability at most 2−m/2. Note that in our case m = n4 and so 2−m/2 is a negligible
quantity.

Using this observation, the proof of the soundness property follows the proof of Section 5.4.1.

6.1 The Zero-Knowledge Argument

Our bounded-concurrent zero-knowledge protocol for NP is Protocol 6.5. It is constructed by
plugging in the generation protocol of the previous section (Protocol 6.3) and the WI universal
argument system of Theorem 3.2 using the FLS’ paradigm (see Figure 2).

By the results of the previous sections, it satisfies the completeness, soundness and (standalone)
non-uniform zero-knowledge properties. It is also clearly a constant-round Arthur-Merlin proto-
col. Thus, all that remains is to prove that it remains zero-knowledge under bounded concurrent
composition. This is what we do in this section. Thus, our main theorem is the following:

Theorem 6.6. Protocol 6.5 is bounded-concurrent zero-knowledge.
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Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”)
Prover’s auxiliary input: w (a witness that x ∈ L)

w
↓

x
↓

P V

Steps P,V1.x: generation protocol

Step V1.1 (Choose hash-function): Verifier chooses a random
hash function h←R Hn and sends h to prover.

h←R Hn←−−−−−−−−−−

Step P1.2 (Commitment to hash of“junk”): Prover computes
z ←R Com(h(0n)) and sends z to verifier. (Short message.)

z = Com(h(0n))
−−−−−−−−−−−−−−−→

Step V1.3 (Send long random string): The verifier selects a
string r ←R {0, 1}n

4
and sends it.

r ←R {0, 1}n
4

←−−−−−−−−−−−−−

The transcript of this stage is τ = (h, z, r).

Steps P,V2.1.x (WI universal argument): Prover proves to
verifier using a WI universal argument that either x ∈ L or
τ ∈ Λ. All prover’s messages here are short.

w
↓

x, τ
↓

WI-UARG
x ∈ L
or τ ∈ Λ

↓
0/1

Protocol 6.5. A bounded-concurrent zero-knowledge protocol

6.2 Proof of Theorem 6.6

Our proof that it is bounded concurrent zero-knowledge will not be as modular as our previous
proofs (see also Remark 6.8). That is, we will argue about the entire zero-knowledge argument as
a whole, rather than proving statements about its components.

Message lengths. We will need to consider the lengths of the messages sent by the prover. We
call messages that of length less than n2 bits “short”. We will make essential use of the observation
that all the prover’s messages of Protocol 6.5 are “short”. (Note that this is not the case for the
verifier’s messages since the message r of Step V1.3 is of length n4.) In the first stage, we can assume
that the prover’s message in Step PV1.2 (the commitment z = Com(h(0n))) is short, because there
are constructions of commitment schemes such that the commitment to a message of length n is at
most n2. In the second stage we will use the fact that by Theorem 3.2 for every ε > 0 there exists
a witness-indistinguishable universal argument system with communication complexity mε where
m is the instance length. Therefore, we can ensure that all prover’s messages in the second stage
will be of length at most n2. (Even though the length of the statement proven at this stage is more
than n4.)

6.2.1 Overview of the simulator

To prove that Protocol 6.5 is bounded-concurrent zero-knowledge, one needs to describe a simulator
for the protocol, and then analyze its output. We will start with an overview of the simulator’s
operation, and then provide a detailed description and analysis.

Let V ∗ be a polynomial-sized algorithm describing the strategy of a verifier in an n-times
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concurrent execution of Protocol 6.5. Recall than an n-time concurrent execution of a protocol
involves an execution of n sessions, which are interleaved in a way chosen by the verifier. We
denote the jth overall prover message (in the entire execution) by mj . Each message mj belongs
to some session i (where 1 ≤ i ≤ n). Because the execution is concurrent it does not necessarily
hold that the messages of a particular session are consecutive, but they are always ordered (e.g.,
the first message of session i always comes before the second message of session i). The view of the
verifier in the execution is the sequence (m1, . . . ,mcn), where c is the (constant) number of prover
messages in Protocol 6.5. The object of our simulator is to generate a sequence (m1, . . . ,mcn) that
is indistinguishable from the view of the verifier in a real execution.

Our simulator will generate this sequence incrementally. That is, we will generate the message
mj only after we generated (m1, . . . ,mj−1) and once we generated a message we will not “go back”
and change it. Therefore, it is possible (and useful) to think of our simulator as interacting with
the verifier V ∗. Of course, the difference between this interaction and a real interaction is that our
simulator has the “unfair” advantage of knowing V ∗’s code.

Notation. Throughout this section we will use i to index a session (i.e., 1 ≤ i ≤ n) and j and
k to index an overall prover message (i.e., 1 ≤ j, k ≤ cn). We will use subscript to denote the
overall index of a message (e.g., mj) and use parenthesized superscript to denote the session that
a message belongs to (e.g., r(i)). We will sometimes drop the session number when it is clear from
the context. We will sometime identify a prover or verifier message not by its overall index, but
rather by its session number and step number in Protocol 6.5. Thus we will say statements like
“let r = r(i) denote the verifier message of Step V.1.3 of the ith session”.

The naive simulator. The naive first attempt at a simulator would be to try to invoke the
standalone simulator of Protocol 6.5 n times independently. Let us see exactly where this naive
attempt fails. Suppose that we have to compute the kth prover message which is Step P1.2 of
some session i. On the previous step (Step V1.1), the verifier sent a hash function h = h(i) and on
Step P1.2 we need to compute a commitment z = z(i) to h(Π) where Π = Π(i) is some program.
If we follow the instruction of the standalone simulator, then we will let Π be simply the program
of the residual verifier V ∗ at this point. Suppose now that the verifier decides to schedule at this
point some other sessions (i.e., different than i). That is, the next messages mk+1, . . . ,mj−1 the
verifier receives are part of sessions other than i (where mj is the next prover message after mk that
belongs to the ith session). Suppose that when the verifier sends the string r = r(i) corresponding
to Step V1.3 of the ith session, the verifier computes r as a function of the messages mk+1, . . . ,mj−1
it received. Since Π was the residual verifier at point k, it is not the case that Π(z) = r. Thus it
will not hold that (h, z, r) ∈ Λ and we see that simply running the independent simulator will fail.

However, not all is lost: indeed it is the case that r = Π(z,mk+1, . . . ,mj−1). That is, r is
V ∗’s response after it receives the messages m1, . . . ,mj−1 where m1, . . . ,mk−1 were already part of
Π’s description, and mk = z. The crucial observation here is that since all prover’s messages are
“short” (of length at most n2), and since there are at most cn messages (where c is the constant
number of rounds in Protocol 6.5) it holds that

|mk+1|+ . . .+ |mj−1| ≤ O(n3) <
n4

2
=
|r|
2

Yet this means that we have a witness to the fact that the transcript (h, z, r) is in Λ. This is
because, under the definition of Λ in this section, we don’t need to show that Π(z) = r but rather
only to show that Π(z, y) = r for some short string y (i.e. for y such that |y| < |r|/2).
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Therefore, we can continue the simulation at this point, and simply use in the session the honest
prover strategy for the WI universal argument, with Π, (mk+1, . . . ,mj−1) and the coins used in
computing the commitment z.

6.2.2 Actual description of the simulator

Our simulator’s operation follows the above description. We now turn to formally describing the
simulator algorithm:

Algorithm Sim:

Input:

• x1, . . . , xn: the statement to be proved in the ith session is that xi ∈ L.

• V ∗: description of polynomial-sized verifier coordinating an n-time concurrent execution.

Initialization: The simulator will construct the a table A of length n. Initially the table A will
be empty. We will maintain the invariant that after we simulated Step P1.2 of the ith session and
computed a message z = z(i), A[i] will contain a pair (Π, s) = (Π(i), s(i)) such that z = Com(h(Π; s)
where h = h(i) is the hash function chosen by the verifier in Step V1.1 of the ith session. After the
simulator obtains the message r = r(i) of Step V1.3 from the verifier, it will add to A[i] a string
y = y(i) of length less than n4/2 such that Π(z, y) = r. That is, at this point A[i] contains a
witness (Π, s, y) for the fact that (h, z, r) ∈ Λ where h = h(i),z = z(i) and r = r(i) are respectively
the messages of Steps V1.1, P1.2, and V1.3 of the simulated ith session.

Simulating each step: For j = 1, . . . , cn the simulator computes the jth simulated prover mes-
sage mj in the following way:

Feed the previously computed messages (m1, . . . ,mj−1) to V ∗ and obtain the jth verifier message
(i,m) (where i is the session the verifier’s message is intended to). Compute the message mj

according to the current step in the simulated proof of the ith session:

Step P1.2 - Commitment to program If the verifier’s message is for Step V1.1 of the ith ses-
sion, do the following:

• Let h = h(i) denote the verifier’s message.

• Compute the description of the following program Π:

Π(z,y) returns V ∗(m1, . . . ,mj−1, z, y).

(Note that the values m1, . . . ,mj−1 were previously computed.)

• z = Com(h(Π); s) where s is the randomness for the commitment.

• Store Π and s in A[i].

• The jth message mj will be z

Receiving message of Step V1.3 If the verifier’s message was for Step V1.3 of the ith message
then do as follows:

• Let r = r(i) denote the verifier’s message. Note that r = V ∗(m1, . . . ,mj−1).
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• Let k denote the overall index of prover’s message in Step P1.2 of the same session. That
is, mk was the message z of the same session.

• Let y = (y1, . . . , yj−k−1) denote the sequence (mk+1, . . . ,mj−1). Note that since j ≤ cn
we have that |y| ≤ cn · 10n2 and so |y| < n4/2 (for sufficiently large n).

• Add y to the cell A[i]. Note that A[i] already contains (Π, s) such that z = Com(Π; s)
and Π(z, y) = r.

Steps P2.x - WI UARGS In these steps we simply follow the honest prover strategy of the WI
universal arguments to prove that either xi ∈ L or the transcript τ = τ (i) of the first stage of
the ith session is in Λ. Note that we can use A[i] as a witness that indeed the transcript of
the first stage is in Λ.

6.2.3 Analysis

The theorem we need to prove is the following:

Theorem 6.7. For every polynomial sized verifier v∗ and sequence {(xi, yi)}ni=1 such that yi is a
witness that xi ∈ L, the following two random variables are computationally indistinguishable:

• The view of V ∗ in an n-times concurrent execution of Protocol 6.5 on inputs {(xi, yi)}ni=1.
We denote this random variable by X.

• The output of Algorithm Sim (of Section 6.2.2) on input V ∗ and (x1, . . . , xn). We denote
this random variable by Y .

Proof. The proof is actually not complicated. We will use the hybrid argument to show that X and
Y are computationally indistinguishable. Let Sim′ be an algorithm that on input V ∗, {(xi, yi)}ni=1

follows the same strategy as the simulator Sim on input V ∗ and (x1, . . . , xn), except that when
simulating the steps of the WI universal argument (Steps P2.x) in the ith session it will provide
yi as input the honest prover algorithm. Let Z denote the output of Sim′ on input V ∗ and
V ∗, {(xi, yi)}ni=1. We will prove the theorem by showing that Z is computationally indistinguishable
from both X and Y . That is, we make the following two claims:

1. Z is computationally indistinguishable from Y :

Note that the only difference between Z and Y is the witness that is used as input to the WI
universal argument prover. Note also that the randomness used in running the WI prover is
never referred to or used again in any other part of the simulation. Thus, this claim basically
follows from the fact that WI is closed under concurrent composition. Still, as the protocol
contains also messages that do not belong to the WI universal arguments, we prove the claim
below.

Let us order the sessions according to the scheduling of the first step in their second stage
(the WI universal argument stage). Let Zi denote a distribution where in the first i sessions
we use follow the strategy for Sim and in the last n − i sessions we follow the strategy for
Sim′. Note that Z0 = Z and Zn = Y . It will be sufficient to prove that Zi is computationally
indistinguishable from Zi+1 for all 0 ≤ i < n.

Indeed, suppose that we have a distinguisher D that distinguishes between Zi and Zi+1 with
probability ε. Let us fix a choice of coins used in all sessions before the i + 1st such that D
distinguishes between Zi and Zi+1 conditioned on this choice with probability ε. Note that
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the statement to be proved is now identical in Y and Z. Since the execution of all sessions
other than the ith is the same in Y and Z, and since the strategy for this execution is a
function of the inputs, the coins, and possibly the public messages of the ith session, the
distinguisher D can be turned into a distinguisher for the WI universal argument system.

2. Z is computationally indistinguishable from X:

The only difference between Z and X is that the commitment in Step P1.2 is for h(Π) instead
of h(0n). Note also that in both Z and X, the randomness used for this commitment is never
referred to or used again in any other part of the simulation (because the WI stage uses yi
as a witness). Again, we prove the claim below, even though it is basically implied by the
multiple-sample security of the commitment scheme.

We now order the sessions according to the order of the message in Step P1.2. We define
Xi to be a distribution where in the first i sessions we use Com(h(0n)) and in the last n − i
sessions we follow the strategy of Sim (i.e., use Com(h(Π))). Note that X0 = X and Xn = Z.

Suppose that there exists a distinguisher D that distinguishes between Xi and Xi+1 with
probability ε. Suppose we fix a choice of coins for all sessions except the ith such that
D distinguishes between Xi and Xi+1 conditioned on this choice with probability ε. The
distinguisher D can be converted to a distinguisher between a commitment to h(Π) and a
commitment to h(0n) by hardwiring all messages before the message of Step P1.2 of the ith

session, and since the later messages are a function of the input and the previous messages.

We now mention some remarks regarding the proof and the protocol.

Remark 6.8. It is possible to define a “bounded-concurrent generation protocol” and to prove
that Protocol 6.3 satisfies this definition. This, combined with the fact that WI is closed under
concurrent composition, may be used to give more a modular proof of Theorem 6.6.

Remark 6.9. As observed by Yehuda Lindell, the proof of Theorem 6.6 actually yields a stronger
statement than the theorem. For the purposes of the proof it does not matter if the message
history consists of messages from an execution of our protocol, or from other executions of arbitrary
protocol, as long as the history is short enough. Therefore, our protocol does not only compose
concurrently with itself, but also with other protocols, as long as we have a bound on the total
communication complexity of the other protocols. This property of our protocol was used in a
recent work by Lindell [Lin03].

Also note that for the proof it is not necessary for the messages themselves to be short. Rather,
it is enough that they have a short description. To be more specific, for the proof to hold it is
not necessary to have a the entire message history h be of length shorter than n4/2. Rather, it
is sufficient that there will be a polynomial-time computable function F : {0, 1}n4/2 → {0, 1}∗ to
which the simulator can commit in advance such that there will exist an input x that satisfies
h = F (x). This input x will be the short explanation for h.

7 Conclusions and future directions

We have shown that (under standard complexity assumptions) there exists a protocol that can
be shown to be zero-knowledge using a non-black-box simulator, but cannot be shown to be zero-
knowledge using a black-box simulator. Moreover, we have shown that this protocol satisfies some
desirable properties that are impossible to obtain when restricted to black-box simulation.
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7.1 Reverse-engineering

Arguably, our simulator does not “reverse-engineer” the verifier’s code, although it applies some
non-trivial transformations (such as a PCP reduction and a Cook-Levin reduction) to this code.
Yet, we see that even without doing “true” reverse-engineering, one can achieve results that are
impossible in a black-box model. This is in a similar vein to [BGI+01], where the impossibility of
code obfuscation is shown without doing “true” reverse-engineering. One may hope to be able to
define a model for an “enhanced black-box” simulator that would be strong enough to allow all
the techniques we used, but weak enough to prove impossibility results that explain difficulties in
constructing certain objects. We are not optimistic about such attempts.

7.2 Non-black-box proofs of security

A statement of security of a cryptographic scheme is usually underlined by a proof of the following
form

“There exists a reduction that converts an adversary A that breaks our scheme into an
algorithm B that breaks the well-known assumption X (e.g., factoring).”

In almost all cases, the reduction constructs a generic algorithm B that uses the alleged algo-
rithm A as an oracle or a black-box. In such cases, we say that the scheme has a black-box proof of
security.

A natural question to ask is whether using non-black-box proofs of security will give us more
power and allow us to attain stronger cryptographic goals or use weaker assumptions. Because many
schemes that use zero-knowledge as a component (e.g., identification schemes) use the simulator
as part of the proof of security, once we use the protocol of the current work the proof of security
becomes a non-black-box proof of security. Thus, this work gives a seemingly positive answer to
this question. In a recent work [Bar02], we use similar techniques to construct a non-malleable
commitment scheme with a non-black-box proof of security. The latter commitment scheme is the
first such scheme with a constant number of rounds.

7.3 Black-box impossibility results and concurrent zero-knowledge

There are several negative results regarding the power of black-box zero-knowledge arguments. The
existence of non-black-box simulators suggests a re-examination of whether these negative results
holds also for general (non-black-box) zero-knowledge. Indeed, we have already shown in this work
that some of these results do not hold in the general setting. The case of concurrent composition
is an important example. The results of [CKPR01] imply that (for a constant-round protocol) it is
impossible to achieve even bounded concurrency using black-box simulation. We have shown that
this result does not extend to the non-black-box settings. However, it is still unknown whether
one can obtain a constant-round protocol that is (fully) concurrent zero-knowledge. This is an
important open question.

7.4 Cryptographic assumptions

In this work we constructed our protocols based on the assumption that collision-resistent hash
function exist with some fixed “nice” super-polynomial hardness. It would be nicer to construct
the protocol using the more standard assumption that collision-resistent hash functions exist with
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arbitrary super-polynomial hardness. Indeed this can be done, and in [BG01], Barak and Goldre-
ich construct universal arguments (by a slightly different definition) based on the more standard
assumption. Using this construction, they show that a slightly modified version of the protocol
presented here, enjoys the same properties under the more standard assumption.

7.5 The resettable setting

Following this work, Barak, Goldreich, Goldwasser and Lindell [BGGL01] have shown another case
where a black-box impossibility result does not hold in the general setting. Using results of the
current work, they construct a resettably-sound zero-knowledge argument for NP. As they note,
this is trivially impossible to obtain using black-box simulation. They use this resettably-sound
zero-knowledge argument to construct a argument of knowledge with a non-black-box knowledge-
extractor that is zero-knowledge in the resettable model [CGGM00]. As noted by [CGGM00], this
is trivially impossible when using black-box knowledge-extraction.

7.6 Black-box reductions

There are also several negative results regarding what can be achieved using black-box reductions
between two cryptographic primitives. By such reductions we mean proving that if cryptographic
primitive A exists, then cryptographic primitive B exists, by providing:

1. A generic construction of primitive B that uses A as a black-box.

2. A proof that B is secure by showing a generic adversary for primitive A that can be shown
to break the security of A, if it is given black-box access to an adversary that breaks B.

Most reductions in cryptography are indeed of this form. The canonical example for such a
negative result is the result of Impagliazzo and Rudich [?] that it is impossible to reduce a key
exchange protocol to one-way functions using a black-box reduction.

Although this paper does not involve the notion of black-box reductions (and non-black-box
reductions such as [GMW86, FS89] are already known to exist), the results here may serve as an
additional indication that, in general, similarly to relativized results in complexity theory, black-box
impossibility results cannot serve as strong evidence toward real world impossibility results.

7.7 Arguments vs. proofs

Our protocol is an argument system for NP and not a proof system because it is only computation-
ally sound. However, we do not know whether there exists zero-knowledge proof for NP satisfying
Properties 1-5 of Section 1.1. In particular, it is not known whether there exists a constant-round
Arthur-Merlin (non-black-box) zero-knowledge proof system for NP.

7.8 Fiat-Shamir heuristic

The fact that we have shown a constant-round Arthur-Merlin zero-knowledge protocol, can be
viewed as some negative evidence on the soundness of the Fiat-Shamir heuristic [FS86]. This
heuristic converts a constant-round Arthur-Merlin identification scheme into a non-interactive sig-
nature scheme. The prover/sender in the non-interactive scheme uses the same strategy as in the
interactive scheme, but the verifier/receiver’s messages are computed by applying a public hash
function to the message history, and so can be computed by the prover without any need for
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interaction.15 It is known that the resulting signature scheme will be totally insecure if the orig-
inal protocol is zero-knowledge [DNRS99]. Thus, the current work implies that there exist some
constant-round Arthur-Merlin protocols on which the Fiat-Shamir heuristic cannot be applied. In
a recent work, Goldwasser and Tauman [GT03] used the current work to show a counter example
for the Fiat-Shamir heuristic on 3 rounds.

An open question (related to the previous section) is whether or not the Fiat-Shamir heuristic
is secure when applied to interactive proofs instead of arguments. In particular, an affirmative
answer would imply that there does not exist a constant-round Arthur-Merlin zero-knowledge proof
system for NP.

7.9 Number of rounds

Goldreich and Krawczyck [GK90] have shown that no 3 round protocol can be black-box zero-
knowledge. We have presented several non-black-box zero-knowledge protocols, but all of them
have more than 3 rounds. It is an open question whether there exists a 3-round zero-knowledge
argument for a language outside BPP.

One bottleneck in reducing the number of rounds in our protocol is our use of a universal
argument scheme, for which the best known construction utilizes 4 rounds. Thus, a related open
question is whether or not there exist a non-interactive (or even two-round) universal argument
scheme. Micali [Mic94] presents a candidate for such a scheme.

7.10 Strict polynomial-time

We have shown the first constant-round zero-knowledge protocol with a strict polynomial-time
simulator, instead of an expected polynomial-time simulator. Another context in which expected
polynomial-time arises is in constant-round zero-knowledge proofs of knowledge (e.g., [Fei90, Chap. 3],
[Gol01b, Sec. 4.7.6.3]). In [BL02] Barak and Lindell construct, using the protocol presented here,
a constant-round zero-knowledge argument of knowledge with a strict polynomial-time extractor.
They also show that non-black-box techniques are essential to obtain either a strict polynomial-time
simulator or a strict polynomial-time knowledge-extractor, in a constant-round protocol.
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A Universal Arguments

A.1 The CS Proof System

In this section we prove Theorem ??. We let T, T ′ : N → N be (polynomial time computable)
super-polynomial functions such that T ′(n) = ω(poly(T ′(n)) for any polynomial poly(·) and such
that T (n) ≤ nlogn. We assume that T ′(n)-collision resistent hash functions exist and construct a
CS Proof system for any Ntime(T ) relation R. Given our tools (PCP and random access hash
functions), the idea behind the construction is simple: it uses a random access hash function to
force the prover to commit to a single string and answer the questions of the PCP verifier according
to this string.

Suppose that {Hα}α∈{0,1}∗ is a T ′(n) random access hash function ensemble. Let R be an
Ntime(T ) relation with recognizing machine MR. We construct a CS Proof system for R in the
following way:

Construction A.1. A CS proof system for R

• Common input: x ∈ {0, 1}n

• Prover’s auxiliary input: y ∈ {0, 1}∗ such that (x, y) ∈ R.

• Verifier’s first step (V1): Let α←R {0, 1}n , send α.

• Prover’s first step (P1): Using x and y generate a string πx that always convinces the PCP
verifier that x ∈ L(R) (takes time polynomial in the running time of MR on (x, y)). Send

β
def
= Hα(πx).

• Verifier’s second step (V2): Select a random tape γ for the PCP verifier. As γ is of length
n · polylog(T ) which is n · polylog(n) we can assume that |γ| ≤ n2. Send γ.

• Prover’s second step (P2): Run the PCP verifier for L(R) with γ for random coins. For any
query i that the verifier makes send (i, πi, σ) where σ is the certificate that the ith bit of π
is indeed πi. We denote the message sent that contains all the answers to the queries along
with their certificates by δ.

• Verifier accepts if and only if:

1. The PCP verifier indeed makes those queries when run with random tape γ.

2. All certificates check out.

3. The PCP verifier accepts when run with randomness γ and the answers to queries as
given by the prover.

The prover’s efficiency and completeness conditions are straightforward so what we need to do
is to prove the computational soundness and proof of knowledge conditions.

Soundness Condition: Suppose that P ∗ is a T (n) time algorithm that manages to convince the
verifier with non-negligible probability ε that x ∈ L(R). Recall that by the definition of T ′(n)-
collision resistent random access hash ensemble any poly(T ′(n)) time algorithm has probability at
most 1

T ′(n) of outputting a string β along with two contradicting certificates for what is supposed

to be the ith bit of β’s preimage under Hα.
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As T ′(n) = ω(poly(T (n)) for any polynomial poly we have that T (n)
T ′(n) is a negligible function.

Furthermore, T (n)c

T ′(n) is a negligible function for any constant c. Therefore we can assume that

ε ≥ 16T (n)8

T ′(n) as otherwise ε is negligible and we’re done.

Now suppose we run P ∗ for the first two steps (V1 and P1), that is, give it a string α and get a
response β. We call such a truncated execution a “good start” if P ∗ has at least an ε/2 probability
of success if we continue this execution. At least an ε/2 fraction of the truncated executions are
good.

Let us fix a good start. For any 1 ≤ i ≤ T (n) we define pi(0) to be the probability that in the
rest of the execution if we continue the execution, P ∗ will output a valid certificate that the ith bit
of β’s preimage is 0. We define pi(1) analogously.

We have the following claim:

Claim A.2. Let us call a good start 〈α, β〉 “problematic” if there exists an i such that both pi(0)
and pi(1) (when defined with respect to this start) are bigger than 2√

ε·T ′(n)
. At most half of the good

starts are problematic.

Proof: Suppose otherwise. We’ll derive a contradiction by constructing a poly(T (n)) time
algorithm A that will find contradicting certificates for the hash function Hα with probability
larger than 1

T ′(n) :

Algorithm A:

• Input: α ∈ {0, 1}n

• Step 1: Feed α to P ∗ and get a response β.

• Step 2:We now try to continue the execution two times. That is perform twice the following
experiment: choose γ ←R n

2, feed γ to P ∗ and get a response δ.

• If there’s an 1 ≤ i ≤ T (n) such that A got in the first time a valid certificate that the ith

bit of β’s preimage is 0, and in the second time a valid certificate that this bit is 1, then
we say that A is successful.

• In case A is successful it outputs i and the two contradicting certificates.

We want to bound from below the probability of A’s success on input α that is chosen uniformly
in {0, 1}n. by our assumption A has probability at least ε

4 to hit in step 1 a good start that
is problematic. Now suppose that it did hit a problematic good start. This means that there’s
an 1 ≤ i ≤ T (n) such that both pi(0) and pi(1) are greater than 2√

ε·T ′(n)
. Consider step 2 of

the algorithm. The probability that in its first experiment A will get a valid certificate that
the ith bit of β’s preimage is 0 is exactly pi(0). Likewise, the probability that in the second
experiment A will get a valid certificate that this bit is 1 is exactly pi(1). As these experiments
are independent this means that A’s probability of success (conditioned on the start 〈α, β〉) is
pi(0)pi(1) ≥ 4

εT ′(n) . As A’s probability of hitting a problematic good start is at least ε
4 the

result follows.

Note that by our assumption on ε we see that 1
T (n)4

≥ 2√
ε·T ′(n)

. Therefore if we make the

following definition with respect to a non-problematic good start 〈α, β〉:

πi
def
=

{
1 pi(1) ≥ 1

T (n)4

0 otherwise
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Then we can say that for any i the probability that if we continue this start P ∗ will output a valid
certificate that says that the ith bit is not πi is at most 1

T (n)4
. By the union bound we see that the

probability that P ∗ will output a valid certificate that is incompatible with π is a most 1
T (n)3

.

We have the following claim:

Claim A.3. Let 〈α, β〉 be any non-problematic good start, if we look at the string π that we defined
then Pr[V π(x) = 1] ≥ ε

2 −
1

T (n)3
≥ ε

4 .

Proof: Suppose we make the following experiment:

1. Choose γ ←R {0, 1}n
2

2. Continue the good start with γ as the response of the verifier.

3. If all P ∗ answers have valid certificates that are compatible with π and V accepts then we
say that we have succeeded.

The probability that V π(x) accepts is at least the probability that this experiment succeeds.
Yet the probability that this experiments succeeds is the probability that P ∗ succeeds and P ∗’s
queries are compatible with π. As the overall success probability is at least ε

2 the result follows.

Therefore we see that if ε
4 ≥ 2−n then there exists a string π such that Pr[V π(x) = 1] ≥ 2−n

which means that x ∈ L(R) which is what we wanted to prove.

Proof of Knowledge Condition:
In the soundness condition we needed to prove that if there exists a prover P ∗ that manages

to convince the verifier that x ∈ L(R) with non-negligible probability ε then x ∈ L(R). Now we
need to prove that if this happens then we can actually find a witness y ∈ R(x). What we’ve
actually proved above is the existence of a string π in this case that convinces the PCP verifier
with probability at least 2−n to accept x. If we can show a way to find this string π in poly(T (n))
time with poly(ε) probability, then we’ll be done, as the PCP itself is a proof of knowledge.

Yet we can find the string π: We start by guessing a start 〈α, β〉. With probability ε
4 it will be

a non-problematic good one. Now in T (n)8 attempts one can recover the string π that is defined
above with only 2−n probability of failure (by estimating pi(1)). Therefore we see that we have
managed to present a poly(T (n)) algorithm with poly(ε) probability of success.
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