
Constant-Round Coin-Tossing With a Man in the Middle

or

Realizing the Shared Random String Model

Boaz Barak∗

May 19, 2008

Abstract

We construct the first constant-round non-malleable commitment scheme and the first constant-
round non-malleable zero-knowledge argument system, as defined by Dolev, Dwork and Naor.
Previous constructions either used a non-constant number of rounds, or were only secure under
stronger setup assumptions. An example of such an assumption is the shared random string
model where we assume all parties have access to a reference string that was chosen uniformly
at random by a trusted dealer.

We obtain these results by defining an adequate notion of non-malleable coin-tossing, and
presenting a constant-round protocol that satisfies it. This protocol allows us to transform
protocols that are non-malleable in (a modified notion of) the shared random string model
into protocols that are non-malleable in the plain model (without any trusted dealer or setup
assumptions). Observing that known constructions of a non-interactive non-malleable zero-
knowledge argument systems in the shared random string model are in fact non-malleable in
the modified model, and combining them with our coin-tossing protocol we obtain the results
mentioned above.

The techniques we use are different from those used in previous constructions of non-
malleable protocols. In particular our protocol uses diagonalization and a non-black-box proof
of security (in a sense similar to Barak’s zero-knowledge argument).

Keywords: two-party protocols, man in the middle setting, malleability, coin-tossing proto-
cols, black-box vs. non-black-box simulation, non-malleable commitments, non-malleable zero-
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1 Introduction

1.1 Overview

In the man-in-the-middle (MIM) attack on a cryptographic two-party protocol, the adversary has
complete control over the communication channel between two honest parties. The adversary has
the power not only to read all messages sent between the parties, but also actively change, erase
or insert its own messages into the channel. This attack can be very relevant in many practical
settings, and thus designing protocol secure against such an attack is an important task.

Dolev, Dwork and Naor [DDN91] considered the MIM attack and defined a protocol to be
non-malleable if it remains secure under such attack.1 In the plain model (where there are no
setup assumptions such as a public key infrastructure or a shared random string), [DDN91] con-
structed non-malleable protocols for the fundamental cryptographic tasks of commitment and zero-
knowledge. However, the protocols of [DDN91] took a non-constant number of communication
rounds (logarithmic in the security parameter). In this work, we focus on the task of constructing
constant-round protocols for these tasks.

The shared random string model. Unlike the case in the plain model, in the shared random
string model, introduced by Blum, Feldman and Micali [BFM88], one assumes that there exists a
trusted party that chooses a string uniformly at random and sends it to all parties (including the
adversary) before the protocol is executed. This setup assumption enables the construction of much
more round efficient protocols. In fact, Sahai [Sah99] constructed a 1-round (i.e., non-interactive)
non-malleable zero-knowledge argument for NP in this model, whereas Di Crescenzo, Ishai and
Ostrovsky [DIO98] constructed a 1-round non-malleable commitment scheme in this model (see
Section 1.3 for details on other constructions and related works in this model).

Our results and techniques. In this paper we give the first construction of constant-round
non-malleable commitment and zero-knowledge schemes in the plain model, without any setup
assumption. Our approach is to first construct a non-malleable coin-tossing protocol. We then use
this coin-tossing protocol in order to transform a non-malleable protocol (such as a zero-knowledge
proof or a commitment scheme) from the shared random string model into the plain model.

The techniques utilized in the construction of the non-malleable coin-tossing protocol are dif-
ferent from those used in previous works in non-malleable cryptography. In particular our proof of
security involves a diagonalization argument and a non-black-box use of the code of the adversary’s
algorithm. Similar techniques were first used in [Bar01] in the context of zero-knowledge systems.
This works demonstrates that these techniques are applicable also in other settings in cryptography.

Erratum. Since the publication of the proceedings version of this paper, I have discovered an error
in the proof of the commitment scheme for non-uniform adversaries. (This is an extension of the
proof for non-uniform adversaries that was claimed in the proceedings version but was not included
there for lack of space.) The Theorem however is still correct, and the proof can be fixed by making
an appropriate change in the definition and usage of “evasive set families” (see Section 4.1). We
note that between the time of the publication of the conference version of this paper (Oct 2002) and
the discovery of the bug and fix (March 2005), Pass and Rosen [PR05] came up with an alternative

1The definition of non-malleability is usually described in somewhat different terms. See also Remark 1.1
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Figure 1: The MIM setting: all communication between L and R is done through the adversary C.

construction of non-malleable commitments (also using non-black-box techniques) whose analysis
works in both the uniform and non-uniform setting. Their construction also has the advantage of
having a considerably simpler analysis, that also uses quantitatively weaker assumptions.

1.2 Model and Basic Terminology

In this work we are only interested in two-party protocols. We will denote the two parties by the
letters L and R (L stands for left, R for right). Two examples that are worth keeping in mind are
commitment schemes and zero-knowledge proofs. In a commitment scheme the left player L is the
sender that wants to commit to a value, while the right player R is the receiver that receives the
committed value. In a zero-knowledge proof the left player L is the prover that wants to convince
the right player R (called the verifier) that some statement is true.

In the man-in-the-middle setting (MIM), as depicted in Figure 1, there is a third party denoted
by C (C can stand for either center or channel, we will typically call C the adversary). All the
communication between L and R is done through C. Thus, both players L and R only talk to C
and cannot communicate directly with each other. The adversary C can decide to simply relay
the messages each party sends to the other party, but it can also decide to block, delay, or change
messages arbitrarily. Thus, if L and R wish to run a two-party protocol Π in the MIM setting,
then we can think of the protocol Π as being executed in two concurrent sessions. In one session
L plays the left side and the adversary C plays the right side, and in the second session C plays
the left side and R plays the right side. We assume that the adversary C controls the scheduling
of messages in both sessions. We call the first session (where L interacts with C) the left session,
and the second session (where C interacts with R) the right session.

1.2.1 Unavoidable strategies.

There are two strategies that the adversary C can always use without being detected. One strategy
is the relaying strategy in which the only thing C does is relay the messages between L and R. In
this case C is transparent and this is equivalent to a single execution of the protocol Π between L
and R. The other unavoidable strategy is the blocking strategy in which C plays its part in each
session completely independent of the other session. In each session, C uses the honest strategy
to play its part (i.e., in the left session C uses the strategy of the honest right player and in the
right session C uses the strategy of the honest left player.) Clearly, regardless of the protocol Π,
it is impossible to prevent the adversary from using one of these two strategies. Therefore, we call
the relaying and blocking strategies the unavoidable strategies. Intuitively, the goal in designing
protocols for the man-in-the-middle setting, is to design protocols that force C to use one of the two
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Left session Right session

Figure 2: Non-malleability, as defined by [DDN91] : P2 and P3 are controlled by the adversary

unavoidable strategies (or such that it could not be advantageous to C to use any other strategy).2

For example, consider the case of a commitment scheme. When executed in the man-in-the-
middle setting, in the left session the player L commits to a value α to C that plays the receiver,
whereas in the right session C plays the sender and commits to a value α̃.3 If C uses the relaying
strategy then it holds that α = α̃. On the other hand, if C uses the blocking strategy then it holds
that α̃ is independent of α. Indeed, loosely speaking, the goal in non-malleable commitments is to
design a commitment scheme such that regardless of the strategy C uses, it will hold that either α̃
is equal to α or that α̃ is independent of α.4

Remark 1.1 (Comparison with [DDN91]). Dolev et al.[DDN91] used different notations to describe
essentially the same setting. They considered four parties P1, P2, P3, P4 that execute a two-party
protocol in two concurrent sessions (see Figure 2). The left session is between P1 and P2, and the
right session is between P3 and P4. Both P2 and P3 are controlled by an adversary, whereas P1 and
P4 are honest and follow the protocol (and thus, P1 is oblivious to the (P3, P4) interaction and P4

is oblivious to the (P1, P2) interaction). This means that P2 and P3 combined correspond to the
adversary C in our notation, and that P1 corresponds to L in our notation, where P4 corresponds
to R in our notation. Previous works also used somewhat different emphasis in presenting the
goal of non-malleable protocols. For example, the goal of a non-malleable commitment scheme is
usually described as to ensure that the committed values in both sessions are independent (i.e.,
that the adversary is using the blocking strategy). The possibility of the values being identical (i.e.,
that the adversary will use the relaying strategy) is also allowed because it is unavoidable, but it is
considered to be an uninteresting special case. In contrast, we treat both strategies equally. Note
also that in this work we only consider protocols that are non-malleable with respect to themselves
(as defined by [DDN91]), where [DDN91] defined also non-malleability with respect to general
protocols.

1.2.2 Scheduling strategies

The adversary in the MIM model can control not only what is written in the messages sent but
also decide when to send them. That is, the adversary has complete control over the scheduling
of the messages. An important example of a scheduling strategy is the synchronizing scheduling.
In this scheduling, the adversary synchronizes the two executions by immediately sending the ith

2Actually, the adversary can always use also a “mixed” strategy in which it follows the relaying strategy with
probability p, and the blocking strategy with probability 1− p, for some p ∈ [0, 1].

3We only consider statistically binding commitment schemes, and so the committed value is determined uniquely
by the transcript of the session.

4Actually, one needs to define an appropriate notion of “computational independence”, as is done in [DDN91].
See also Section 5.
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−−−−→ −−−−→←−−−−←−−−−−−−−→ −−−−→←−−−−←−−−−

L C R

−−−−→ −−−−→←−−−−−−−−→←−−−−←−−−−−−−−→←−−−−

Figure 3: Two different scheduling strategies: (a) The man in the middle applies the “synchro-
nizing” strategy. (b) The man in the middle does not wait for L’s reply before answering R’s
message.

message in the right session after it receives the ith message in the left session and vice versa (i.e.,
it sends the jth message in the left session immediately after it received the jth message in the right
session). We call an adversary that always uses this scheduling a synchronizing adversary. We
call an adversary that uses a different scheduling a non-synchronizing adversary. The difference
between a synchronizing and a non-synchronizing adversary is illustrated in Figure 3. Note that
even when restricted to the synchronizing scheduling, it is still possible for the adversary to use
either the blocking or the relaying strategies. Thus, these strategies remain unavoidable even when
restricting to synchronizing adversaries.

Unlike other settings in cryptography, such as concurrent zero-knowledge [DNS98, RK99, CKPR01,
PRS02], in our setting the ability to control the scheduling does not add much power to the adver-
sary. In fact, as we will show in Section 6, it is possible to transform any non-malleable commitment
or zero-knowledge scheme that is secure against synchronizing adversaries, into a scheme secure
against general (possibly non-synchronizing) adversary. Therefore, in most of this paper we will re-
strict ourselves into dealing only with synchronizing adversaries.5 As mentioned above, in Section 6
we will show how to overcome this restriction.

1.3 The Shared Random String Model

In the shared random string model [BFM88], we assume the existence of a third trusted party called
the dealer. Before a protocol is executed in this model, the dealer picks a string r uniformly at
random and sends it to all the parties. The string r is called the reference string, and is given as
an additional public input to the protocol. In the setting we are interested in (the MIM setting for
a two-party protocol), this means that in a preliminary phase, the dealer sends the string r to L,
R and C. After this phase, the protocol is executed in both the left and right sessions, with r as
the public reference string.

Previous works. As mentioned above, unlike the case in the plain model, there are several
round-efficient non-malleable protocols known in the shared random string model. Sahai [Sah99]

5In some sense, the synchronizing scheduling is the hardest schedule to deal with when designing a non-malleable
protocol. In fact, one intuition behind the non-malleable commitment protocol of [DDN91] (and also an earlier work
in a different model by Chor and Rabin [CR87]) is that the protocol is designed to force the adversary to use a
non-synchronizing strategy.
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constructed a single-round (i.e., non-interactive) non-malleable zero-knowledge proof system in
this model. This scheme was improved by De Santis, Di Crescenzo, Ostrovski, Persiano and Sa-
hai [DDO+01]. Di Crescenzo, Ishai and Ostrovsky [DIO98] constructed in the shared random
string model a non-interactive commitment scheme that is non-malleable in a weaker sense than
[DDN91] (“non-malleable w.r.t. opening” [FF00]). Di Crescenzo, Katz, Ostrovski, and Smith
[DKOS01, Sec. 3] constructed in the shared random string model6 a non-interactive commitment
satisfying the stronger notion of non-malleability (i.e., “non-malleable w.r.t. committing”) defined
in [DDN91]. Canetti and Fischlin [CF01] constructed in the shared random string model7 non-
interactive universally composable commitments which is a stronger notion than non-malleability.
Interestingly, it is impossible to construct universally composable commitments in the plain model
[CF01].

1.4 Non-malleable Coin-Tossing

The goal of this paper is to convert two-party protocols that are secure against a MIM attack in
the shared random string model, into protocols that are secure against such an attack in the plain
model. Toward this end we will want to construct a non-malleable coin-tossing protocol (in the
plain model). Once we have such a coin-tossing protocol, we will convert a two-party protocol ΠRef

with a reference string that is secure in the shared random string model into a protocol ΠPlain in
the plain model in the following way:

Construction 1.2 (Composition of a coin-tossing protocol with a reference string protocol).

Phase 1: Run the coin-tossing protocol. Let r denote the result of this execution.

Phase 2: Run the protocol ΠRef using r as the common reference string.

Loosely speaking, our goal is to construct a coin-tossing protocol such that whenever ΠRef was
secure in the shared random string model, the protocol ΠPlain will be secure in the plain man-in-
the-middle model (with no shared string).

1.4.1 The modified shared random string model

Suppose that we execute the protocol ΠPlain, as constructed in Construction 1.2, in the man-in-
the-middle setting. Let r denote the result of Phase 1 (the coin-tossing protocol) in the left session
and let r̃ denote the result of Phase 1 in the right session. If we wish to emulate exactly the shared
random string model then we want to ensure that r = r̃. Indeed, this will be the case if C will act
transparently (i.e., use the relaying strategy, as described in Section 1.2.1). However, we have no
guarantee that C will indeed use this strategy. In fact, C can always ensure that r̃ is independent
of r, by using the blocking strategy.

The above problem motivates us in defining (for the MIM setting) a new ideal model called
the modified shared random string model. In this model, the trusted dealer generates two random
strings r(1) and r(2) uniformly and independently of one another. Then r(1) is used in the left

6 Their construction is in the common reference string (CRS) model which is a slight generalization of the shared
random string model. However they remark that under standard assumptions (e.g., hardness of factoring), their
construction can be implemented in the shared random string model.

7Footnote 6 (Yehuda Lindell, personal communication, April 2002).
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session (between L and C), but the adversary C is allowed to choose whether it wants to use
the same string r(1) also in the right session (between C and R), or whether it wants to use the
new independent string r(2). We allow the adversary to view the two strings before it makes this
decision.8

Intuitively, it seems that the ability to choose that the strings used in both sessions will be
independent should not help the adversary. Rather, it will only make the information that the
adversary receives in the left session useless in the right session, and vice versa. Indeed, it turns out
that many known protocols that are secure in the shared random string model, are also secure in the
modified shared random string model. Thus we set our goal to constructing a coin-tossing protocol
that would allow us to convert any protocol ΠRef secure in the modified shared random string model
into a protocol ΠPlain secure in the plain MIM setting. We provide an adequate definition, which
we call non-malleable coin-tossing protocol, that indeed achieves this goal.

1.4.2 Definition of non-malleable coin-tossing

A non-malleable coin-tossing protocol is a protocol that implements the ideal functionality of the
modified shared random string model, in the real (or plain) model, where there is no trusted third
party. The formal definition is as follows:

Definition 1.3 (Non-malleable coin-tossing). Let Π = (L,R) be a (plain) two-party protocol. We
say that Π is a non-malleable coin-tossing protocol if the following holds. For any efficient algorithm
C there exists an efficient algorithm Ĉ such that the following random variables are computationally
indistinguishable:

1. output(L,R,C),Π(1n) where this denotes the triplet of outputs of L,R and C when executing Π
in two concurrent sessions.

2. (r(1), r(b), τ) where this triplet is generated by the following experiment: first r(1), r(2) are
chosen uniformly and independently in {0, 1}n. Then we let (b, τ)← Ĉ(r(1), r(2)).

Definition 1.3 follows the paradigm of simulating an adversary C in the real model (i.e., the
plain MIM setting) by an ideal adversary Ĉ in the ideal model (i.e., the modified shared random
string model). Indeed, Item 1 corresponds to the output of all parties in when the coin-tossing
protocol is executed in the plain MIM model with adversary C, while Item 2 is the output of all
parties when they interact with the trusted dealer of the modified shared random string model with
adversary Ĉ.

1.5 Our Results

Our main result is the following:

Theorem 1.4. Suppose that there exist hash functions that are collision-resistent against 2n
ε
-sized

circuits for some ε > 0. Then, there exists a constant-round non-malleable coin-tossing protocol.
8We do not know whether or not it is unavoidable to allow the adversary to view both strings or at least one of

them, if we want a model that can be simulated in the plain MIM setting.
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By following Construction 1.2, and composing the coin-tossing protocol of Theorem 1.4 with
a non-malleable protocol in the shared random string model, such as the non-interactive zero-
knowledge of [DDO+01],9 we obtain the following theorem:

Theorem 1.5. Suppose that there exist trapdoor permutations and collision-resistent hash functions
strong against 2n

ε
-sized circuits for some ε > 0. Then:

1. There exists a constant-round non-malleable zero-knowledge argument system for NP.

2. There exists a constant-round non-malleable (statistically binding) commitment scheme.

Remarks. We note that our result can be obtained also somewhat weaker complexity assump-
tions. Note also that the non-malleable commitment scheme we obtain is non-malleable with
respect to committing non-malleable with respect to committing (as the definition of [DDN91],
which stronger than the definition of [DIO98], see [FF00]). We also note that, like the previous
protocols of [DDN91], our schemes are liberal non-malleable in the sense that our simulator runs
in expected polynomial-time. However, we believe that one can obtain the stronger notions using
the techniques of Barak and Lindell [BL02]. See Section 7 for more discussion and details.

General theorems. It would have been nice if we proved two general statements of the form
(1) “every protocol that is secure in the shared random string model is also secure in the modified
shared random string model” and (2) “for every protocol that is secure in the modified shared
random string model, its composition using Construction 1.2 with a non-malleable coin-tossing
protocol yields a protocol that is secure in plain MIM setting”. However this is problematic, not so
much because Definition 1.3 is too weak, but mainly because the notion of “security” for protocols
is not well-defined and depends on the particular application. We do however prove more general
statements than Theorem 1.5: see Section 5 for more details.

1.6 Organization

Section 2 contains some notations, and the cryptographic primitives and assumptions that we
use. In Section 3 we construct a non-malleable coin-tossing protocol that is secure against uniform
polynomial-time adversaries. In Section 4 we show how to modify the construction to obtain security
against non-uniform adversaries. In Section 5 we show how we can use our non-malleable coin-
tossing protocol to obtain a non-malleable zero-knowledge and commitment schemes. In Section 6
we show how we can convert a non-malleable zero-knowledge or commitment scheme that is secure
against adversaries that use the synchronizing scheduling, into a scheme that is secure general
adversaries, that may use different scheduling strategies. Section 7 contains some remarks on the
constructions and open questions.

We note that if one wants just to “get a taste” of our techniques and constructions, it is possible
to read just Sections 3.1 and 3.2 to see a simple construction of a simulation sound zero-knowledge
system secure against uniform adversaries. Simulation soundness is an important relaxation of
non-malleability, and this construction illustrates some of the ideas used in the other sections.

9Actually, we will use a variation of this protocol, which will be interactive (but constant-round), in order to avoid
assuming the existence of dense cryptosystems.
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2 Preliminaries

2.1 Notation

For a finite set S ⊆ {0, 1}∗, we write x←R S to say that x is distributed uniformly over the set S.
We denote by Un the uniform distribution over the set {0, 1}n. In all our protocols, we will denote
the security parameter by n. A function µ(·) from non-negative integers to reals is called negligible
if for every constant c > 0 and all sufficiently large n, it holds that µ(n) < n−c. We say that
an event happens with overwhelming probability if it happens with probability 1 − µ(n) for some
negligible function µ(·). We will sometimes use neg to denote an unspecified negligible function.

For two strings α and β, we denote the concatenation of α and β by α ◦ β. If C is an algorithm
then we denote by desc(C) the description of the code of the algorithm.

Computational indistinguishability. Let X and Y be random variables over {0, 1}n and let
s ≥ n. We say that X and Y are indistinguishable by s-sized circuits if for every circuit D of size
s, it holds that |Pr[D(X) = 1]−|Pr[D(Y ) = 1]| < 1

s . A probability ensemble is a sequence {Xi}i∈I
of random variables, where I is an infinite subset of {0, 1}∗ and Xi ranges over {0, 1}p(|i|) for some
polynomial p(·). We say that two probability ensembles {Xi}i∈I and {Yi}i∈I are computationally
indistinguishable, denoted by {Xi}i∈I ≡C {Yi}i∈I , if for every polynomial p(·) and every sufficiently
large i, Xi and Yi are indistinguishable by p(|i|)-sized circuits. An equivalent formulation is that
{Xi}i∈I and {Yi}i∈I are computationally indistinguishable if there exists a negligible function µ :
N→ [0, 1] such that Xi and Yi are indistinguishable by 1

µ(|i|) -sized circuits. We will sometimes abuse
notation and say that the two random variables Xi and Yi are computationally indistinguishable,
denoted by Xi ≡C Yi, when each of them is a part of a probability ensemble such that these
ensembles {Xi}i∈I and {Yi}i∈I are computationally indistinguishable. We will also sometimes drop
the index i from a random variable if it can be inferred from the context. In most of this cases, the
index i will be of the form 1n where n is called the security parameter.

2.2 Cryptographic assumptions.

For the purposes of this presentation, we will assume the existence of collision-resistant hash func-
tions that are secure against circuits of sub-exponential size (i.e. 2n

ε
for some fixed ε > 0).10 Using

an appropriate setting of the security parameter we will assume that all cryptographic primitives
we use are secure against 2n

5
-sized circuits, where n is the security parameter for our protocol.11

In contrast we aim to prove that our protocol is secure only against adversaries that use uniform
probabilistic polynomial-time algorithms.12

10As mentioned in Section 1.5, our protocol can be proven secure under somewhat weaker assumptions at the cost
of a more complicated analysis, see Section [sec:complexity].

11For example, if we have a primitive that is secure against 2m
ε

sized circuit with security parameter m, then when
given the security parameter n as input, we will invoke the primitive with m = n5/ε.

12The main limitation of the current protocol is that it is only secure against uniform adversaries rather than

the quantitative difference (2n
5

vs. polynomial-time) between the hardness assumption and the adversary’s running

time. Indeed, our protocol is in fact secure against uniform 2n
δ

-time algorithms for some δ > 0. However, for the
sake of clarity, we chose to model the adversary as a uniform probabilistic polynomial-time algorithm. The protocol

of Section 4 is also in fact secure against 2n
δ

-sized circuits for some δ > 0.
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2.3 Cryptographic Primitives

2.3.1 Commitment Schemes

We let Com denote a computational (i.e., statistically binding) commitment scheme (see [Gol01,
Sec. 4.4.1] for definitions). That is, we denote a commitment to x by Com(x) = Com(x;Um). Note
that we assume for simplicity that the commitment scheme Com is non-interactive, as the scheme of
[Blu82] or [BOV03]. We can also use the 2-round scheme of [Nao89], that can be based on any one-
way function. If Com is a statistically binding commitment scheme and α is the transcript of the
execution of Com, then we denote by com-value(α) the unique value committed to in the transcript
α, and we let com-value(α) = ⊥ if no such value exists.13 Note that the function com-value(·) can
not be efficiently computed, but nonetheless is well defined. We say that a commitment scheme
has public decommitment if in the decommitment (or reveal) phase, the receiver does not need to
access its random tape from the commitment phase. In other words, the transcript from the commit
phase and the sender’s decommitment message are enough to efficiently obtain the commitment
value com-value(·) (and thus the sender can prove assertions about the committed value without
access to the receiver’s random tape). In this paper, we only consider commitment schemes that
satisfy the public decommitment property.

Commit-with-extract schemes. Loosely speaking, a commit-with-extract scheme [BL02] is a
commitment scheme where the sender also proves the knowledge of the committed value. The
formal definition of commit-with-extract follows the definition of “witness-extended emulation”
[Lin01] and requires that there exists an extractor that can simulate the view of the sender, and
output a committed value that is compatible with this view. The resulting definition is the following:

Definition 2.1 (commit with extract). A statistically binding commitment scheme Comm-Ext with
sender A and receiver B is a commit-with-extract scheme if the following holds: there exists a prob-
abilistic polynomial-time commitment extractor CK such that for every probabilistic polynomial-
time committing party A∗ and for every x, y, r ∈ {0, 1}∗, upon input (desc(A∗), 1t, x, y, r), where t
is a bound on the running time of A∗(x, y, r), machine CK outputs a pair, denoted (CK1, CK2) =
(CK1(desc(A∗), 1t, x, y, r), CK2(desc(A∗), 1t, x, y, r)), satisfying the following conditions:

1.
{
CK1(desc(A∗), 1t, x, y, r)

}
x,y,r∈{0,1}∗

≡C

{
viewA∗(A∗(x, y, r), B)

}
x,y,r∈{0,1}∗

2. Pr[CK2(desc(A∗), 1t, x, y, r) = com-value(CK1) or com-value(CK1) = ⊥] > 1− µ(|x|)

A commit-with-extract scheme is called liberal if the extractor CK runs in expected probabilistic-
polynomial-time.

A constant-round liberal commit-with-extract scheme can be obtained based on any one-way-
function by sequentially executing first a standard commitment scheme and then a constant-round
zero-knowledge proof-of-knowledge for NP (e.g., the system of [FS89]) to prove knowledge of the
commitment value. The commitment extractor CK will use the knowledge extractor of the com-
mitment scheme. In this way, one obtains a black-box commitment extractor that rewinds the

13In case Com is only statistically binding, and not perfectly binding, then we let com-value(α) = ⊥ also in the case
that α does not determine a unique committed value. Note that this case can only occur with negligible probability.
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sender A in order to obtain the committed value. In [BL02], a different construction of a commit-
with-extract is given, that has a strict probabilistic polynomial-time non-black-box extractor. For
simplicity of exposition we will assume throughout the paper that our commit-with-extract scheme
has a black-box extractor that utilizes rewinding. However, one can use also a non-black-box scheme
such as the one of [BL02] in our construction.

Notation for commitment schemes. We shall sometimes say that a party sends a commitment
(or commit-with-extract) to a value x, and use the notation Com(x) or Comm-Ext(x), even though
in actuality the scheme Com or Comm-Ext may be an interactive protocol.

2.3.2 Zero-knowledge

We will use the notion of zero-knowledge proofs and argument systems [GMR85] and the notion of
proofs of knowledge [FFS87, TW87, BG93] (see [Chap. 4][Gol01] for definitions). In particular we
will use the fact that if one-way functions exist then every language in NP has a constant-round
zero-knowledge argument that is also a proof of knowledge [FS89].

2.3.3 Universal arguments

Universal arguments were defined in [BG02]. They are a variant of (interactive) CS proofs [Mic94,
Kil92]. Loosely speaking, a universal argument is an interactive argument of knowledge for proving
membership in NEXP (instead of NP).14 A formal definition of universal arguments can be found
in Appendix A. We will use a universal argument system that is also zero-knowledge (ZKUARG).
There are known constructions of such systems that use a constant number of rounds rounds under
the assumption that collision-resistent hash functions exist [BG02].

3 A Uniform Non-Malleable Coin-Tossing Protocol

In this section we will construct a non-malleable coin-tossing protocol. The protocol of this section
has two limitation: The first limitation is that our protocol will only secure against adversaries
that use uniform probabilistic polynomial-time algorithms (rather than polynomial-sized circuits
or equivalently, polynomial-time algorithms with auxiliary input). The second limitation is that
our protocol will only be secure against adversaries that use the synchronizing scheduling. As
mentioned in Section 1.5, constructing a non-malleable coin-tossing protocol against synchronizing
adversaries is sufficient for our desired applications (since in Section 6 we show how to transform a
non-malleable zero-knowledge or commitment scheme secure against synchronizing adversaries into
a scheme secure against general adversaries.)

Therefore it is the first limitation (security only against uniform adversaries) that is actually
more serious. Note that usually in cryptography, it is possible to derive security against non-
uniform adversaries from a security proof against uniform adversaries. This is because most proofs
of security use only black-box reductions. However, this is not the case here, since we will use some
diagonalization arguments in our proof of security that do not carry over to the non-uniform case.

14We use universal arguments rather than an interactive CS proof system because: (a) We need to use the proof-
of-knowledge property of universal arguments. (b) CS proofs seem to inherently require a super-polynomial hardness
assumption; Although we do use such an assumption in the current presentation, it is not clear whether or not such
an assumption is inherent in our approach.
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Nonetheless, in Section 4 we do construct a different non-malleable coin-tossing protocol that is
secure against non-uniform adversaries.

Rough outline of proof structure. The general form of our non-malleable coin-tossing protocol
is similar to previous (malleable) coin-tossing protocols. In fact, it is quite similar to a coin-tossing
protocol of Lindell [Lin01], except for the following modification: The modification is that while the
protocol of [Lin01] involves a zero-knowledge proof that some condition X occurs, in our protocol
we prove that either X or Y occurs, where Y is some “bogus” condition that almost always will not
be satisfied in a real execution. This is a technique that originated in the work of Feige, Lapidot
and Shamir [FLS99], and has been used in several places since (e.g., [RK99, Bar01]). When this
technique is used it is usually the case that one can ensure that Condition Y occurs if one has the
power to “rewind” the adversary. Thus, it is usually the case that the adversary simulator ensures
that Condition Y occurs in the simulation.15 This will not be the case here. Although we do need
to provide an adversary simulator (or equivalently, an ideal adversary) Ĉ to satisfy Definition 1.3,
our simulator will not use the bogus Condition Y and in fact Condition Y will not occur even in
the simulation. In fact, Condition Y will be of a form that no polynomial-time algorithm will be
able to ensure it occurs, even with the use of rewinding. If we’re not using this condition, then what
do we need it for? The answer is that we will use this condition in the security proof. In order to
show that our actual simulator Ĉ does satisfy the conditions of Definition 1.3 we will construct an
“imaginary simulator” Ĉ ′′. This “imaginary simulator” will run in time that is super-polynomial
and will use this long running time instead of rewinding to ensure that Condition Y occurs.16 Using
the output of this “imaginary simulator” as an intermediate hybrid we will be able to prove that
our actual simulator satisfies the conditions of Definition 1.3.

3.1 Evasive Sets

We will need to use the existence of an (exponential-time constructible) set R ⊆ {0, 1}∗ that is
both pseudorandom and hard to hit in the following sense:17

Definition 3.1 (Evasive set). Let R ⊆ {0, 1}∗. For any n ∈ N denote Rn
def
= R ∩ {0, 1}n. We say

that R is evasive if the following conditions hold with respect to some negligible function µ(·):

Constructibility: For any n ∈ N, the set Rn can be constructed in time 2n
3
. That is, there exists a

2n
3

time Turing machine MR that on input 1n outputs a list of all the elements in the set Rn.
In particular this means that deciding whether or not r ∈ R can be done in time 2|r|

3
.

Pseudorandomness: The set R is pseudorandom against uniform probabilistic polynomial-time
algorithms. That is, for all probabilistic polynomial-time Turing machines M , it holds that∣∣∣∣ Pr

r←RRn
[M(r)=1]− Pr

r←R{0,1}n
[M(r)=1]

∣∣∣∣ < neg(n)

.
15This is the case also in [Bar01], although there the simulator used the knowledge of the adversary’s code instead

of rewinding to ensure that Condition Y occurs.
16In the non-uniform version of our protocol, the “imaginary simulator” will need to use also the knowledge of the

adversary’s code (in addition to a longer running time) to ensure that this condition occurs. See Section 4.
17For simplicity we “hardwired” into Definition 3.1 the constants and time-bounds required for our application.
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Evasiveness: It is hard for probabilistic polynomial-time algorithms to find an element in Rn.
Furthermore, even when given an element r ∈ Rn, it is hard for such algorithms to find a
(different) element in Rn. Formally, for any probabilistic polynomial-time Turing machine M
and for any r ∈ Rn,

Pr[M(r) ∈ Rn \ {r}] < neg(n)

Sets with very similar properties have been shown to exist by Goldreich and Krawczyk [GK92].
Using similar methods we can prove

Theorem 3.2. Suppose that 2n
ε
-strong one-way-functions exist, then there exists an evasive set.

Proof. First note that when constructing the set Rn it is enough to ensure that Rn satisfies the
pseudorandomness and evasiveness properties only for probabilistic Turing machines whose descrip-
tion is of size at most log n and whose running-time18 is at most nlogn. This will ensure that the
set R = ∪n∈NRn will be pesudorandom and evasive for all probabilistic polynomial-time Turing
machines. We denote the set of Turing machines that have size at most log n and running time
halted at nlogn by Mn. Note that |Mn| ≤ n.

We fix f : N→ N be a (polynomial-time computable) function such that f(·) is super-polynomial
and f(n) = 2o(n

ε). For concreteness, we will set f(n) = nlogn. Suppose that we choose at
random a subset S = {x1, . . . , xf} of size f(n) (That is, x1, . . . , xf are chosen uniformly and

independently in {0, 1}n). Let µ(n)
def
= f(n)−1/3. Note that µ(·) is a negligible function. By

the chernoff inequality, for every Turing machine M , the probability (over the choice of S) that
|Ex←R{0,1}n [M(x)]− Ex←RS [M(x)]| > µ(n) is extremely low (2−Ω(f(n)1/3)). Thus with high proba-
bility S is pseudorandom for all the machines M ∈Mn.

Let i 6= j ∈ [f ] and let M ∈ Mn. The probability over S that Pr[M(xi) = xj ] > µ(n) is at

most 2−n

µ(n) (where µ(·), as before is defined by µ(n)
def
= f(n)−1/3). By taking a union bound over

all possible such pairs (i, j) we see that with the overwhelming probability of at least 1− 2−nf(n)2

µ(n) ,
the set S will be evasive for all the machines M ∈Mn.

Under our assumptions, there exists a generator G : {0, 1}polylog(n) → {0, 1}nlogn
such that

G(Un) is pseudorandom for circuits of size at most nlog2 n. That is, for any circuit with input
m = m(n) and size at most 2n

ε′
,

‖Pr[C(Um) = 1]− Pr[C(G(Un)) = 1]‖ < n− log2 n

.
Given a set S ⊆ {0, 1}n of size f(n) we can use this generator to verify in deterministic 2polylog(n)-

time that it is indeed satisfies the pseudorandomness and evasiveness properties for the machines
in Mn. Indeed, this can be done by using the generator to decrease the number of coin tosses
of all Turing machines in Mn to polylog(n) and then simulating all machines in Mn in time
2polylog(n) (since enumerating all possible polylog(n) coin tosses for each machine can be done in
time 2polylog(n)). This means that we have a deterministic 2logc(n)-time test T (for some constant
c > 0) such that given a set S = {x1, . . . , xf}, if T outputs 1 then S is evasive, and Pr[T (Un·f(n) =
1] > 1− µ′(n) for some negligible function µ′(·).

18We can assume that all Turing machines are “clocked”. That is, they are of the form that first computes 1t and
then runs for at most t steps.
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Under our assumptions, there exists also a pseudorandom generator G′ : {0, 1}polylog(n) →
{0, 1}2logc(n)

. We use this generator G′ to find a set S that satisfies these properties in time
2polylog(n) (which is at most 2O(n)) in the following way: go over all possible seeds and stop at the
lexicographically first seed s such that T (G(s)) = 1.

Note that for our purposes it is enough to use a pseudorandom generator that runs in time
that is exponential in its seed length. Such generators exist under weaker conditions than the ones
stated in the theorem [NW88, IW97].

3.2 A Simple Simulation-Sound Proof System

In this section, we sketch the construction and proof of a simple simulation sound proof system
that is based on the notion of evasive sets. Loosely speaking, a proof system is simulation sound
[Sah99] if even when simulating a man-in-the-middle adversary, we still are ensured (with very high
probability) that if the adversary’s proof in the simulated right session passes verification, then
either statement is a copy of the statement proven in the left session, or the statement is true.
This should hold even if the statement proven in the simulated left session is false. Note that if we
use a standard (i.e., standalone) zero-knowledge proof system in the man-in-the-middle setting, it
may be that when we simulate the left session, the adversary manages to prove a false statement
in the right session. Simulation soundness is a weaker condition than non-malleability, but it is
sufficient for some applications (e.g., [Sah99, DDO+01, Lin03]). The protocol of this section is
not used in any other place of this work. We include it here because it is a simple protocol that
demonstrates our techniques. Its main drawback is that we do not know a simple generalization for
it to the non-uniform model. Another small drawback is that it uses the subexponential hardness
assumption in a much more essential way than our other constructions.

In this subsection (and only in this subsection) we will assume that there exists an evasive set
R with the following additional property: there exists some ε > 0 such that for every x ∈ {0, 1}nε ,
the uniform distribution on x◦{0, 1}n−nε ∩Rn is computationally indistinguishable from x◦Un−nε ,
where Rn denotes R ∩ {0, 1}n and ◦ denotes the string concatenation operator. Note that under
suitable assumptions, a variant of the construction of the previous section satisfies this additional
property. (Since a random dense enough subset of {0, 1}n will satisfy this property.)

Protocol 3.3 is our simulation-sound zero-knowledge proof system. We now sketch its analysis.
Firstly, we note that, unlike all other proof systems considered in this work, the soundness condition
of this system does not hold with respect to non-uniform polynomial-sized cheating provers. This
might have an element x◦r ∈ R with x 6∈ L “hardwired” into it. However this system is sound with
respect to uniform polynomial-time provers, since such provers cannot sample an element from R.

Let C be a man-in-the-middle adversary for Protocol 3.3 that utilizes the synchronizing schedul-
ing. To simulate C we will simply use the simulator for the zero-knowledge proof in the obvious
way. That is, the simulator will simulate the first step by following the honest left strategy (i.e.,
send a random r ←R {0, 1}n−n

ε
) and then treat the adversary C and the right party as one com-

bined verifier, and simulate the zero-knowledge proof with respect to this verifier. The output of
this simulator will be indistinguishable from the view of C in a real interaction. However, because
this simulator effectively “rewinds” the right party, it is not at all clear that soundness of the right
session is preserved. To show that this is the case we construct an “auxiliary simulator”. On input
x, this “auxiliary simulator” will run in super-polynomial time to compute a random r such that
x ◦ r ∈ R. It will then use the honest prover algorithm to prove that either x ∈ L or x ◦ r ∈ R.
The simulation soundness property holds for this “auxiliary simulator” because of the evasiveness
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Public input: 1n: security parameter, x ∈ {0, 1}nε (statement to be
proved is “x ∈ L”)

w
↓

x
↓

P V

Prover’s auxiliary input: w (a witness that x ∈ L)

Step P1 (Send r): Prover sends to verifier a random string r of
length n− nε r ← {0, 1}n−nε

−−−−−−−−−−−−−−→

Steps P,V2.x (ZK Proof): Prover proves to verifier using its in-
put w via a zero knowledge universal argument that either
x ∈ L or that x ◦ r ∈ R where R is the evasive set. Verifier
accepts if proof is completed successfully.

w
↓

x, r
↓

ZK-proof
x ∈ L or
x ◦ r ∈ R

↓
0/1

Protocol 3.3. A Simulation-Sound Zero-Knowledge Protocol

property of the set R: if the adversary does not copy exactly x and r to the right session, then
since it cannot find another x̃, r̃ such that x̃ ◦ r̃ is in the set R, and since no rewinding of the right
party is done during the simulation, it is forced to choose a statement x̃ such that x̃ ∈ L. Now
the output of the auxiliary simulator is indistinguishable from the output of the real simulator by
2n

δ
-time algorithm for some δ > 0. If we scale the security parameter appropriately, we can ensure

that deciding membership in L can be done in time less than 2n
δ

and therefore the simulation
soundness condition must also hold for the real simulator.

Reflection. It is not hard to construct simulation-sound (or even non-malleable) zero-knowledge
in a setting where all parties have access to some public trusted verification key of some signature
scheme.19 However, in our setting we obviously do not have access to any such key. In some sense
one may view the construction of this section as bypassing this difficulty by using some form of a
“keyless signature scheme”. That is, one can view a string r such that x ◦ r ∈ R as a signature on
the string x. Like a (one-time) signature, given a signature x ◦ r ∈ R it is hard to come up with a
different signature x′ ◦ r′ ∈ R. However, unlike standard signature schemes, the signing algorithm
does not use knowledge of a private key (since no such key exists) but rather uses super-polynomial
time.

3.3 The Actual Construction

Our non-malleable coin-tossing protocol is Protocol 3.4 (See Page 17).

As a first observation, note that Rn is a set that is hard to hit by probabilistic polynomial-time
algorithms. Therefore for any such algorithm that plays the left side, with overwhelming probability,
it will not be the case that r ∈ Rn. Thus when the right side is honest, the soundness of the
zero-knowledge argument guarantees that with high probability r = r1 ⊕ r2.21 The reason that

19Indeed, see Protocol 5.4 for such a construction.
20This is similar to the coin-tossing protocol of [Lin01].
21Note that this will not be true if we allow the adversary to be a polynomial-sized circuit, that may have an
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Public input: 1n: security parameter
1n
↓

L R

Steps L,R1.x (Commitment to r1): Left party selects r1 ←R

{0, 1}n and commits to it using a perfectly-binding commit-
with-extract scheme. We denote the transcript of the commit-
ment by τ1. We let s1 denote the randomness used by left party
during this step.

Comm-Ext(r1; s1) ⇒

Step R2 (Send r2): The right party selects a string r2 ←R {0, 1}n
and sends it. r2 ←R {0, 1}n←−−−−−−−−−−−−−

Step L3 (Send r): The left party sends the value r = r1 ⊕ r2. We
stress that the left party does not reveal the decommitment of
τ1.20)

r = r1 ⊕ r2−−−−−−−−−−−−−→

Steps L,R4.x (Prove that r = r1 ⊕ r2): The left party proves,
using a zero-knowledge universal-argument (ZKUARG), that
either r = r1 ⊕ r2 (where r1 is the unique string committed to
by the transcript τ1) or r ∈ Rn.

ZKUARG
r = r1 ⊕ r2

or r ∈ Rn
⇒

The result of the protocol is the string r. We will use the convention
that if one of the parties aborts (or fails to provide a valid proof) then
the other party determines the result of the protocol.

The right column contains a schematic description of the protocol as defined in the left column.

Protocol 3.4. A non-malleable coin-tossing protocol for uniform adversaries

17



we need to use a universal argument (rather than a standard zero-knowledge proof or argument
system for NP) is that we are not guaranteed by Theorem 3.2 that R ∈ NP, but rather only that
R ∈ Dtime(2n

3
).

It is not hard to verify that the strategies for both the left and right parties can be carried out
by probabilistic polynomial-time algorithms. (Note that we use here the prover efficiency condition
of universal arguments , inherited from CS proofs.)

In order to show that Protocol 3.4 is a secure non-malleable coin-tossing protocol as per Defi-
nition 1.3, one needs to show that for every adversary C (that uses the synchronizing scheduling)
there exists an ideal adversary Ĉ that simulates the execution of C in a MIM attack. Indeed,
let C be a probabilistic polynomial-time algorithm, and consider the execution of Protocol 3.4 in
the man-in-the-middle setting where C plays the part of the channel. This execution is depicted
in Figure 4 (Page 4). Note that we use the tilde (i.e., ˜ ) symbol to denote the messages of the
right session. The messages sent by the right and left parties are computed according to the pro-
tocol while the messages sent by the channel are computed by C who may use any (efficiently
computable) function of the previous messages.

We need to simulate C by an “ideal” adversary Ĉ. The ideal adversary Ĉ gets as input r(1), r(2)

and should have two outputs (b, τ). Recall that b ∈ {1, 2} and τ is a string simulating the output of
C. Without loss of generality we can assume that τ should simulate the view of C in the execution.
Clearly this view includes the strings r, r̃ where r is the result of the coin-tossing protocol in the
left session and r̃ is the result of the coin-tossing protocol in the right session. For the simulation
to be successful, it must hold that r = r(1) and r̃ is either equal to r(1) or to r(2). If this holds then
we can decide by examining τ whether b should equal 1 or 2 based on whether r̃ = r(1) or r̃ = r(2).
We see that the output b is redundant and that to prove that Protocol 3.4 is a secure non-malleable
coin-tossing protocol it is enough to prove the following theorem:

Theorem 3.5. Suppose that C is a probabilistic polynomial-time algorithm describing the strategy
for a synchronizing adversary for Protocol 3.4, then there exists an algorithm Ĉ ′ (computable by a
probabilistic expected polynomial-time Turing machine with oracle access to C) with a single output
such that, if r(1), r(2) are chosen uniformly and independently in {0, 1}n then,

1. Ĉ ′(r(1), r(2)) is computationally indistinguishable from the view of C in a real execution of
Protocol 3.4 in the man-in-the-middle setting.

2. Let r, r̃ be the result of the coin-tossing algorithm in the left and right sessions recorded in the
transcript Ĉ ′(r(1), r(2)). Then, with overwhelming probability it is the case that r = r(1) and
r̃ ∈ {r(1), r(2)}.

3.4 Proof of Theorem 3.5

Let C be a probabilistic polynomial-time algorithms representing the strategy of a synchronizing
adversary for Protocol 3.4. In order to prove Theorem 3.5 we need to construct an algorithm Ĉ ′

that simulates C. Figure 5 (Page 19) contains a schematic description of Algorithm Ĉ ′.

Operation of Algorithm Ĉ ′. Algorithm Ĉ ′ gets as input two strings r(1), r(2) that were chosen
uniformly and independently at random and in addition it gets black-box access to algorithm C.

element of Rn hardwired into it.
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L C R

r1←R {0, 1}n Comm-Ext(r1)
−−−−−−−−−−−−−−−−−→

Comm-Ext(r̃1)
−−−−−−−−−−−−−−−−−→

r̃2 ←R {0, 1}n←−−−−−−−−−−−−−−−−
r2←−−−−−−−−−−−−−−

r = r1 ⊕ r2−−−−−−−−−−−−−−→
r̃−−−−−−−−−−−−−−−→

ZKUARG
r = r1 ⊕ r2

or r ∈ Rn
⇒

ZKUARG
r̃ = r̃1 ⊕ r̃2

or r̃ ∈ Rn
⇒

Figure 4: Execution of C in the man-in-the-middle setting

Input: r(1), r(2)

Simulated L Simulated C Simulated R

r1←R {0, 1}n Comm-Ext(r1)
−−−−−−−−−−−−−−−−−→

Comm-Ext(r̃1)
−−−−−−−−−−−−−−−−−→

� Extract r̃1

r̃2 = r̃1 ⊕ r(2)

←−−−−−−−−−−−−−−
r2←−−−−−−−−−−−−−−

r = r(1)
−−−−−−−−−−−−−−→

r̃−−−−−−−−−−−−−−→

Simulate
proof 	

Simulated
ZKUARG
r = r1 ⊕ r2

or r ∈ Rn

⇒
ZKUARG
r̃ = r̃1 ⊕ r̃2

or r̃ ∈ Rn
⇒

Rewinding points are marked by circular arrows 	,�

Figure 5: Algorithm Ĉ ′ – simulation of C
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Algorithm Ĉ ′ emulates C’s execution by running the honest left and right strategy, with some
modifications as described below.

Algorithm Ĉ ′ departs from the honest strategy in the right session (Steps L,R1.x) where it uses
the commitment extractor of the commit-with-extract scheme Comm-Ext to simulate the execution
of this phase, while also obtaining the value r̃1 committed to by C. Note that in order to do that,
Ĉ ′ needs to treat both C and the left party L as a single combined sender for the commitment
scheme and rewind them both at the same time.

The next modification is that instead of choosing r̃2 to be a random string as is done by the
honest right party, Algorithm Ĉ ′ uses r̃2 = r̃1⊕r(2). Note however that this is still a uniform string
because r(2) is uniformly distributed. In the left session in Step L3 Ĉ ′ sends r = r(1) instead of
r = r1 ⊕ r2. This means that with high probability the statement r = r1 ⊕ r2 is false. Also, with
high probability it also holds that r 6∈ Rn. However, Ĉ ′ uses the simulator for the ZKUARG in
order to simulate a proof for the false statement r = r1 ⊕ r2 or r ∈ Rn. Similarly to the case when
using the commitment extractor, Algorithm Ĉ ′ will need to treat the adversary C and the honest
right party as one combined verifier algorithm. Thus Algorithm Ĉ ′ will also rewind the honest right
party in this step. Note that all this can be carried out in expected polynomial-time.22 Note that
Algorithm Ĉ ′ would not be well-defined if we needed to invoke the simulator and extractor at the
same time, since it would mean that algorithm Ĉ ′ would be rewinding itself. However, this can not
happen since we assume the synchronizing scheduling.

Now that algorithm Ĉ ′ is specified all that is left is to prove the two parts of Theorem 3.5. It
turns out that Part 1 can be proven using the standard hybrid argument (relying on the security
of the commitment scheme and zero-knowledge simulator). In contrast, the proof of Part 2 is much
more complicated and it is for proving this part that we needed to introduce the evasive set R in
the first place. We start with the proof of the more complicated part.

3.5 Proof of Theorem 3.5 Part 2

From a first impression, by looking at Figure 5 one may think that Part 2 of Theorem 3.5 should be
easy to prove. After all, in the left session it is certainly the case that r = r(1) and the soundness
of the universal-argument system used in the right session should ensure us that r̃ = r̃1 ⊕ r̃2 = r(2)

(because it is unlikely that C can select r̃ ∈ Rn). However, there is a caveat in this reasoning. The
problem is that soundness is only ensured in an interactive setting where the prover only has access
to a single interaction with the honest verifier. However, since Algorithm Ĉ ′ is using the simulator
in the left session, it will actually rewind also the verifier algorithm of the right party. he fact
that Algorithm Ĉ ′ gets the ability to rewind the verifier algorithm ruins our ability to argue about
the soundness of the universal-argument system. Indeed, this problem is real (i.e., the soundness
of the system may indeed be compromised). For example, consider an adversary that uses the
relaying content strategy (i.e., copies all messages from the left session to the right session and
vice versa). In an execution with such an adversary, it will be the case that r̃ = r and the proof
in the right session will pass verification (since for such an adversary, the right session is identical
to the left session). Because of the indistinguishability of our simulator, when we simulate the
relaying adversary with Algorithm Ĉ ′, also in the simulated transcript it holds that r̃ = r = r(1).
However, since r(1) is chosen at random, with overwhelming probability, it will not be the case

22Actually we can also have a strict polynomial-time non-black-box simulator by using the protocols of [Bar01]
and [BL02].
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Input: r(2)

Simulated L Simulated C Simulated R

r1←R {0, 1}n Comm-Ext(r1)
−−−−−−−−−−−−−−−−−→

Comm-Ext(r̃1)
−−−−−−−−−−−−−−−−−→

� Extract r̃1

r̃2 = r̃1 ⊕ r(2)

←−−−−−−−−−−−−−−
r2←−−−−−−−−−−−−−−

Use 2O(n3) steps r ←R Rn−−−−−−−−−−−−−−−→
r̃−−−−−−−−−−−−−−→

Use 2O(n3) steps
ZKUA
r = r1 ⊕ r2

or r ∈ Rn
√ ⇒

ZKUA
r̃ = r̃1 ⊕ r̃2

or r̃ ∈ Rn
⇒

Figure 6: Algorithm Ĉ ′′

that r̃ = r̃1 ⊕ r̃2. Therefore, in the simulated transcript, the statement proven by the adversary in
the right session will be false. Of course, this does not mean that Part 2 of Theorem 3.5 is false.
Indeed, in the case of the relaying adversary it holds r̃ = r(1) which is also allowed by the statement
of Part 2. It just means that the naive approach to proving this part fails. We now turn to the
actual proof.

We assume, for the sake of contradiction, that there exists a probabilistic polynomial-time
algorithm C such that with non-negligible probability the corresponding ideal adversary Ĉ ′ outputs
a transcript where the result of right session r̃ is neither r(1) nor r(2). Note that in this case it must
hold that the proof in the right session passes verification (or otherwise by our convention the right
party can simply choose r̃ = r(2)). We consider the following 2O(n3)-time algorithm Ĉ ′′ (depicted
in Figure 6). Algorithm Ĉ ′′ behaves almost exactly as Ĉ ′ with two differences:

1. In the left session (in Step L3) it chooses r ←R Rn instead of choosing r = r(1) (where
r(1) ←R {0, 1}n). (This takes 2O(n3) steps using the constructibility property of R.)

2. Then, in the ZKUA phase (Steps L,R4.x) Algorithm Ĉ ′′ does not use the zero-knowledge
simulator but rather the honest prover algorithm of the universal argument to prove the true
statement that either r = r1 ⊕ r2 or r ∈ Rn. (This takes 2O(n3) steps.)

The output of Ĉ ′′ is computationally indistinguishable (by uniform algorithms) from the output
of Ĉ ′, even if the distinguisher is given r(2) (but not r(1)). Indeed, this follows from the pseudoran-
domness of Rn and the zero-knowledge property of the universal-argument. Yet, combined with
the hypothesis that in the output of Ĉ ′ with non-negligible probability r̃ 6∈ {r(1) = r, r(2)}, this
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implies that in the output of Ĉ ′′, with non-negligible probability it is the case that the following
three conditions hold simultaneously:

1. r̃ 6= r

2. r̃ 6= r(2) = r̃1 ⊕ r̃2

3. The proof that either r̃ = r̃1 ⊕ r̃2 or r̃ ∈ Rn passes verification.

Now the soundness property of the universal arguments holds against 2n
5
-sized circuits. Since

we are using less time than this and no rewinding/simulation is done during the relevant time23 by
Ĉ ′′ it can only be with negligible probability that the proof passes verification and the statement
is false. This means that with non-negligible probability it will be the case that r̃ 6= r and r̃ ∈ Rn
(since r̃ 6= r̃1⊕ r̃2). Now suppose that we halt the execution of Ĉ ′′ at the point where r̃ is computed.
Up to this point Ĉ ′′ only needs to use a polynomial number of steps if it is given as input a random
element r ←R Rn. This means that we have a probabilistic polynomial-time algorithm that gets a
string r ←R Rn and outputs a string r̃ that with non-negligible probability will be both different
from r and a member of Rn. But this is clearly a contradiction to the evasiveness property of the
set Rn.

3.6 Proof of Theorem 3.5 Part 1

We will now prove Part 1 of Theorem 3.5. That is, we prove the following claim:

Claim 3.6. Let C be a probabilistic polynomial-time adversary strategy for Protocol 3.4. Let Ĉ ′ be
the simulator for C, as described in Section 3.4. Then, Ĉ ′(r(1), r(2)), where r(1), r(2) ←R {0, 1}n,
is computationally indistinguishable from the view of C in a real execution of Protocol 3.4 in the
man-in-the-middle setting.

We prove the claim using the hybrid argument. We let H0 be the view of C in a real execution,
and we let H4 be Ĉ ′(r(1), r(2)), where r(1), r(2) ←R {0, 1}n. We prove that H0 ≡C H4 by showing
three intermediate random variables H1,H2,H3 such that

H0 ≡C H1 ≡C H2 ≡C H3 ≡C H4

We now describe these intermediate random variables, and show that indeed for every 1 ≤ i ≤ 4,
Hi is computationally indistinguishable from Hi−1. To describe the random variable Hi, we will
describe the differences between it and the variable Hi−1, and then show that the two variables are
indistinguishable.

Hybrid H1: Simulated ZKUA. The difference between H1 and H0 is that in H1 we use the
simulator of the zero-knowledge universal argument of Steps L,R4.x to simulate the view of
the adversary C in these steps in the left session. Note that the verifier that is simulated is
the combined strategy of C and the honest Right algorithm in these steps. The two random
variables are indistinguishable by the zero-knowledge condition of the universal argument.

23Ĉ′′ does use rewinding in the extraction stage but this is done before the ZKUA phase. Also in the extraction
phase Ĉ′′ only needs to rewind the honest left algorithm and not the honest right algorithm.
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Hybrid H2: Choose r = r(1). The difference between H2 and H1 is that in H2 we choose the
string r sent by the Left party in Step R2 of the left session to be r(1), where r(1) is chosen at
random from {0, 1}n, instead of choosing r to be equal to r1 ⊕ r2. The distributions H2 and
H1 are computationally indistinguishable by the security of the commitment scheme used in
Steps L,R1.x. (Note that in both hybrids, the coins used in the commitment scheme of these
steps are not used anywhere else in the execution.)

Hybrid H3: Extract commitment. The difference between H3 and H2 is that in H3 we use
the commitment extractor of the commit-with-extract scheme of Steps L,R1.x to simulate
the view of the adversary C in these steps in the right session. Note that the sender that is
simulated is the combined strategy of C and the honest Left algorithm in these steps. The
two random variable are indistinguishable by the simulation condition of the commit-with-
extract scheme (see Definition 2.1). Note that in addition to outputting a simulated view, the
commitment extractor also outputs as an auxiliary outputs the value r̃1 that is committed to
by the adversary in this simulated view.

Hybrid H4: Send r̃2 = r̃1 ⊕ r(2). The difference between H4 and H3 is that in H4, in Step R2
of the right session, we choose r̃2 to be r̃1 ⊕ r(2), where r̃1 is the value extracted by the
commitment extractor, and r(2) is chosen at random. We note that even though we now
choose r̃2 in a different way, its distribution is still the uniform distribution (since r(2) is
chosen at random). Therefore, the two variables H4 and H3 are identically distributed.

The proof is finished by observing that H4 is indeed the random variable Ĉ ′(r(1), r(2)), where
r(1), r(2) ←R {0, 1}n.

4 Dealing with Non-Uniform Adversaries

In this section, we show how to modify Protocol 3.4 to obtain security even against adversaries
that use non-uniform algorithms. Specifically, under the same assumptions we will construct a non-
malleable coin-tossing protocol secure against polynomial-sized circuits (rather than probabilistic
polynomial-time uniform algorithms ,as was done in Section 3). The protocol and its simulator
will be quite similar to the uniform case. However, our proof of security will be somewhat different
and will involve a non-black-box use of the adversary’s code.

4.1 Evasive Set Families

An important component in our construction is a generalization of evasive sets as defined in Sec-
tion 3.1, called evasive set family. Roughly speaking, an evasive set family is a family of sets indexed
by strings, where each set is evasive (in the sense of Definition 3.1) with respect to algorithms that
get its index as an advice string. The formal definition follows:24

24 We have chosen to define evasive set families with respect to nO(logn)-time algorithms instead of polynomial-time.
This change somewhat simplifies our exposition but is not really significant. In particular, we could have used any
other fixed super-polynomial function.
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Definition 4.1 (Evasive set family). Let {Rα,n}α∈{0,1}∗ be family of sets, where for any α ∈ {0, 1}∗,
Rα ⊆ {0, 1}n+p(n) for some polynomial p(·). We say that the family {Rα,n}α∈{0,1}∗ is an evasive
set family if the following conditions hold with respect to some negligible function µ(·):

Constructibility: There exists a Turing machine M such that M(1n, α) runs for |α|2n3
steps and

outputs a list of all the elements in the set Rα,n. In particular this means that deciding
whether or not r ∈ Rα,n can be done in time |α|2|r|3 .

Pseudorandomness: The set Rα,n is pseudorandom against uniform probabilistic nO(logn)-time
algorithms with advice α. That is, for any probabilistic polynomial-time Turing machine M
it holds that∣∣∣∣ Pr

r◦s←RRα,n
[M(α, r ◦ s) = 1]− Pr

r◦s←R{0,1}n+p(n)
[M(α, r ◦ s) = 1]

∣∣∣∣ < µ(n)

Evasiveness: We say that α′ ∼ α if there are two Turing machines M1,M2 of description log n
and running time nlog2 n such that Pr[M1(α) = α′] > n− log2 n and Pr[M2(α′) = α] > n− log2 n.

For every α′ ∼ α and every probabilistic nO(logn)-time Turing machine M , if r ◦ s is chosen
at random from Rα,n, and denote r′ ◦ s′ = M(α′, r, s), the probability that r′ 6= r and
r′ ◦ s′ ∈ Rα′,n is less than µ(n).

Erratum: In a previous version of this manuscript we assumed erroneously that ∼ is an equivalence
relation.25 This implied a simpler construction (and also slightly simpler definition) of evasive sets,
since by moving from α to the lexicographically first member in the equivalence class of α, we could
assume that for every α′ ∼ α it holds that Rα,n = Rα′,n. However, this is actually wrong, since the
relation ∼ is symmetric, reflexive but not transitive. Therefore we need a different construction of
evasive sets than the one suggested in the previous version.

As in the case of evasive sets, under the assumptions of this paper there exists an evasive set
family. That is, we have the following theorem:

Theorem 4.2. Suppose that 2n
ε
-strong one-way permutations exist, then there exists an evasive set

family.

(The one way permutations are only needed to get a non-interactive commitment scheme,
alternatively we can use the one way functions based commitment scheme of [Nao89] at the cost
of a slightly more complicated definition of evasive sets or the commitment scheme of [BOV03] at
the cost of slightly stronger complexity assumptions.)

Proof. For every α ∈ {0, 1}∗ and t ∈ N, define e(α, t) ∈ {0, 1}n to be a string such that:

• For every 100 log n-length and t-time Turing machine M , Pr[M(α) = e(α, t)] < n− log2 n.

• e(α, t) can be computed in time t · npolylog(n).
25We note that it is possible to define an asymptotic version of ∼ that would be an equivalence relation, but

this asymptotic version does not make sense for single finite strings (as opposed to sequences of strings). Confusion
between these two versions seems to be the source of our previous error.
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Choose k to be small enough power of n such that we can have two non-interactive commitments
Comw and Coms with pseudorandom commitments such that Comw is secure for npolylog(n) time
and can be broken in time 2

√
k and Coms is secure for time 2k

1.1
and can be broken in time 2n

1.5
.

We let G : {0, 1}k → {0, 1}n be a pseudorandom generator strong against npolylog(n)-size circuits
that can also be broken in time npolylog(n). We also assume that G is one to one (we can obtain
such a pseudorandom generator using an appropriate one-way permutation).

For every u ∈ {0, 1}k we identify u with a number between 0 and 2k−1. We define the set Rα,n
as follows: G(u) ◦ c1 ◦ c2 where c1 = Comw(e(α, u · 2

√
k), s1) for some coins s1 for the commitment

scheme and c2 = Coms(e(α, (2k − u) · 2n1.5
), s2) for some coins s2. Constructibility follows by

construction, and pseudorandomness follows by the security of the pseudorandom generator and
commitment scheme. To show evasiveness, let α ∼ α′ and suppose that if u, s1, s2 are chosen
uniformly, then with noticeable probability

M(α′,Comw(e(α, u · 2
√
k), s1),Coms(e(α, (2k − u) · 2n1.5

), s2)) = (r′, c′1, c
′
2) ∈ Rα,n , (1)

with r′ 6= G(u). In this case r′ = G(u′) for some u′ 6= u, and with noticeable probability either
u′ > u or u′ < u. In the first case, we obtain a contradiction by showing a machine N that on input
α outputs the string e(α, u′ · 2

√
k) within less than u′ · 2

√
k. The machine N will compute α′ from

α, run M on the inputs (α′, G(u),Comw(e(α, u ·2
√
k), U),Coms(0n, U ′) (where U,U ′ denote random

strings of appropriate lengths) and will output the string committed to using the weak commitment
Comw output by M (this can be done in 2

√
k time). The key observation is that this process has to

succeed with the same probability as it would have been if we didn’t commit using Coms to 0n but
rather to the right input as in Equation 1, because otherwise we get a contradiction to the security
of Coms. A similar reasoning applies in the case that u′ < u with noticeable probability, this time
breaking Coms instead. In this case we don’t need to commit to 0n in Comw since we have enough
time to compute e(α, u · 2

√
k).

4.2 The construction

Protocol 4.3 is our non-malleable coin-tossing protocol for non-uniform adversaries. It is very
similar to the non-malleable coin-tossing protocol for uniform adversaries (Protocol 3.4). In fact,
there are only two main changes:

First modification (adding a preliminary stage). We add a preliminary stage (Steps L,R
0.x) where each party sends a commitment to a hash of the all-zeros string and prove that it knows
the hashed value using a zero-knowledge universal argument (ZKUA).26

Step L0.1.x - left commitment The left player commits to a hash of the all-zeros string and
proves knowledge of the hashed value.

Step R0.1.1 (Right sends hash): Right party chooses a random
collision-resistent hash function h1 and sends it to the left party.

26We do not use a commit-with-extract scheme here because we need to prove knowledge of the hash’s preimage
and not knowledge of the value that is committed to.
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Step L0.1.2 (Left commits): The left party a commitment to
h1(0n). That is, it chooses a string s1 (random coins for the
commitment) and sends y1 = Com(h1(0n); s1)

Steps L,R0.1.2.x (Left proves knowledge): The left party
proves using a ZKUA that it knows a string α (where
|α| ≤ nlogn) and a string s1 such that y1 = Com(h1(α); s1)
where y1 is the commitment sent at Step L0.1.1

Note: We stress that since we use a universal argument the length of the string α is not
bounded by any fixed polynomial in the security parameter. However for convenience, we will
require that |α| ≤ nlogn. Note that if the left party follows the protocol then it would be the
case that α = 0n.

Steps L,R0.2.x - right commitment These steps are almost a “mirror image” of Steps L,R0.1.x
(with one slight difference). That is, the Right player now commits to a hash of the all-zeros
string and proves knowledge of the hashed value.

Step R0.2.1 (Right commits): The right party chooses a ran-
dom collision resistant hash function h2 and sends h2 along
with a commitment to h2(0n). That is, it chooses a string
s2 (random coins for the commitment) and sends h2 and
y2 = Com(h2(0n); s2).27

Steps L,R0.2.2.x (Right proves knowledge): The right party
proves using a ZKUA that it knows a string β (where |β| ≤
nlogn) and a string s2 such that y2 = Com(h2(α); s2) where y2

is the commitment sent at Step R0.2.1

Second modification (modifying the ZKUA). In Step 5, the left party proves using the
zero-knowledge universal-argument that either r = r1 ⊕ r2 or r ∈ Rα◦β,n where α is such that
y1 = Com(h1(α), s1) for some s1 and β is such that y2 = Com(h2(β), s2) for some s2. (Recall that
α ◦ β denotes the concatenation of α and β.)

By applying these changes we obtain Protocol 4.3 (see Page 27).

As in the uniform case (i.e., of Protocol 3.4), what we need to prove is the following Theorem
(which is the non-uniform analog of Theorem 3.5):

Theorem 4.4. Let Cn.u. be a polynomial-sized circuit (representing the adversary’s strategy for
Protocol 4.3). Then, there exists an algorithm Ĉ ′n.u. (that can be computed in expected probabilistic
polynomial-time algorithm with oracle access to Cn.u.) such that if r(1), r(2) are chosen uniformly
and independently in {0, 1}n then:

27Note that this step is not an exact mirror image of the previous step since the Right party, that is the sender of
the commitment, is choosing the hash function.
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Public input: 1n: security parameter
1n
↓

L R

Steps L,R0.1.x (Left commits to α): Right party chooses and
sends a hash h1. Left sends y1 = Com(h1(0n)) and then
proves using a ZKUA that it knows a value α such that
y1 = Com(h1(α)) (where |α| ≤ nlogn).

h1←−−−−
h1, y1 = Com(h1(0n))
−−−−−−−−−−−−−−−−−−−→
ZKUA of α, s s.t.
y1 = Com(h1(α), s) ⇒

Steps L,R0.1.x (Right commits to β): Right party chooses a
hash h2, and sends h2 and y2 = Com(h2(0n)). It then proves us-
ing a ZKUA that it knows a value β such that y2 = Com(h2(β))
(where |β| ≤ nlogn).

h2, y2 = Com(h2(0n))
←−−−−−−−−−−−−−−−−−−−

⇐ ZKUA of β, s s.t.
y2 = Com(h2(β), s)

Continue as in Protocol 3.4 (The only change is in Steps L,R4.x)

Steps L,R1.x (Commitment to r1): (unchanged) Left party se-
lects r1 ←R {0, 1}n and commits to it using a perfectly-binding
commit-with-extract scheme. We denote the transcript of the
commitment by τ1. We let s1 denote the randomness used by
left party during this step.

Comm-Ext(r1; s1) ⇒

Step R2 (Send r2): (unchanged) The right party selects a string
r2 ←R {0, 1}n and sends it. r2 ←R {0, 1}n←−−−−−−−−−−−−−

Step L3 (Send r): (unchanged) The left party sends the value r =
r1 ⊕ r2 (without revealing the decommitment of τ1). r = r1 ⊕ r2−−−−−−−−−−−−−→

Steps L,R4.x (Prove that r = r1 ⊕ r2): The left party proves us-
ing a zero-knowledge universal-argument (ZKUA) that either
r = r1 ⊕ r2 or r ∈ Rα◦β,n, where y1 = Com(h1(α)) and
y2 = Com(h2(β)).

ZKUA
r = r1 ⊕ r2

or r ∈ Rα◦β,n
⇒

The result of the protocol is the string r. We will use the convention
that if one of the parties aborts (or fails to provide a valid proof)
then the other party determines the result of the protocol.

Protocol 4.3. A non-malleable coin-tossing protocol for non-uniform adversaries
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1. Ĉ ′n.u.(r
(1), r(2)) is computationally indistinguishable from the view of Cn.u. in a real execution

of Protocol 4.3 with the honest left and right parties.

2. Let r, r̃ be the result of the coin-tossing protocol in the left and right sessions of the view
Ĉ ′n.u.(r

(1), r(2)). Then, with overwhelming probability it is the case that r = r(1) and r̃ ∈
{r(1), r(2)}.

4.3 Proof of Theorem 4.4

To prove Theorem 4.4, consider a polynomial-sized circuit Cn.u. and consider the execution of
Protocol 4.3 with Cn.u. playing the part of the channel. Such an execution is depicted in Figure 7.

We will use a simulator Ĉ ′n.u. that is very similar to the simulator used in the uniform case (see
Section 3.4). In fact, the only change will be that we need to simulate also the preliminary steps
(Steps L,R0.x). To simulate these steps, algorithm Ĉ ′n.u. will simply follow the honest left and right
strategy (i.e., commit to a hash of the all zeros string). To simulate the other steps, we will follow
the same strategy as the simulator Ĉ ′, as described in Section 3.4 (see also Figure 5). That is, we
will use the commitment extractor to extract r̃1, choose r̃2 to be r̃1 ⊕ r(2), and use the simulator
of the zero-knowledge universal-argument to simulate Steps L,R4.x. Figure 8 (Page 30) contains a
schematic description of the resulting algorithm Ĉ ′n.u..
As in the uniform case, to prove Theorem 4.4, we need to prove two Lemmas analogous to Parts 1
and 2 of Theorem 3.5:

Lemma 4.5. For r(1), r(2) ←R {0, 1}n, Ĉ ′n.u.(r
(1), r(2)) is computationally indistinguishable from the

view of Cn.u. when executing Protocol 4.3 with the honest L and R in the man-in-the-middle-setting.

Lemma 4.6. For r(1), r(2) ←R {0, 1}n, with overwhelming probability Ĉ ′n.u.(r
(1), r(2)) is a view of

an execution of Protocol 4.3 where the result r of the left session is r(1) and the result r̃ of the right
session is either r(1) or r(2).

The proof of Lemma 4.5 is obtained by fairly standard hybrid arguments, and is almost identical
to the proof of Theorem 3.5 Part 1.28 Thus we omit this proof here. In contrast, the proof of
Lemma 4.6 is more complicated and involves a non-black-box use of the code of the adversary Cn.u..

4.4 Proof of Lemma 4.6

The general outline proof of Lemma 4.6 follows the proof of Theorem 3.5 Part 2 (see Section 3.5).
We assume, for the sake of contradiction, that there exists a polynomial-sized circuit Cn.u., such that
with non-negligible probability in the transcript Ĉ ′n.u.(r

(1), r(2)) it is the case that r̃ 6∈ {r(1), r(2)}
(where r̃ denotes the result string in the right session).29 We now construct a 2O(n3)-time algorithm
Ĉ ′′n.u. with one input that will have the following two properties:

1. For randomly chosen r(2) ←R {0, 1}n, the random variable (r(2), Ĉ ′′n.u.(r
(2))) is computation-

ally indistinguishable by uniform algorithms from the random variable (r(2), Ĉ ′n.u.(r
(1), r(2))),

where r(1), r(2) ←R {0, 1}n.

28This is due to the fact that the only difference between the simulator Ĉ′n.u. we present here and the simulator
Ĉ′ of Section 3.4 is that Algorithm Ĉ′n.u. needs to simulates also the preliminary phase of Steps L,R0.x. However, in
these steps it uses the same strategy as used by the honest parties.

29Note that by the definition of Algorithm Ĉ′n.u. it is always the case that r = r(1), where r denote the result string
of the left session in Ĉ′n.u.(r

(1), r(2)).

28



L Cn.u. R

h1←−
y1 =Com(h1(0n))
−−−−−−−−−−−−→

ZKUA know
α s.t.
y1 =Com(h1(α))

⇒

h̃1←−
ỹ1 =Com(h̃1(α̃))
−−−−−−−−−−−→

ZKUA know
α̃ s.t.
ỹ1 =Com(h̃1(α̃))

⇒

h2, y2 =Com(h2(β))
←−−−−−−−−−−−−−−

⇐
ZKUA know

β s.t.
y2 =Com(h2(β))

h̃2, ỹ2 =Com(h̃2(0n))
←−−−−−−−−−−−−−−−

⇐
ZKUA know

β̃ s.t.
ỹ2 =Com(h̃2(β̃))

r1←R {0, 1}n Comm-Ext(r1)
−−−−−−−−−−−−−−−−−→

Comm-Ext(r̃1)
−−−−−−−−−−−−−−−−−→

r̃2←−−−−−−−−−−−−−− r̃2 ←R {0, 1}n
r2←−−−−−−−−−−−−−−

r = r1 ⊕ r2−−−−−−−−−−−−−−→
r̃−−−−−−−−−−−−−−−→

ZKUA
r = r1 ⊕ r2

or r ∈ Rα◦β,n
⇒

ZKUA
r̃ = r̃1 ⊕ r̃2

or r̃ ∈ Rα̃◦β̃,n
⇒

Figure 7: Execution of Cn.u. in the man-in-the-middle setting
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Input: r(1), r(2)

L Cn.u. R

h1←−
y1 =Com(h1(0n))
−−−−−−−−−−−−→

ZKUA know
α s.t.
y1 =Com(h1(α))

⇒

h̃1←−
ỹ1 =Com(h̃1(α̃))
−−−−−−−−−−−→

ZKUA know
α̃ s.t.
ỹ1 =Com(h̃1(α̃))

⇒

h2, y2 =Com(h2(β))
←−−−−−−−−−−−−−−

⇐
ZKUA know

β s.t.
y2 =Com(h2(β))

h̃2, ỹ2 =Com(h̃2(0n))
←−−−−−−−−−−−−−−−

⇐
ZKUA know

β̃ s.t.
ỹ2 =Com(h̃2(β̃))

r1←R {0, 1}n Comm-Ext(r1)
−−−−−−−−−−−−−−−−−→

Comm-Ext(r̃1)
−−−−−−−−−−−−−−−−−→

� Extract r̃1

r̃2 = r̃1 ⊕ r(2)

←−−−−−−−−−−−−−−
r2←−−−−−−−−−−−−−−

r = r(1)
−−−−−−−−−−−−−−→

r̃−−−−−−−−−−−−−−−→

Simulate
proof 	

Simulated
ZKUA
r = r1 ⊕ r2

or r ∈ Rα◦β,n

⇒
ZKUA
r̃ = r̃1 ⊕ r̃2

or r̃ ∈ Rα̃◦β̃,n
⇒

Figure 8: Algorithm Ĉ ′n.u. - simulation of Cn.u.
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2. With overwhelming probability it is the case that in the output of Ĉ ′′n.u.(r
(2)) either r̃ = r or

r̃ = r(2), where r and r̃ denote the result of the coin-tossing protocol in the left and right
session, respectively.

As in Section 3.5, the existence of an algorithm Ĉ ′′n.u. satisfying these two properties directly
leads to a contradiction. This is because they imply that also in the transcript Ĉ ′n.u.(r

(1), r(2)) it is
the case that with overwhelming probability r̃ ∈ {r, r(2)} (note that this condition can be tested
by a uniform algorithm). Since we know that in the transcript Ĉ ′n.u.(r

(1), r(2)) it holds that r = r(1)

we get that r̃ ∈ {r(1), r(2)} and so the contradiction follows.

Input: r(2)

L Cn.u. R
Let α = desc(Cn.u.)
h1←−
y1 =Com(h1(0n))
−−−−−−−−−−−−→
ZKUA of α s.t.
y1 =Com(h1(α)) ⇒

h̃1←−
ỹ1 =Com(h̃1(α̃))
−−−−−−−−−−−→
ZKUA of α̃ s.t.
ỹ1 =Com(h̃1(α̃)) ⇒

	 Extract α̃

Extract β 	
h2, y2 =Com(h2(β))
←−−−−−−−−−−−−−−

⇐ ZKUA of β s.t.
y2 =Com(h2(β))

Let β̃ = desc(Cn.u.)
h̃2, ỹ2 =Com(h̃2(0n))
←−−−−−−−−−−−−−−−

⇐ ZKUA of β̃ s.t.
ỹ2 =Com(h̃2(β̃))

r1←R {0, 1}n Comm-Ext(r1)
−−−−−−−−−−−−−−−−−→

Comm-Ext(r̃1)
−−−−−−−−−−−−−−−−−→

� Extract r̃1

r̃2 = r̃1 ⊕ r(2)

←−−−−−−−−−−−−−−
r2←−−−−−−−−−−−−−−

Use 2O(n3) steps
r ←R Rα◦β,n−−−−−−−−−−−−−−−→

r̃−−−−−−−−−−−−−−−→

Use 2O(n3) steps
ZKUA
r = r1 ⊕ r2

or r ∈ Rα◦β,n
√ ⇒

ZKUA
r̃ = r̃1 ⊕ r̃2

or r̃ ∈ Rα̃◦β̃,n
⇒

Figure 9: Algorithm Ĉ ′′n.u.
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What remains to be done is to describe the algorithm Ĉ ′′n.u. and prove that it satisfies the
two properties. Algorithm Ĉ ′′n.u. is described in Figure 9 (Page 31); It follows the operation of
Algorithm Ĉ ′n.u. with the following changes:

1. In Steps L,R0.1.x of the left session, Algorithm Ĉ ′′n.u. sets the hashed string α to be the
description of Cn.u.’s code instead of α = 0n, which is what is done by the honest left party
L and by Algorithm Ĉ ′n.u..

2. In Steps L,R0.2.x of the right session, Algorithm Ĉ ′′n.u. follows the “mirror image” of the
previous steps. That is, Algorithm Ĉ ′′n.u. will set the hashed string β̃ to be the description
of Cn.u.’s code instead of β̃ = 0n (as is done by the honest right party R and by Algorithm
Ĉ ′n.u.).

3. In the corresponding steps (Steps L,R0.2.x) of the left session, Algorithm Ĉ ′′n.u. uses the
extractor of the universal argument (this may take up to nO(logn) steps) and extract a string
β of length up to nlogn and a string s such that Com(h̃2(β), s) = y2.

4. In Step L4 of the left session, algorithm Ĉ ′′n.u. chooses r as a random element of the set Rα◦β,n,
using 2O(n3) steps. (Recall that Ĉ ′n.u. used in this step r = r(1)).

5. In Steps L,R5.x of the right session, algorithm Ĉ ′′n.u. follows the honest prover algorithm for
the ZKUA system, and runs in 2O(n3) time to prove the true statement that r ∈ Rα◦β,n.
(Recall that Ĉ ′ used in this step the simulator for the ZKUA system.)

Now that we described Algorithm Ĉ ′′, we need to show that it satisfies both Properties 1
and 2 mentioned above. We start with proving that it satisfies Property 2, since this is the more
interesting part.

Property 2 We need to show is that with overwhelming probability it is the case that in the
transcript Ĉ ′′n.u.(r

(2)), r̃ ∈ {r, r(2)}. Suppose that this is not the case. This means that with non-
negligible probability r̃ 6∈ {r, r̃1 ⊕ r̃2} (since it r̃1 ⊕ r̃2 = r(2)). Firstly, note that since we are using
2O(n3) = 2o(n

5) time, and we are doing using no rewinding in Steps L,R5.x, the soundness of the
ZKUA used in these steps in the right session, ensures us that with overwhelming probability either
r̃ = r̃1 ⊕ r̃2 or r̃ ∈ Rα̃◦β̃,n. This means that with non-negligible probability it holds that r̃ 6= r but
r̃ ∈ Rα̃′◦β̃′,n for some α̃′, β̃′ such that y1 = Com(h1(α̃′)), y2 = Com(h2(β̃′)).

We note that with overwhelming probability β̃′ = β̃ = desc(Cn.u.). Indeed, otherwise (using the
extractor for the universal argument) we would have a 2O(n3)-time algorithm for breaking the hash
function. We also note that the string α̃′ can be computed with at least n− logn probability from the
string desc(Cn.u.) in nO(logn)-time by applying the extractor to the ZKUA of Steps L,R0.1.3.x. (This
procedure will indeed get the same string α′, as otherwise, using also the knowledge extractor for
the universal argument of Step L,R4.x, we would have a 2O(n3)-time algorithm that finds collisions
in the hash function with non-negligible probability.)

Because the string β extracted by Algorithm Ĉ ′′n.u. is also computed in time nO(logn) from
desc(Cn.u.) and because α = β̃ = desc(Cn.u.), we get that the strings α ◦β and α̃′ ◦ β̃′ are equivalent.
Therefore, Rα◦β,n = Rα̃′◦β̃′,n.
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We see that if we halt the algorithm Ĉ ′n.u. after Step L3 we get a nO(logn)-time algorithm with
advice α ◦ β that given an element r ∈ Rα◦β,n manages to output an element r̃ ∈ Rα◦β,n \ {r}. By
this we obtain a contradiction to the evasiveness property of this set family.

We note that since the set Rα◦β is only evasive with respect to machines that get α◦β as advice,
it is crucial that Algorithm Ĉ ′′n.u. used the description of the code of the adversary Cn.u. as α and β̃
in Steps L,R0.1,2.x.

Property 1. We now prove that the random variable (r(2), Ĉ ′′n.u.(r
(2))) (where r(2) ←R {0, 1}n) is

computationally indistinguishable by uniform algorithms from the random variable (r(2), Ĉ ′n.u.(r
(1), r(2)))

(where r(1), r(2) ←R {0, 1}n). Intuitively, this follows from the secrecy of the commitment scheme,
the pseudorandomness of the set Rα◦β,n, and the zero-knowledge property of the ZKUA. The
actual proof, which utilizes the hybrid argument, follows.

We denote by H0 the random variable (r(2), Ĉ ′n.u.(r
(1), r(2))) and by H4 the random variable

(r(2), Ĉ ′′n.u.(r
(2))). We prove our claim by showing random variables H1,H2,H3 such that for ev-

ery 1 ≤ i ≤ 4, the variables Hi and Hi−1 are computationally indistinguishable by probabilistic
polynomial-time uniform algorithms.

We now describe these intermediate random variables, and show that indeed for every 1 ≤ i ≤ 4,
Hi is computationally indistinguishable from Hi−1. To describe the random variable Hi, we will
describe the differences between it and the variable Hi−1, and then show that the two variables
are indistinguishable by a class that is at least as strong as probabilistic polynomial-time uniform
algorithms.

Hybrid H1: Commit to Cn.u.’s code. The difference between H1 and H0 is that in H1, the hon-
est left and right parties commit to the code of Cn.u., instead of committing to the all zeros
strings. That is, in our notation, α = β̃ = desc(Cn.u.). The variables H1 and H0 are compu-
tationally indistinguishable by polynomial-sized circuits by the security of the commitment
scheme.

Hybrid H2: Extract β. The variable H2 is distributed identically to H1. However, in H2, after
running the honest verifier in Steps L,R0.2.x of the left session, we use nO(logn) time to run
the knowledge extractor of the universal argument. We thus β that corresponds to the values
hashed and committed to by the adversary the left session.

Hybrid H3: Choose r ←R Rα◦β,n. The difference between H3 and H2 is that in H3, the Left
party chooses r ←R Rα◦β,n instead of choosing r = r(1). The two hybrids are indistinguishable
by probabilistic nO(logn)-time uniform algorithms by the pseudorandomness property of the
evasive set family. Indeed, note that all the elements of these two random variable can be
sampled using nO(logn)-time and using the description of Cn.u. as an advice string. This
means that a nO(logn)-time uniform distinguisher between H3 and H2 can be converted into
a nO(logn)-time with advice Cn.u. machine that distinguishes a random element of Rα◦β,n
from the uniform distribution on {0, 1}n. This is a contradiction to the pseudorandomness
property of the evasive set family because Rα◦β,n = Rdesc(Cn.u.),n. (This is due to the fact that
the family is nice and β is computed nO(logn)-time computation from desc(Cn.u.), and hence
α ◦ β is equivalent to desc(Cn.u.).)

Hybrid H4: Use real and not simulated proof in Steps L,R4.x. The difference between H4

and H3 is that in H4, the left party follows the honest prover algorithm (that takes 2O(n3)
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time) to prove the true statement that either r = r1⊕ r2 or r ∈ Rα◦β,n. The two variables are
computationally indistinguishable by the zero-knowledge property of the universal argument.

The proof is finished by observing that H4 is in fact the random variable (r(2), Ĉ ′′n.u.(r
(2))).

5 Applications of Non-Malleable Coin-Tossing

In this section we construct a constant-round non-malleable commitment scheme and a constant-
round non-malleable zero-knowledge argument system. This improves over the previously known
schemes of [DDN91] that utilized a logarithmic number of rounds. The protocols of this section are
only shown to be secure against man-in-the-middle adversaries that use the synchronizing schedul-
ing. However, in Section 6 we show a generic way to transform such protocols into protocols that
are secure also against non-synchronizing adversaries, thus finishing the proof of Theorem 1.5. We
remark that our approach to proving Theorem 1.5 favors modularity and simplicity of presentation,
at the expense of the resulting protocols’ efficiency.

Our building blocks are our non-malleable coin-tossing protocol (which is secure in the plain
model, without any setup assumption) and a non-malleable zero-knowledge argument in the shared
random string model. This latter argument is a variant of the argument system of De Santis et
al.[DDO+01].30 As noted in Section 1.5, the proof of Theorem 1.5 will go as follows: First we
prove that the composition (using Construction 1.2) of a (plain model) non-malleable coin-tossing
protocol with a (shared random string model) non-malleable zero-knowledge yields a non-malleable
interactive zero-knowledge argument in the plain model. Then, we show how to use such an
argument to obtain also a (plain model) non-malleable commitment scheme. In the course of the
proof we will define and use a stronger form of non-malleability that we call extractability in the
MIM setting. We believe that this notion (that appears already implicitly in [DDN91] and more
explicitly in [DDO+01]) is interesting in its own right.

5.1 Extractability in the MIM setting

Recall that the idea behind non-malleability is that an adversary in the MIM attack will not be
able to utilize his interaction in one session to gain something in the other session. For example,
consider the case of zero-knowledge proof systems. In such systems the left party plays the part
of the prover and the right party plays the part of the verifier. We assume that in the left session
the honest prover proves a statement x to the adversary, while in the right session the adversary
proves a (possible related) statement x̃ to the honest verifier. We require that, unless x = x̃, if the
adversary convinces the verifier then it could have done so even without interacting with the honest
prover in the left session. In the non-interactive setting, [DDO+01] makes a stronger requirement.
They require that if the adversary can convince the verifier of the statement x̃ then the adversary
can in fact output a witness for x̃. What this actually means is that in a non-malleable zero-
knowledge system it is possible to simulate the left session using the zero-knowledge simulator and
at the same time extract a witness in the right session using the knowledge extractor.

30We could also have used directly the system of [DDO+01]. However, we choose to use a variant of that system that
is secure under possibly weaker assumptions (does not assume the existence of dense cryptosystems). We remark that
in contrast to the system of [DDO+01], our zero-knowledge system is interactive (although still uses only a constant
number of rounds).
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This paradigm of “simulate from the left, extract from the right” also makes sense in other
contexts. Consider commitment schemes, where the left party is the sender and the right party is
the receiver. We would want to be able to simulate the left session, without knowing the sender’s
input,while at the same time extracting the committed value of the right session. In fact, although
Dolev et al. [DDN91] do not make this extraction requirement part of their definition for non-
malleable commitment scheme, they note that their construction for commitment-scheme has this
property. As they note, this fact is important when they use their commitment scheme to construct
a non-malleable zero-knowledge proof system.

We now provide a formal definition for extractability in the MIM setting. Intuitively, a protocol
is extractable in the MIM setting if it can be “simulated from the left and extracted from the
right”. We assume that for any protocol a function (or relation) val is defined. This function
takes a transcript and returns the “intended value” consistent with this transcript. For example, in
the case of a (perfectly binding) commitment scheme, val(σ) is the unique value that is consistent
with the transcript σ. In the case of a zero-knowledge system, val will be a relation rather than a
function such that y ∈ val(σ) if y is a witness for the statement x proved in the transcript σ. In
both cases we will let val(σ) = ⊥ if σ is an invalid or aborting transcript. We assume that given a
transcript σ and a value y it is easy to determine whether y ∈ val(σ).31

We will assume that our protocols have a determining message. This is one message in the
protocol that determines the value of the intended value. For example, in the case of a zero-
knowledge system the determining message will be the statement x. In the case of a commitment
scheme the determining message will be a message that determines the committed value uniquely.
We now define a function (or relation) i-value that takes as input a transcript of two concurrent
sessions τ . Let τL and τR denote the transcripts of the left and right sessions in τ . We define
i-value(τ) = val(τR) if the determining message in τR is not an exact copy of the determining
message in τL. Otherwise, (if the determining messages are equal) we let i-value(τ) = ⊥.

To simplify notations, we will assume that in our protocols only the left party gets an input
(x, y). In commitment schemes this is always the case. In zero-knowledge systems we will assume
that the left party gets (x, y) where y is a witness for x, and sends x as its first message. This
allows to incorporate into the definition the ability of the adversary to choose the statement he will
prove in the right session, based on information he gets in the left session. We assume that x is
the public part of the input and y is the secret part of the input (e.g., in the case of commitment
schemes x is empty). We will also assume that the adversary does not get an input, as this can be
taken care of by non-uniformity.

We can now give a formal definition for extractability in the MIM setting:

Definition 5.1. Let Π = (L,R) be a two party protocol with an intended value function i-value
defined as above. We say that Π is extractable in the MIM setting if for any polynomial-sized MIM
adversary C there exists a (standalone) simulator with 2-outputs Ĉ such that for any inputs (x, y)
to the honest left party:

1. If (τ ′, y′)← Ĉ(x) then with overwhelming probability either i-value(τ ′) = ⊥ or y′ ∈ i-value(τ ′).

2. Let τ denote C’s view when interacting with L(x, y) and R, and let τ ′ denote the first output
of Ĉ(x). Then τ and τ ′ are computationally indistinguishable.

31This obviously holds in the case of zero-knowledge systems. In the case of commitment schemes we can ensure
this holds by appending val(σ) with some auxiliary information
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If i-value is a function (and not a relation) then we can make the following stronger requirement
in addition to Items 1 and 2: We say that an extractable scheme Π is strongly extractable (in the
MIM setting) if the distribution (τ, i-value(τ)) conditioned on i-value(τ) 6= ⊥ is computationally
indistinguishable from the distribution (τ ′, y′) conditioned on i-value(τ ′) 6= ⊥, where τ is C’s view
when interacting with L(x, y) and R and (τ ′, y′) ← Ĉ(x). (Note that the fact that a protocol is
extractable does not imply immediately that it is strongly extractable: it may be the case that τ is
indistinguishable from τ ′ but i-value(τ) is in fact distinguishable from i-value(τ ′) since i-value is not
an efficiently computable function.) Note that in both variants, we allow the simulator to output
an arbitrary value as its second output, if its first output τ ′ satisfies that i-value(τ ′) = ⊥.

Since we only deal with the MIM setting from now on we will use the names extractable and
strongly extractable and drop the qualifier “in the MIM setting”. We say that Π is extractable
(resp. strongly extractable) with respect to non-synchronizing adversaries if the extractibility con-
dition (resp. strong extractibility condition) holds only against MIM adversaries C that use the
synchronizing scheduling.

Relationship with non-malleability definition. As mentioned above, the condition of ex-
tractiblity is stronger than the notion of non-malleability as defined originally in [DDN91]. Dolev
et al.defined a non-malleable protocol as a protocol where an MIM adversary cannot succeed in
causing a non-trivial32 relation between the left party’s input and the intended value of the right ses-
sion, more than can a simulator that only receives the public information. An extractable protocol
is non-malleable because its second output will hit the relation with probability at most negligibly
smaller than the adversary’s. We note that latter works (such as [DDO+01] in the common refer-
ence string model) chose to use the condition of extractiblity as the definition of non-malleability,
since this stronger condition is often needed in applications.

5.2 Constructing Extractable Protocols

Our approach to constructing an extractable zero-knowledge scheme and a strongly extractable
commitment scheme is the following:

1. Reduce the problem to constructing only an extractable zero-knowledge scheme.

2. Show that our non-malleable coin-tossing protocol allows us to reduce the problem to the
problem of constructing such a scheme in the modified shared random string model.

3. Give a simple construction of an extractable zero-knowledge scheme in the modified shared
random string model

4. Show (in Section 6) that for both commitment and zero-knowledge schemes, one can transform
an extractable protocol secure against synchronizing adversaries into a protocol secure also
against non-synchronizing adversaries.

The following lemma handles Step 1 of this outline. That is, it says that in order to obtain both
extractable commitments and zero-knowledge schemes, it is enough to construct the latter. We
state and prove the lemma only for the case of syncrhonizing adversaries since this is the version
we need in this section.

32In this context, we’ll say that a relation R is non-trivial if (x, x) 6∈ R for every x. This condition is required to
rule out the trivial adversary that uses the relaying strategy in order to hit the relation.
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Lemma 5.2. If there exists a standard (non-interactive) perfectly binding commitment scheme
Com and a zero-knowledge argument that is extractable w.r.t. synchronizing adversaries then there
exists a commitment scheme that is strongly extractable w.r.t. synchronizing adversaries.

Proof Sketch: To commit to a value y, run the following protocol:

Step L1 Left sends Com(y).

Step L,R2.x Left proves to right knowledge of the committed value using an extractable zero-
knowledge argument.

For a synchronizing adversary C, denote by α̃ = Com(ỹ) the random variable representing C’s
first message in the right session. Suppose that use the simulator of the zero-knowledge scheme to
simulate the proof of Steps L,R2.x (but still commit to y in Step L1). Since C is synchronizing,
the distribution of α̃ is unchanged. Yet, now we are able to extract ỹ.

Now, suppose that we use Com(0n) instead of Com(y) in the first step. No noticeable change
should occur in the joint distribution of the transcript and ỹ, since otherwise we would contradict the
semantic security of the commitment scheme Com. Therefore our simulator will use a commitment
to 0n in the first step, and the simulator for the zero-knowledge argument in the second step.

Note that the commitment scheme constructed has the property that the first message sent is
from the sender to the receiver and that this message completely determines the committed value.
We say that such a scheme has a determining first message.

5.3 Extractable Schemes in the Modified Shared Random String Model

We now define extractable and strongly extractable protocols in the modified shared random string
model. The only difference is that we assume that (r(1), aux(1)) and (r(2), aux(2)) are generated
independently by a generator algorithm (where r is random or pseudorandom), and then C chooses
whether r(1) or r(2) will be used in the right session. The simulator will get aux(1), aux(2) as an
additional input. We note that the resulting definition for extractable zero-knowledge schemes is
almost identical to the definition of (single theorem) non-malleable NIZK [DDO+01]. The following
theorem says that a non-malleable coin-tossing algorithm can indeed be used to “compile” a protocol
secure in the modified shared random string model to a protocol secure in the plain model. Again,
we state and prove the theorem only for the case of synchronizing adversaries.

Theorem 5.3. Let Π be a non-malleable coin-tossing protocol and let ΠRef be a protocol with a
reference string that is extractable (w.r.t. synchronizing adversaries) in the modified shared random
string model. Let Π ◦ ΠRef be the composition of Π and ΠRef using Construction 1.2, then ΠRef is
extractable (w.r.t. synchronizing adversaries) in the plain model.

Proof. Let C be an adversary for the combined protocol Π ◦ ΠRef . Suppose that C is synchroniz-
ing. Then we can separate C into C1, C2 where C1 is the adversary’s strategy for the first phase
(coin-tossing) and C2 is the adversary’s strategy for the second phase (running Π). We will pick
(r(1), aux(1)) and (r(2), aux(2)) using the generator and then simulate C1 using the simulator of the
coin-tossing protocol ,where we give it r(1), r(2) as input. Let s denote the simulated output. Now,
we can look at C2 with the state s hardwired into it as an adversary for the extractable protocol
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Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”), r ∈
{0, 1}l(n): the reference string

w
↓

x, r
↓

P V

Prover’s auxiliary input: w (a witness that x ∈ L)

Steps P,V1.x (WI Proof): Prover proves to verifier using its in-
put w via a witness-indistinguishable (WI) proof/argument of
knowledge that either x ∈ L or it knows a signature on x w.r.t.
r where r is considered to be the public-key of a fixed one-time
length-n message-size signature scheme (G,S, V ). Verifier ac-
cepts if proof is completed successfully.

w
↓

x, r
↓

WI-proof
x ∈ L or
know σ s.t.
Vr(x, σ) = 1

↓
0/1

Protocol 5.4. An extractable zero-knowledge argument in the modified shared random string
model

Π in the modified shared random string model and we can simulate it using the simulator Π and
obtain (τ ′, y′) such that y′ ∈ i-value(τ ′). Yet τ ′ must be computationally indistinguishable from the
output of C in an execution of Π ◦ΠRef , and so we’re done.

5.4 An Extractable Zero-Knowledge Argument in the Modified Shared Random
String Model

We now show a simple protocol for an extractable zero-knowledge argument in the modified shared
random string.

Outline of the zero-knowledge argument. Our zero-knowledge argument is specified in Pro-
tocol 5.4. It has the following form: to prove that x ∈ L when given a reference string r, the prover
treats r as a verification key of some signature scheme, and proves (using a standard constant-round
interactive zero-knowledge proof of knowledge)33 that either x ∈ L or that it knows a signature on
x w.r.t. this verification key.

We see that our protocol requires a signature scheme that has a uniformly distributed public
key. Fortunately, we only need a one-time length restricted signature scheme and so we can use
the simple and well-known construction due to Lamport [Lam79], instantiating it with a one-way
permutation.34

The theorem that we need to prove is the following:

Theorem 5.5. Let (G,S, V ) be a one-time length-n message signature scheme whose public key
is a distributed uniformly in {0, 1}l(n). Then, the instantiation of Protocol 5.4 with (G,S, V ) is an
extractable zero-knowledge argument in the modified shared random string model.

Proof. Let C be an MIM adversary for Protocol 5.4. We construct a simulator Ĉ for C in the
following way:

33Actually, it is enough to use a witness indistinguishable argument of knowledge.
34That is, the public key is a list yσi where i ∈ [n] and σ ∈ {0, 1}, and to sign a message m = m1, . . . ,mn ∈ {0, 1}n,

one sends xmii = f−1(ymii ) for all i ∈ [n], where f(·) is the one-way permutation.
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1. Let r(1) = G(aux(1)) and r(2) = G(aux(2)) where G is the key generation algorithm of the
signature scheme (G,S, V ) and aux(1), aux(2) are two independently chosen random coin-
tosses for G.

2. The simulator invokes C(r(1), r(2)) and obtains a number b ∈ {1, 2} such that if b = 1 then
r(1) will be used as the reference string in the right session, and if b = 2 then r(2) will be used
as this string.

3. The simulator computes a signature σ on x with respect to r(1) using aux(1). Using this
signature σ, it construct a left-side strategy Lσ for the left side that uses the honest prover
algorithm of the WI system to prove the true statement that either x ∈ L or it knows a
signature σ on x with respect to r(1).

4. The simulator simulates an interaction between Lσ, the adversary C, and the right side R.
Let τ = (τL, τR) be the resulting view of the adversary, where τL (resp. τR) denotes the view
of the adversary in the left (resp. right) session. We denote the statement proven by the
adversary in the right session by x̃.

5. If in the view τR the verifier accepted the proof given by the adversary C, then the simulator
will treat Lσ and C as a combined prover algorithm for the WI system and use the extractor
of the WI system to either a witness ỹ that x̃ ∈ L or a signature σ̃ on x̃ w.r.t. r(2).35

6. The simulator outputs the view τ . In addition, if it obtained in the previous step a witness
ỹ that x̃ ∈ L then it outputs this witness. Otherwise, its second output is ⊥

By the WI condition, the simulator’s first output is indeed indistinguishable from the view of
C in a real interaction. Also, by the proof of knowledge condition, if the proof in the right session
passes verification, then the simulator will indeed obtain either a witness ỹ for x̃ or a signature σ̃ on
x̃ with respect to r(2). Thus, all that is left is to show that if x̃ 6= x, then the second case (i.e., that
the simulator obtains a signature) happens with negligible probability. To show this, one needs to
observe that in Steps 4 and 5, the only secret information that the simulator uses is σ, which is a
signature on x w.r.t. r(1). In particular, the simulator does not use either aux(1) or aux(2) in these
steps. Therefore, if it managed to obtain a signature for any message x̃ 6= x w.r.t. r(1) in these
steps that would contradict the existential unforgeability of the signature scheme (G,S, V ) after
seeing a single signature. If it managed to obtain a signature on any message (even on x) w.r.t.
r(2) that would mean that it managed to forge even without seeing a single signature.

6 Handling Non-Synchronizing Adversaries

Throughout this paper, we have always concentrated on the case of adversaries that use the syn-
chronizing scheduling. In this section, we justify this, by showing a way to transform protocols that
are secure against synchronizing adversaries, into protocols that are secure against adversaries that
may also use a non-synchronizing scheduling. (See Section 1.2.2 and Figure 3 for the definition of
the synchronizing and non-synchronizing scheduling.)

35One needs to introduce a time-out mechanism in order to make sure this procedure runs in expected polynomial-
time, in a similar way to [Lin01]. In fact, one can use directly a witness-extended emulator [BL02, Lin01] instead of
a knowledge extractor. However, it seems that describing the simulator that uses the knowledge extractor is slightly
simpler.
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L C R

−−−−−−−−−−−−−−→
−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−
−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−

←−−−−−−−−−−−−−−
−−−−−−−−−−−−−−→

	 ←−−−−−−−−−−−−−−

Figure 10: A non-syncrhonizing adversary: It is “safe” to rewind at the point marked by 	.

Outline of our approach. The underlying observation behind the transformation of this section
is that in some sense the synchronizing scheduling is the hardest schedule to deal with. To illustrate
this, consider a malleable zero-knowledge proof of knowledge (P, V ). We know that (P, V ) is
malleable, but it is still instructive to try to prove that it is non-malleable and see exactly in what
place the proof fails. Suppose that we are trying to prove that (P, V ) is extractable (in the sense
of the previous section). The natural approach for a simulator would be to try to invoke the stand-
alone simulator of (P, V ) to simulate the left session, and the stand-alone extractor of (P, V ) to
extract a witness from the right session. The problem with this approach is that when simulating
the left-session, one needs to combine both the adversary C and the right party R and to treat them
as one single verifier algorithm. The problem is that when simulating a proof for this combined
verifier, the simulator needs to rewind it in the process. This means that the simulator rewinds not
only the adversary, but also the right party. As a consequence, when will fail when we try to run
the knowledge extractor to extract the witness in a right session. Technically, the reason is that
to run the extractor one needs to treat the simulator and the adversary as one combined prover
algorithm for the proof system of the right session. However, because the simulator has the power
to rewind the right party, it is not a “legitimate” interactive prover, and therefore the knowledge
extractor cannot be applied to it.

We saw that we got intro trouble when we tried to simulate the left session and rewind the
adversary, but needed to rewind the right party along with it. However, this is not necessarily the
case if the adversary uses a non-synchronizing strategy. As can be seen in Figure 6, in this case
there will be at least one point in the left session in which the adversary will return a message
immediately to the left party, without any interaction with the right party (in Figure 6, this point
is marked with a 	). If it happens to be the point at which the simulator needs to rewind, then
the simulator can rewind “safely” without having to rewind also the right party at the same time.

The question that remains is how to make sure that the point at which the adversary deviates
from the synchronizing scheduling will be the same point in which the simulator needs to rewind.
To do so, we follow the Richardson-Kilian [RK99] approach of multiple rewinding opportunities
(See also [GL00, PRS02]).36 That is, we will make essentially every point in the protocol a possible
rewinding point. Therefore, whenever the adversary deviates from the synchronizing scheduling,
we’ll be able to use this to simulate it, and in fact have a simpler simulation, compared to the

36We note that this approach was already used implicitly in a context similar to ours by the earlier paper [DDN91].
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simulators for synchronizing adversaries of the previous sections.
We now turn to the formal statement and proof of the theorem. We will start with the case

of commitment schemes, and then describe how the proof can be modified for the case of zero-
knowledge argument.

Theorem 6.1. Suppose that there exists a constant-round strongly extractable commitment scheme
with respect to synchronizing adversaries and that there exist perfectly hiding commitment schemes.
Then, there exists a constant-round strongly extractable commitment scheme (with respect to ad-
versaries that use arbitrary scheduling).

6.1 Proof of Theorem 6.1

Let Π1 = (L,R) be a commitment scheme satisfying the conditions of the theorem. (That is, it is
strongly extractable with respect to synchronizing adversaries.) We will prove Theorem 6.1 in the
following way:

1. First, we will show a relatively simple construction of a commitment scheme Π2 that is
strongly extractable with respect to non-synchronizing adversaries. That is, for every MIM
adversary C, there exist a 2-output simulator for C as long as C utilizes a non-synchronizing
scheduling (but may fail if the adversary uses a synhcronizing scheduling).37 The existence
of such a scheme Π2 lies behind our intuition that the synchronizing scheduling is the harder
case to deal with. The construction of Π2 will follow the Richardson-Kilian [RK99] paradigm
of multiple rewinding points.

2. Secondly, we will construct a protocol Π which is a combination of Π1 and Π2. Roughly
speaking, when committing to a string y, the first message of Π will be a two commitments
to two random strings y1 and y2 such that y1⊕y2 = y. Then, we’ll run Π1 (committing to y1)
and Π2 (committing to y2) in parallel. That is, each message of Π will consist of one message
from Π1 and one message of Π2.

3. We will then show that Π is a strongly extractable commitment scheme with respect to
adversaries that utilize any scheduling strategy. Loosely speaking, for every adversary C, if
C uses a synchronizing scheduling then we’ll simulate it using the simulator of Π1, and if C
uses a non-synchronizing scheduling, then we’ll simulate it using the simulator of Π2.

Residual strategies. Before continuing with the proof, we recall the notion of residual strate-
gies that will be useful for us later on. Recall that an interactive algorithm A is an algorithm
that computes a next-message function. That is, given a random-tape r, and a list of messages
m1, . . . ,mi, Algorithm A computes the next message m that it would send in an execution in which
it has r as the random tape and received from the other party the messages m1, . . . ,mi. We use
the notation m = A(m1, . . . ,mi; r). If A is some interactive strategy and v = 〈r,m1, . . . ,mj〉 is a
partial view of A, then the residual strategy of A with v fixed, is the next-message function that
is obtained by “hardwiring” into A the view v. That is, this is the function that given a list of
messages mj+1, . . . ,mi (where i ≥ j + 1) outputs A(m1, . . . ,mj ,mj+1, . . . ,mi; r). In the following
sections, we will often consider an execution of an interactive algorithm A up to some point in a
protocol, and then consider the residual algorithm A, which has the view up until that point fixed.

37Strictly speaking, the simulator will be slightly weaker than this, since we will allow it to fail also if the adversary
utilizes an “almost synchronizing” scheduling, where this term will be defined below.
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6.1.1 Construction of the scheme Π2.

We now describe the construction of a commitment scheme Π2 that will be secure with respect to
non-synchronizing adversaries.

RK-iterations. To describe the scheme Π2, we introduce a notion from [RK99], which we call
an RK-iteration. An RK-iteration is a three round subprotocol α, β, γ, where the first and last
messages are from the right party to the left party. Loosely speaking, we will define a condition
under the left party is said to win an RK-iteration. The property that we require from an RK-
iteration is that the probability that the left party wins in a normal interaction is negligible, but if
the left party has the power to rewind the right party at the point β (i.e., get an additional reply γ′

to some query β′ 6= β) then it will be able to win with probability 1. To make this more concrete,
we use the following implementation for an RK-iteration:

Let (G,S, V ) denote a one-time length-restricted signature scheme. (Note that under the con-
ditions of the theorem there exist one-way functions, and therefore there also exist such signature
schemes [Lam79].) We use the following RK-iteration protocol:

Step R1 (Send VK): Right party runs G(1n) and obtains a verifi-
cation and signing key-pair 〈α = V K, SK〉 = 〈G1(1n), G2(1n)〉.
It sends the verification key, which we denote by α, to the left
party.

α = G1(1n)
←−−−−−−−−−−−

Step L2 (Send message): Left party chooses a message β ←R

{0, 1}n and sends it to the right party. β ←R {0, 1}n−−−−−−−−−−−−→

Step R3 (Send signature): Right party computes a signature γ
on the message β using the signing key, and sends it to the left
party. If the right party does not send a valid signature at this
step then we consider it as aborting the protocol.

γ = SSK(β)
←−−−−−−−−−−−−

We say that the left party wins the iteration if it knows (i.e., can output on an auxiliary tape)
a valid signature with respect to the verification key α on some message β′ 6= β. Clearly, the
probability that an efficient left party wins an RK-iteration is negligible.

Description of the scheme Π2. Let c denote the number of left party messages in the scheme
Π1.38 The scheme Π2 consists of the following: to commit to a value y, the left party sends a
standard non-interactive commitment to y, and then the left and right parties perform c RK-
iterations. After this, the left party proves using a perfectly witness-indistinguishable proof of
knowledge that either it knows the value it committed to, or that it won one of the RK-iterations.
For completeness, we provide a more formal description in Protocol 6.2.

Notation. Consider the left-party messages of the scheme Π2 (Protocol 6.2). Note that c of these
messages consist of a second message β of some RK-iteration. We call these messages the core of

38Since we can always add “dummy” messages to Π1, we assume without loss of generality that the left party sends
the first and last message in Π1 and so the number of rounds in Π1 is 2c− 1.

42



Public input: 1n (the plaintext string that will be committed to is of
length n)

w
↓

x, r
↓

L R

Left’s (Sender’s) auxiliary input: y ∈ {0, 1}n (plaintext to be
comitted to)

Step L1 (Standard commitment): Left sends to right a commit-
ment to y using a standard (possibly malleable) non-interactive
commitment Com

Com(y)
−−−−−−−−→

Steps L,R2 · · · 2c+ 2 (RK-iterations): Left and right perform c
RK-iterations. Note that we can combine the first step of each
iteration with the last step of the previous one.

Repeat c times:
α←−−−
β
−−−→
γ
←−−−

Steps L,R2c+ 3 · · · 2c+ 5 (WI Proof): Left proves to right using
a perfect-WI argument of knowledge that it either knows the
value y committed to in Step L1 or that it won one of the
RK-iterations (i.e., for some RK-iteration 〈α, β, γ〉 it knows a
signature δ w.r.t. α on some message β′ 6= β). Right accepts
if proof is completed successfully.

Perfect
WIPOK
know y or
∃ RK-iteration
〈α, β, γ〉
s.t. know δ, β′

s.t.
β′ 6= β and
Vα(β′, δ) = 1

Protocol 6.2. Π2: A commitment scheme strongly extractable with respect to non-synchronizing
adversaries.
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the scheme Π2. We say that an MIM adversary C for Π2 uses an almost synchronizing scheduling if
it’s scheduling is synchronized with respect to all messages in the core. The scheduling of the other
messages may be unsynchronized. More formally, let us number all the messages of the protocol
from 1 to 2c + 5 (and so the left-party messages get odd numbers and the right-party messages
get even numbers). We see that the set of core messages consists of all odd numbers between 3
and 2c + 1. We say that a scheduling for Π2 is almost synchronizing if for every i in the core,
the ith (left-party) message is sent in the right session before the i + 1th (right-party) message
is sent in the left session. We note that we only refer to the scheduling of messages sent by the
adversary since we can always assume without loss of generality that the honest parties send their
messages immediately after they receive the previous message from the adversary. If a schedule is
not almost-synchronizing then there exists a smallest i in the core for which the i+1th (right-party)
message is sent in the left session before the ith (left-party) message is sent in the right session. We
call this i the first unsynchronized core message and we denote the RK-iteration that this message
is part of as the first unsynchronized RK-iteration.

We have the following proposition:

Proposition 6.3. The Scheme Π2 is strongly extractable with respect to any adversary that uses
a scheduling that is not almost-synchronizing.

Proof. Let C be an adversary for Π2 that utilizes a scheduling that is not almost-synchronizing. To
show that Π2 is strongly extractable we need to exhibit a simulator S for C. For every y ∈ {0, 1}n,
the simulator S needs to simulate both the view of the adversary and the distribution of the value
committed to by the adversary in the right session, when the adversary interacts with L(y) and
R (where L(y) denotes the strategy of the left party when committing to input y). However, the
simulator does not get y as an input, but only 1n. Initially, we will construct a simulator S′ that
gets as input a string e = Com(y) as an input. Later, we will show how to get rid of this assumption,
and obtain a simulator S satisfying the desired properties.

This simulator S′ will work in the following way. The simulator will run internally an execution
between the adversary C and the parties L and R. Note that the simulator can send e = Com(y) as
its first message, and does not need to know y until the WI proof stage of the execution. Therefore,
it can simulate perfectly the left party’s strategy until that stage.

Since the adversary is not using an almost synchronizing strategy, at some point in the execution
there will be a first unsyncrhonized core message i, as defined above. This is some point in which the
left party sent its message of step i (which is the second step β of some RK-iteration) and obtained
from the adversary a response γ immediately, without any interaction between the adversary and
the right party taking place between the left party’s message and the adversary’s response. At this
point, the simulator will run the following experiment: it will rewind the adversary to the point
just before the ith message was sent by the left party, and query the adversary with a new random
message β′. The simulator will repeat this until the adversary again responds immediately to some
β′ with some answer γ′. (The overall number of steps will be expected polynomial number of times,
since with probability p the simulator runs in 1

ppoly(n) steps.)
The simulator will then record β′ and γ′, and continue to run the execution. However, it will

now use a different residual strategy for the left party. Instead of using L, which is the honest left
strategy, the simulator will use the strategy L′ which when it gets to the WI proof stage, does not
use the knowledge of the committed string, but rather uses its knowledge of β′ and γ′ to prove
that it “won” some RK iteration. The simulator will continue the execution, and the view τ of the
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adversary in this execution will be the simulator’s first output. Note that this view τ is distributed
identically to the view of an adversary in a real execution because of the perfect WI condition.

Recall that the simulator needs also to output the message committed in the right session of
τ , the simulator will rewind the parties L′, R and the adversary C to the point in τ just before
the adversary makes its proof of knowledge to the right party. It will then combine the adversary
with the residual left strategy L′ to obtain a prover algorithm for this system. The simulator then
uses this prover as input to the knowledge extractor of the system and obtains either the message
committed to by the adversary or a signature w.r.t. a verification key of some RK-iteration in
the right session, which is on a message different from the message β of that iteration. However,
because no rewinding of the right party at any of the RK iterations is done, the probability of the
latter event is negligible (or otherwise we would have a forging algorithm for the signature scheme)
and therefore with very high probability the simulator obtains the committed string that it needs
as its second output.

Note that the distribution on the pair of the simulator’s outputs is statistically indistinguishable
from the distribution of the adversary’s view and adversary’s committed value in a real execution.
Therefore, this simulator S′ satisfies the strong extractability condition. To obtain a simulator S
that does not get a e = Com(y) as an additional input, we simply have S(1n) = S′(Com(0n)). By the
indistinguishability of the commitment scheme Com, the pair output by S will be computationally
indistinguishable from the pair output by S′.

Remark 6.4. Note that the proof of Proposition 6.3 actually shows a somewhat stronger condition
than the statement. Not only does the simulator computes a view and witness pair (τ, y), but it
also computes the left strategy L′ that when executed with the adversary yields the view τ . We
will later use this property of the simulator.

6.1.2 Construction and analysis of the scheme Π.

Now that we have a scheme Π1 that is secure against adversaries that utilize the synchronizing
scheduling, and a scheme Π2 that is secure against adversaries that utilize a non-synchronizing
scheduling, we are ready to construct our scheme Π which will be secure against adversaries that
use arbitrary scheduling.

Properties of the Scheme Π1. We note that we may assume that the scheme Π1 has a deter-
mining first message,39 as one can convert a scheme without this property into a scheme with this
property by adding an initial message in which the left party sends a standard commitment to the
right party. We also note that, as an extractable commitment scheme, the scheme Π1 satisfies a
standalone extraction property (or equivalently, it is a commit-with-extract scheme). That is, if we
consider a standalone (not man-in-the-middle) execution of the scheme Π1, where the left party is
possibly cheating, then we can both simulate such an execution and obtain the string committed to
by the left party. This is because one can regard the cheating left party as a degenerate man-in-the-
middle adversary that does not use the messages it sees in the left session in its interaction in the
right session. Such a degenerate adversary can without loss of generality use any scheduling (and
in particular the synchronizing scheduling) and therefore we can use the simulator for Π1 to obtain
a simulated transcript of the right session along with the value committed to in this transcript.

39Recall that this means that first message in the protocol determines the possible value for the commitment.
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Figure 11: Converting adversary C to an adversary C1 for the protocol Π1.

The scheme Π. As outlined above, the combined scheme Π will be as follows:

1. The left and right parties run both protocols Π1 and Π2 in parallel to commit to y1 and y2

respectively. Note that Π2 has more rounds than Π1. We align the rounds of Π1 to the core
rounds of Π2. That is, along with each of the c messages of the form β in rounds 3 · · · 2c+ 1
of Π2, the left party sends a message that belongs to Π1.

We claim that Π is a strongly extractable commitment scheme. Indeed, let C be an adversary
for the scheme Π, we now describe a simulator S for C:

Sampling The simulator executes internally an execution of the protocol Π with C as a man-
in-the-middle, where the left party commits to the value 0n. The simulator then checks
whether the scheduling of the adversary was almost synchronizing or not. That is, whether
all messages in the core of Π2 (and thus all messages of Π1) are scheduled in a synchronized
way.

The almost-synchronized case Suppose that in the sampled execution the adversary C used
an almost synchronizing scheduling. In this case the simulator will use the simulator for Π1.
To do so, the simulator converts the adversary C into an adversary C1 for the protocol Π1.
See Figure 11 for a schematic description of the adversary C1. The adversary C1 chooses a
string y2 ←R {0, 1}n, and runs an internal copy of C and an internal copy of the left strategy
(committing to y2) and right strategy for the protocol Π2. When the adversary C1 plays
man-in-the-middle in the execution of Π1 it forwards the messages it receives to its internal
copy of C. Recall that since C is an adversary for Π, it also expects messages that belong to
Π2. To obtain these messages, the adversary C1 uses its internal copy of the left and right
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strategy for Π2. The adversary C1 will be a synchronizing adversary for the protocol Π1. This
means that if its internal copy of C tries to schedule a message of Π1 (or equivalently, a core
message of Π) in a non-synchronized way then adversary C1 will abort and output a special
fail symbol. Otherwise, it will continue until the end of the protocol Π1. Note that after the
protocol Π1 is finished, C1’s internal copy of adversary C will still not finish the last part of
protocol Π (which consists of the proof of knowledge phase of Protocol Π2). Adversary C1

will simulate this part internally and use the knowledge extractor to obtain the string ỹ2 that
C committed to in the right session.40 The output of adversary C1 is the view of its internal
copy of the adversary C, along with the string ỹ2 committed by this internal adversary.

Note that if y1 = y ⊕ y2 then (conditioned on being different from fail) the output of the
adversary C1 is identical to the view of the adversary C in an execution of Π. The simulator
S now runs simulates C1 using the simulator for Π1 to obtain a pair (τ, ỹ2, ỹ1) where τ, ỹ2 is
computationally indistinguishable from C1’s output41 and ỹ1 is the value committed by the
adversary in the right session of the execution corresponding to τ . (If the simulator outputs a
pair where τ = fail then we repeat the experiment until we get a non-fail output.) Therefore,
the pair (τ, ỹ1oplusỹ2) is computationally indistinguishable from the view and committed
value of C in a real execution of Protocol Π.

The non-synchronizing case Suppose that in the sampled execution the adversary C did not
use an almost-synchronized scheduling. In this case, we will use the simulator of Π2 in an
analogous way to the way we used the simulator of Π1 in the previous step. That is, we will
construct an adversary C2 for the protocol Π2 that has an internal copy of C inside it. The
adversary C2 will forward to C all the messages that it receives from the parties L2 and R2

in the protocol Π1. In addition, it will execute internal copies of the honest left and right
parties L1 and R1 of the protocol Π1 (where it will provide L1 with y1 that is chosen at
random in {0, 1}n). It will use these internal copies to supply the internal adversary C with
the messages that it expects that come from the protocol Π1. At the end of the protocol, the
adversary C2 outputs the view of its internal copy of C. As in a previous case, the output of
C2 after interacting with L2(y2 ⊕ y) and R2 is identically distributed to the view of C after
interacting with L(y) and R. Therefore, if we simulate C2, we obtain a pair of a transcript
τ and the value ỹ2 committed to in the right session of Π2 that indistinguishable from a
transcript/value pair in a real execution of Π. The only thing that is missing is to obtain
the value ỹ1 corresponding to this execution. However, this can be done using the fact that
the simulator for protocol Π2 constructed in the proof of Proposition 6.3 actually supplied
us with a residual strategy for the left party L2 that yields the transcript τ . Therefore, we
can combine this left party L2 with the adversary C to obtain a standalone adversary for
the commitment scheme Π1. Then, we can use the standalone extraction property of Π1 to
obtain the desired value ỹ1.

We see that both in the synchronized and unsynchronized case, the simulator S outputs a
transcript/value pair that is indistinguishable from the transcript/value pair of a real execution
of the adversary C. Intuitively, if we let p be the probability that C uses an almost synchronized

40Actually, the proof of knowledge may also yield a witness that C won one of the RK-iterations in the right
session. However, because no rewinding of the right party is performed during the simulation, this can only happen
with negligible probability.

41Formally, the simulator outputs a simulation of C1’s view, but C1’s output can be computed from its view.
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scheduling, then the expected running time of the simulator will be p1
ppoly(n)+(1−p) 1

(1−p)poly(n)
which is equal to some polynomial q(n) (Because, the simulator S will need to invoke the simulators
for Π1 and Π2 a number of times that depends on 1

p until it gets another sample with the same
property). However, because the probabilities in the simulation may have a negligible difference
from the sampled probabilities, this is actually not the case, and we need to use the standard trick
of [GK96] (see also [Lin01]) and introduce a timeout mechanism. That is, in the sampling stage,
the simulator will actually sample many times an execution until it has an estimate p̃ for p that is
within a factor 2 of p with probability 1− 2−n

2
(this will mean that with probability p we sample

poly(n)
p number of times). The simulator will then use T = 4

p̃q(n) as a timeout value. That is, if
the simulation takes more than T steps (which will happen with probability less than 1

2) then the
simulator, will restart from the beginning, where it will use at most n restarts. This will ensure
expected polynomial-time simulation, and only introduce a negligible statistical bias.

6.2 The case of Zero-Knowledge

The analog for zero knowledge of Theorem 6.1 is the following:

Theorem 6.5. Suppose that there exists a constant-round zero-knowledge proof for NP that is
extractable with respect to synchronizing adversaries. Then, there exists a constant-round zero-
knowledge proof for NP that is extractable with respect to adversaries that use arbitrary scheduling.

The proof of Theorem 6.5 follows the proof of Theorem 6.1, and in fact is somewhat easier
because we don’t need to obtain a strongly extractable scheme in the case of zero-knowledge. As
in the case of commitment schemes, we assume that there exists a c round zero-knowledge scheme
Π1 that is extractable w.r.t. synchronizing adversaries and we construct a c + O(1)-round zero
knowledge proof system Π2 that is extractable with respect to non-synchronizing adversaries. The
scheme Π2 will just be a variant of the [RK99] proof system, where when proving that some x is in
some language M , the left and right party perform c RK-iterations and then the left party proves
to the right party in WI that either x ∈M or that it won one of the RK-iterations. We’ll combine
the two schemes using a scheme Π. In the scheme Π the first message from the left party to the
right party will be a string y = Com(b) for some b ∈ {1, 2}. The left and right party will then run
the schemes Π1 and Π2 in parallel, where the left will prove to the right in the scheme Πb that
either x ∈ M or y = Com(b). We omit the full details and proof , since they are nearly identical
to the case of commitment schemes. We note that one can also use the constructions of [DDN91]
to reduce the problem of constructing a zero-knowledge scheme to the problem of constructing a
commitment scheme and vice versa.

7 Conclusions and Open Questions.

We have shown a coin-tossing protocol that allows to transform many protocols secure in the shared
random string model to protocols that are secure in the plain man-in-the-middle model. Using this
coin-tossing protocol, we gave a constant-round non-malleable non-malleable commitment scheme
and a constant-round non-malleable zero-knowledge argument system. It seems that our coin-
tossing protocol can be applied in other settings in the man-in-the-middle model. In particular,
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it may be that it can be used to give a protocol for general 2-party secure computation in the
man-in-the middle setting.

Complexity assumptions. Throughout this paper, we have used a subexponential hardness
assumption (namely, that there exist some cryptographic primitives secure against 2n

ε
-sized circuits,

where n is the security parameter). However note that we have not used the “complexity leveraging”
technique [CGGM00] in this work, and hence in some sense this assumption is not inherent. The
place where we used our assumption is in the construction of evasive sets, which we needed to be
more efficient than the hardness assumption. However, in this construction the assumption was
used for the purpose of derandomizing probabilistic machines. Thus it was sufficient to use any
hardness bound s(·) such that under the assumption that s(n)-strong one-way functions exist, there
is a pseudorandom generator mapping o(log s(n)) bits to n bits (and hence one can derandomize
polynomial-time algorithms in time s(n)o(1)). Although any subexponential function satisfies this
condition, one can use slower growing functions such as “half exponential” functions.42 It is also
known that for the purpose of derandomization it is sufficient to assume worst-case hardness (e.g.,
[NW88, IW97]). Thus, one can obtain the same result by assuming an exponential worst-case
assumption (that implies that BPP = P) along with a “nice” super-polynomial hardness bound
on the cryptographic primitives (e.g., nlogn). An open question is to construct constant-round non-
malleable protocols under the standard assumption of hardness against polynomial-sized circuits.

Strict polynomial time. The simulators presented in this work run in expected probabilis-
tic polynomial-time. We believe that one can obtain simulators that run in strict probabilistic
polynomial-time by using the commit-with-extract and proof of knowledge of [BL02]. However,
this will result in (an even more) complicated non-black-box simulator, and thus we have chosen
not to pursue this path.

Generalization to more parties. In this work we limited ourselves to a setting with two honest
parties and one adversary. A natural question is whether these results generalize to a more general
setting in which there are more honest parties communicating through an adversarial channel. The
most general setting is when the number of honest parties is an arbitrary polynomial in the security
parameter. A less general setting is when the number of honest parties is some fixed polynomial in
the security parameter.

Another direction is to try to apply our techniques (diagonalization combined with universal
arguments/CS proofs, non-black-box proofs of security) to other problems in cryptography.
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A Universal Arguments

The following definition is reproduced from [BG02]:
We let LU = {(M,x, t) : ∃w s.t. ((M,x, t), w) ∈ RU}, where ((M,x, t), w) ∈ RU if M accepts

(x,w) within t steps. Let TM (x,w) denote the number of steps made by M on input (x,w); indeed,
if ((M,x, t), w) ∈ RU then TM (x,w) ≤ t. Recall that |(M,x, t)| = O(|M |+ |x|+ log t); that is, t is
given in binary.

We consider a pair of (interactive) strategies, denoted (P, V ), and let (P (w), V )(y) denote the
output of V when interacting with P (w) on common input y, where P (w) denotes the functionality
of P when given auxiliary input w.

Definition A.1 (universal argument). A universal-argument system is a pair of strategies, denoted
(P, V ), that satisfies the following properties:

Efficient verification: There exists a polynomial p such that for any y = (M,x, t), the total time
spent by the (probabilistic) verifier strategy V , on common input y, is at most p(|y|). In
particular, all messages exchanged in the protocol have length smaller than p(|y|).

Completeness by a relatively-efficient prover: For every ((M,x, t), w) in RU ,

Pr[(P (w), V )(M,x, t) = 1] = 1

Furthermore, there exists a polynomial p such that the total time spent by P (w), on common
input (M,x, t), is at most p(TM (x,w)) ≤ p(t).

Computational Soundness: For every polynomial-size circuit family {P̃n}n∈N, and every (M,x, t) ∈
{0, 1}n \ LU ,

Pr[(P̃n, V )(M,x, t) = 1] < µ(n)

where µ : N→ [0, 1] is a negligible function.

A weak Proof of Knowledge Property: For every positive polynomial p there exists a positive poly-
nomial p′ and a probabilistic polynomial-time oracle machine E such that the following
holds:43

For every polynomial-size circuit family {P̃n}n∈N, and every sufficiently long y = (M,x, t) ∈
{0, 1}∗ if Pr[(P̃n, V )(y) = 1] > 1/p(|y|) then

Pr
r

[
∃w = w1 · · ·wt∈RU (y)
∀i∈{1, ..., t} EP̃nr (y, i) = wi

]
>

1
p′(|y|)

where RU (y)
def
= {w : (y, w) ∈ RU} and EP̃nr (., .) denotes the function defined by fixing the

random-tape of E to equal r, and providing the resulting Er with oracle access to P̃n.

The oracle machine E is called a (knowledge) extractor.

There are two differences between universal arguments and (interactive) CS-Proofs [Mic94]:
43Indeed, the polynomial p′ as well as the (polynomial) running-time of E may depend on the polynomial p (which

defines the noticeable threshold probability above).
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1. The computational soundness in CS-Proofs needs to hold for cheating provers of size poly(t).
In contrast, the computational soundness in universal arguments needs only to hold for ad-
versaries of size polynomial in the input length which is |M |+ |x|+ log(|t|).

2. We require that a universal argument satisfies a proof of knowledge condition. Note that we
allow the knowledge extractor only polynomial time in the input length which is |M |+ |x|+
log(|t|), while the size of the witness may be t which is may be exponentially larger than the
input length. Therefore, the knowledge extractor can output only an implicit representation
of the witness.

We will use the following (almost trivial) lemma:

Lemma A.2. Fix f : N → N to be some super-polynomial function (e.g., f(n) = nlogn). Then,
there exists an extractor algorithm E′ that on input (M,x, t) and oracle access to a polynomial-sized
circuit P̃ that such that Pr[(P̃n, V )(M,x, t) = 1] > 1

f(n) runs in time (f(n) · t)O(1) and outputs a
witness w ∈ RU (M,x, t) with probability 1− µ(n) for some negligible function µ.

Proof Sketch: Using t ·poly(n) steps, it is possible to convert an implicit representation of a witness
into an explicit one. Thus by invoking the extractor E from the proof of knowledge property n·f(n)
times and doing this conversion each time we can achieve the desired result.

We will use the following theorem:

Theorem A.3 ([BG02]). Suppose that collision-resistent hash functions exist. Then, there exists
a universal argument system. Furthermore, there exists such a system in which the prover is zero-
knowledge.

We stress that [BG02] only requires standard collision-resistent hash functions (i.e., secure
against polynomial-sized circuits). However, it is not hard to see that if we assume that 2n

ε
-strong

collision resistent hash functions exist, then (by modifying the security parameter accordingly)
we can show that there exists a universal argument system in which the soundness, the proof of
knowledge and zero-knowledge property hold against 2n

5
-sized circuits.
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