
Public-Key Cryptography from Different Assumptions

Benny Applebaum∗ Boaz Barak† Avi Wigderson‡

April 6, 2010

Abstract

This paper attempts to broaden the foundations of public-key cryptography. We construct
new public-key encryption schemes based on new hardness-on-average assumptions for natural
combinatorial NP-hard optimization problems. We consider the following assumptions:

1. It is infeasible to solve a random set of sparse linear equations mod 2, of which a small
fraction is noisy.

2. It is infeasible to distinguish between a random unbalanced bipartite graph, and such a
graph in which we “plant” at random in the large side a set S with only |S|/3 neighbors.

3. There is a pseudorandom generator in NC0 where every output depends on a random
constant-size subset of the inputs.

We obtain semantically secure public-key encryption schemes based on several combinations
of these assumptions with different parameters. In particular we obtain public-key encryption
from Assumption 1 on its own, yielding the first noisy-equations type public-key scheme in
which the noise rate is higher than one over the square root of the number of equations. We
also obtain public-key encryption based on a combination of Assumptions 2 and 3. These
are arguably of more “combinatorial”/“private-key” nature than any assumptions used before
for public-key cryptography. Our proof involves novel “search to decision” and “search to
prediction” reductions for sparse noisy linear equations.

The strength of our assumptions raise new algorithmic and pseudorandomness questions
(and new parameters for old ones). We give some evidence for these assumptions by studying
their resistance to certain classes of natural algorithms, including semi-definite programs, AC0

circuits, low-degree polynomials, and cycle counting. We also relate our assumptions to other
problems such as planted clique and learning juntas.

∗Department of Computer Science, Princeton University, benny.applebaum@gmail.com . Supported by NSF grants
CNS-0627526, CCF-0426582 and CCF-0832797.

†Department of Computer Science, Princeton University, boaz@cs.princeton.edu. Supported by NSF grants
CNS-0627526, CCF-0426582 and CCF-0832797, US-Israel BSF grant 2004288 and Packard and Sloan fellowships.

‡Institute for Advanced Study, Princeton, NJ, avi@ias.edu. Supported by NSF Grant CCF-0832797.

1

Contents

1 Introduction 3

2 Our results and related work 4
2.1 New cryptosystems . 4
2.2 Evidence and applications of our assumptions . 6
2.3 Prior works . 7

3 Overview of the proofs of Theorems 2.2 and 2.3 8

I Cryptosystems 11

4 Preliminaries 11

5 PKE based on the Hardness of 3-LIN 12
5.1 The Search3LIN Problem . 12
5.2 A Public-Key Encryption Scheme . 14

6 Proof of Theorem 5.5 16
6.1 From Approximate Search to Search . 16

6.1.1 Proof of Lemma 6.3 . 17
6.2 From Prediction to Approximate Search . 18

6.2.1 Proof of Lemma 6.7 . 19
6.3 Predicting over different distributions . 20
6.4 Completing the proof of the main theorem . 22

7 PKE based on d-LIN and Decisional Unbalanced Expansion 22
7.1 The Assumption . 22
7.2 A Public-Key Encryption Scheme . 24

7.2.1 Security . 24
7.3 Proof of Thm 7.4 . 25
7.4 Proof of Thm 7.3 . 28

7.4.1 Using a predictor to reduce AppSearchLIN to 2-LIN 28
7.4.2 Finding an approximate solution to 2-LIN . 30
7.4.3 Complementing the proof of Thm. 7.11 . 31

8 PKE based on DUE and DSF 31
8.1 The DSF assumption . 31
8.2 Constructing PKE . 32
8.3 Hardness of Learning Juntas . 33

II Investigating assumptions 34

9 Unconditional hardness of d-LIN 34

1

10 On the hardness of DUE 36
10.1 Counting cycles . 37
10.2 Reductions from other graph problems . 38

11 On the hardness of DSF 39
11.1 k-wise independence . 40
11.2 Fooling linear tests . 40

12 Discussion and open problems 41

References 43

A Two Sampling Lemmas 47

B Hardness of DUE: Technical details 49
B.1 Counting cycles . 49

B.1.1 Expectation and variance of cycle count: proof of Theorem B.1 49
B.1.2 Poisson approximation of short cycle count: proof of Theorem B.2 51

B.2 Reductions from other graph problems . 52
B.2.1 Proof of Theorem B.12 . 54
B.2.2 Proof of Theorem B.13 . 55

2

1 Introduction

Public key encryption (PKE) is a central notion in cryptography, and many of the exciting crypto-
graphic applications in theory and practice are based on it. But despite 30+ years of research, very
few candidates for such encryptions are known, and these are based on a handful of computational
problems of a very structured algebraic or geometric nature, from the areas of number theory,
lattices, and error-correcting codes (e.g., [DH76, RSA78, McE78, AD97]). This leaves open the
troublesome possibility that a new mathematical breakthrough could render them insecure.

In this aspect public-key cryptography (“cryptomania” in the language of Impagliazzo [Imp95])
seems very different from private key cryptography (“minicrypt”) where many different candidates
exist, and can be based on seemingly much less structured combinatorial problems including nat-
ural average-case variants of NP-complete problems such as random 3-SAT [ACO08], planted
clique [JP00], and learning parity with noise [GKL88, BFKL94].1 Thus a major goal of cryptog-
raphy is to base public-key encryption on assumptions that are weaker, or at least different, than
those currently used.

A complete solution to this problem would be obtained by constructing public key encryption
based solely on the existence of one-way functions. This is a longstanding open problem, and cannot
be achieved via black-box reductions [IR89]. Short of that, we believe that major progress would be
made by a construction of public key encryption based on a natural and well-studied average-case
variant of an NP-complete problem. This paper is a step in this direction.

In this work we give constructions of a public key encryption based on different assumptions
about the hardness of combinatorial problems (e.g., satisfying random local constraints and de-
tecting graph expansion). The proposed systems are not as efficient as some known candidate
constructions, and are based on assumptions that are not as well-studied as, say, the hardness
of factoring. For this reason we initiate here a study of the algorithmic and pseudorandomness
questions which arise, relate them to known results, and obtain some preliminary new ones.

The main advantage of the new schemes is the relatively general and unstructured nature of the
new assumptions. These include a variant of the planted densest subgraph problem, a pseudoran-
dom generator based on the expander-based one-way function of Goldreich [Gol00] (a private-key
primitive), and the 3LIN problem which can be seen as a sparse variant of the learning parity with
noise problem with noise level much higher than those used before in public-key cryptography (in
particular larger than 1/

√
m, see Footnote 1). These seem qualitatively different than previous

assumptions.
1 Learning parity with noise (LPN), as well as the related mod p variant of “learning with errors” (LWE), have

been used for public key cryptography as well [Ale03, Reg05, Pei09]. However, the known public key schemes require
noise levels much lower than those needed for private-key cryptography. In particular all of these schemes inherently
require noise of magnitude ε < 1/

√
m, where m is the number of equations. This seems to make a qualitative

difference. Some evidence for this is the fact that for ε < 1/
√

m LWE can be solved in SZK [GG98] and even (a
suitable promise problem variant of) NP ∩ coNP [AR04], while in the worst-case these problems are NP-hard for
sufficiently large noise [ABSS93, DKRS03].

3

2 Our results and related work

2.1 New cryptosystems

We say that a bipartite graph G is an (m, n, d)-graph, if it has m vertices on one side (which we call
the “top” side), n vertices on the other side (called the “bottom”), and every top vertex has degree
d. Similarly, an (m, n, d)-matrix is an m× n matrix over GF(2), in which every row has d entries
of value 1. Roughly speaking, we consider the following assumptions (see Assumptions 5.2, 7.2
and 8.1 for precise statements):

Assumption dLIN(m, ε) It is infeasible to recover x from (A,Ax + e), where A is a random
(m,n, d) matrix, x is chosen randomly from GF(2)n, and e ∈ GF(2)m is chosen such that
ei = 1 with probability ε independently for every i.

Assumption DUE(m, q, d) (Decisional Unbalanced Expansion) It is infeasible to distinguish be-
tween: (a) a random (m,n, d)-graph and (b) a random (m,n, d) graph in which the edges
going out of a random q-sized subset S of the top vertices are modified to ensure S will have
only q/3 neighbors.

Assumption DSF(m, d) (Decisional Sparse Function) With high probability, the following d-local,
NC0 mapping G of n to m bits is a pseudorandom generator: every output bit of G(x1, . . . , xn)
is MAJ(x′, x′′, x′′′) where each of x′, x′′, x′′′ is the parity of d/3 random coordinate of x.

In all of the above, “infeasibility” and “pseudorandomness” are defined with respect to proba-
bilistic polynomial time (PPT) algorithms with some constant success probability (e.g., 0.99). The
parameters m, d, q, ε can be functions of n. We construct three public-key encryption schemes each
based on a different combination of the above assumptions:

Theorem 2.1. For every constants c > 0 and function m = m(n), d = d(n), if both Assump-
tions DUE(m, c log n, d) and DSF(m, d) hold then there exists a semantically secure public key en-
cryption.

Both the DUE and DSF assumptions are arguably much more “combinatorial” and of a “private
key” nature than any assumptions used before to construct public-key cryptography. DSF assumes
that a variant of Goldreich’s candidate one-way function is a pseudorandom generator— a strong
assumption but still of a “private key” nature. DUE is closely related to the densest subgraph
problem— a combinatorial optimization problem of independent interest [FPK01, Kho04, BCC+10,
ABBG10].

Indeed, we can look at an (m,n, d)-graph G as a d-uniform hypergraph H of n vertices and m
hyperedges, where the i-th hyperedge of H contains the d neighbors of the i-th top-vertex of G.
In this formulation, the DUE assumption is about the hardness of distinguishing hypergraphs that
contain a somewhat dense sub-hypergraph — a set T of q′ = q/3 vertices, such that the induced
sub-hypergraph on T has at least q hyperedges— from graphs where the induced sub-hypergraph
of every set of q′ vertices (for q′ up to roughly n0.1 size or some other super-logarithmic bound)
has only about q′/d edges. Thus DUE is equivalent to the problem of distinguishing between a
random fairly sparse hypergraph (m = O(n) hyperedges) and a random hypergraph with a planted
somewhat dense (average degree larger than 1) small subgraph.2

2Note however that there is a more “algebraic” view to DUE, since a set of q vertices with < q neighbors will
result in a linear relation of length at most q in the rows of the adjacency matrix. So, one can think of DUE also as a

4

Note that we use DUE with a planted set of size O(log n). While, generally speaking, making
the set smaller doesn’t necessarily make the problem easier, there is always a brute force attack
of time

(
n
q

)
, and hence the scheme obtained can be at best secure against tO(log t)-time adver-

saries, where t is the running time of the honest parties. While ideally one would want at least
sub-exponential security, we note that the best construction of public key encryption using (even
idealized) one-way functions has security at most O(t2) [Mer78, BGI08] and this is optimal for
black-box methods [IR89, BMG09].

Theorem 2.2. There is a constant c so that if Assumption 3LIN(cn1.4, n−0.2/c) holds then there
exists a semantically secure public key encryption.

The 3LIN problem is a central and well studied constraint satisfaction problem. Furthermore,
the above parameters seem to resist sub-exponential time algorithms (see Section 2.2.) It should be
mentioned that other public key encryption schemes were based on solving (dense) random noisy
equations mod 2 and mod p [Ale03, Reg05, Pei09]. Still our assumption seems different from those
due to the sparsity and the use of larger noise rate (see Footnote 1 and Section 2.3). Moreover, our
assumption is based on the hardness of a search problem (i.e. find an x satisfying most equations)
with parameters for which refutation variant of 3LIN (i.e. certify that no such x satisfying most
equations exists) is harder than refuting a random 3SAT formula with O(n1.4) clauses. Note that
finding an efficient algorithm to refute random 3SAT formulas with o(n1.5) clauses is a longstanding
open problem. Random 3SAT is perhaps the prototypical example of a “combinatorial” average-
case computational problem. Of course, this connection is not formal, only suggestive, and does
not directly shed light on the strength of our assumption, as no reductions are known between the
search and refutation versions of random noisy 3XOR.

Theorem 2.3. For every constants d, c and q = q(n), there exists a constant c′ such that if
dLIN(c′n log n, 1/(c′q))) and DUE(cn, q, 2d) hold then there exists a semantically secure public key
encryption.

Compared to Thm. 2.2, Thm. 2.3 allows us much more flexibility in the choice of parameters for
3LIN; specifically, we avoid the parameter range in which [FKO06]’s non deterministic algorithm
for the refutation variant of this problem works. This comes at the expense of using the additional,
combinatorial assumption DUE.3 Again, it seems (see Section 2.2) that the resulting schemes
achieves sub-exponential security.

We stress that we do not claim that our cryptosystems are “better” or “more secure” than
previous candidates for public key encryption. Indeed, the integer factoring problem underlying
schemes such as [Rab79] is probably the most well-studied average-case computational problem.
Also, lattice based systems such as [AD97, Reg05, Pei09] have the important advantage of being
based on worst-case problems such as gap shortest vector and shortest linearly independent vectors.
Nevertheless we believe our constructions do suggest that problems with less algebraic or geometric
structure may be useful for public key cryptography.

shortest codeword problem for the dual code of this matrix. However due to the imbalance, the dual code here has
rate so close to 1 that it contains rather short codewords in any case (e.g., if m = nc then the dual code is a code
over GF(2)m with dimension m−m1/c and so regardless will have a codeword of length m1/c).

3We note that known algorithms for DUE (i.e., counting small subgraphs) place some restrictions on the value of
q for which DUE(cn, q, d) and we’ll need q ∈ [nε,

√
n] where ε is some constant depending on c. The actual range of

parameters for which our result holds is somewhat broader.

5

2.2 Evidence and applications of our assumptions

To test the validity of our assumptions, we show unconditionally that they do resist various concrete
algorithms, as well as provide some reductions between these and other computational problems.
While our primary motivation is to broaden the foundations for public key cryptography, we believe
that the computational problems we use are natural and interesting in their own right.4 They
broaden the class of hardness-on-average and pseudorandomness problems studied in the past
in both the algorithmic and cryptographic communities, and focus attention on parameters of
significance for public-key encryption.

The dLIN problem. We show that for the parameters we use, the noisy linear equation problem
3LIN unconditionally resists: (1) “Myopic” attacks that look at the entire matrix but only at
some nδ of the “noisy bits”, or those that look at linear combinations of these “noisy bits”. (2)
Attacks that apply low-degree polynomials or AC0 circuits to the “noisy bits“. (3) nδ rounds of
the Lasserre hierarchy [Las01] of semi-definite programs, for some constant δ > 0. The first item
follows similarly to the analysis of Mossel et al [MST03], the second item employs the results of
Viola [Vio08] and Braverman [Bra09], and the third item is implied by Schoenebeck [Sch08]. (See
Section 9 for formal statements and proofs of all these results.)

The last item is especially interesting as semidefinite programs seem to be the strongest algo-
rithmic tool that is currently available to attack constraint satisfaction problems. Moreover, the
Lasserre hierarchy is strictly stronger than other hierarchies for linear and semidefinite programs
such as the Lovasz-Schrijver [LS91] hierarchies (LS, and LS+) and the Sherali-Adams [SA90] hier-
archy [Lau03].

We also obtain a new (average-case) reduction from the dLIN problem into its decisional version
(where one needs to distinguish (1− ε)-satisfiable random equations from completely random ones
that will be of course only 1/2+o(1) satisfiable). A similar reduction (from search to decision) was
presented in [BFKL94] for the non-sparse case, however their techniques do not hold in the sparse
case which turns to be significantly more challenging. As the sparse case is an important variant
of this problem (see [Ale03, AIK04]), we believe that our reduction is of independent interest.

The DSF problem. We show that the non-linear pseudorandom generator G of the DSF assump-
tion resists some of the above attacks as well. Specifically, its output is nδ-wise independent and
fools AC0 circuits and linear tests over GF(2). In fact, we prove a more general result about the
security of the following construction of [Gol00]. For a sequence of m subsets of [n], S = S1, . . . , Sm

of size d = O(1) and a d-local predicate P , let GS,P : {0, 1}n → {0, 1}m be the d-local mapping
whose i-th output is obtained by applying the predicate P to the input string x restricted to the
d indices of the set Si. Goldreich [Gol00] conjectured that when the mapping is length preserving
(i.e., m = n), the function GS,P is one-way for a random choice of the collection S and essentially
any non-trivial predicate P . This assumption was supported by both theoretical and practical evi-
dence [Gol00, Pan01, CEMT09]. Recently, [BQ09] showed that if the predicate P is biased towards
a linear combination of two of its inputs, then the function becomes vulnerable when the output
length m is sufficiently larger than the input length (i.e., m > cn for a constant c = c(d) > 1).

4As an example, following this work, a variant of the DUE assumption was recently used by [ABBG10] (co-authored
by the second author) to argue about the complexity of pricing financial derivatives. The DUE assumption also served
as partial motivation for [BCC+10]’s recent work on the densest subgraph problem.

6

We complement this by giving a combinatorial condition on S and P under which the function
GS,P is pseudorandom with respect to the above family of non-trivial distinguishers (i.e., nδ-wise
independent tests, AC0 circuits and linear tests over GF(2)) even when m is polynomially larger
than n.This suggests that the vulnerability discovered by [BQ09] only holds for a “bad” choice of
the predicate P . (See Section 11 for details.)Our work also provides a new candidate for an NC0

pseudorandom generator with polynomial stretch (e.g., from n input bits to n2 output bits). The
existence of such a primitive is an important open question [CM01, MST03, AIK04, AIK04] which
is also motivated by the ability to achieve highly efficient secure multiparty computation [IKOS08].
The only prior candidate (surviving a similar class of non-trivial attacks) was due to [MST03].

The DUE problem. We also show that the unbalanced expansion (DUE) problem resists “cycle
counting” algorithms (a basic and surprisingly useful technique to identify dense subgraphs of a
graph by counting the number of small cycles in the graph containing specific vertices [BCC+10]).
In addition we show that variants of the DUE assumption are implied by variants of other problems
such as small-set vertex expansion in general (not necessarily bipartite) graphs, and the planted
clique problem in Gn,p for small p = p(n). Finally, we prove that our third cryptosystem, which is
based on a combination of DUE and DSF implies that a k-junta (i.e., a function g : {0, 1}n → {0, 1}
which depends in at most k of its variables) cannot be PAC-learned in less than nΩ(k) time. The
junta learning problem [Blu94, BL97] is one of the most central open problems in computational
learning theory.5

2.3 Prior works

The notion of “structure” in complexity assumptions is necessarily informal but we can still of-
fer below some comparisons of our schemes with previous ones. We do not review all previous
assumptions used for candidates for public key encryption; see the survey [Zhu01] and the web
site [Lip97] for more. It seems that currently those candidates that are considered secure can
be classified as falling into two broad categories: schemes based on number theoretic or group
theoretic problems such as factoring (e.g. [Rab79, RSA78]) and discrete log in various groups
(e.g. [DH76, Mil85, Kob87]) and schemes based on knapsack/lattices/error correcting codes (e.g.,
[McE78, AD97, Ale03, Reg05, Pei09]).

Our non-linear scheme (based on DSF and DUE) seems genuinely different from all previous
constructions we are aware of. Our linear scheme (based on solely on 3LIN or dLIN and DUE) has
some similarities to coding/lattice-based schemes but there are some important differences, which
we now discuss.

Of the coding/lattice based schemes, the McEliece [McE78] system seems to use more algebraic
structure, in the sense that the underlying assumption is that decoding a “shuffled” Goppa code
is as hard as decoding a random linear code. A similar observation applies to the Hidden Field
Equations (HFE) scheme of Patarin [Pat96] that implicitly assumes that a shuffled low degree
univariate polynomial over GF(pn) is indistinguishable from a random family of quadratic equations
over GF(p)n.

5In addition, the DSF assumption on its own can be formulated as a “dual” version of the junta learning problem
in which the target function is not local, but instead the data points given to the learner are “local”. More formally,
in terms of learning theory, in DSF the learner should learn a function fx, represented by an n-bit vector x, which
maps a d-size set S ⊆ [m] to the value P (xS) for some known (randomly chosen) predicate P .

7

The scheme E(D, ε):

Public encryption key: A d-sparse matrix M ∈ Fm×n
2 sampled from

distribution D.

Private decryption key: A q-size subset S ⊆ [m] of the rows of M for
which m ∈ S and

∑
i∈S Mi = 0n (mod 2) where Mi denotes the i-th row of

M .

Encryption: Choose a random vector x
R← Un and a random noise vector

e
R← Berm

ε , let b = Mx + e. To encrypt 0, send the vector b. To encrypt 1,
send the vector b with its last bit flipped.

Decryption: To decrypt y ∈ {0, 1}m, output the sum
∑

i∈S yi (mod 2).
Note that decryption is successful with probability at least 1− qε.

Figure 1: Our basic cryptosystem scheme, used in the proofs of Thms. 2.2 and 2.3. m, d, q, ε can

depend on the security parameter n. The distribution D is over matrices with d 1’s per row, in which the last row is

a linear combination of q− 1 other rows. We show that under certain assumptions the scheme can be instantiated to

achieve constant privacy. This can be amplified to full-fledged security using [HR05].

More similar to ours are the schemes of Alekhnovich [Ale03] and Regev [Reg05]. Regev’s scheme
(and others such as [PVW08, Pei09]) is based on the Learning With Error problem that is a mod p
analog of the learning parity with noise problem. Specifically, like our 3LIN problem it is the task of
recovering x from (A, Ax + e) except A is a random (dense) m×n matrix in GF(p) for p > m, and
each coordinate of e is distributed as a discrete Gaussian with standard deviation εp. However, as
mentioned in Footnote 1, to make decryption work in all those schemes one needs to take ε ¿ 1/

√
m

which seems to make a qualitative difference in the nature of the problem [GG98, AR04]. Most
similar to ours is Alekhnovich’s scheme [Ale03]6 that uses the (decisional variant) of the standard
(dense) parity with noise problem. However, he too needed to use noise level of less than 1/

√
m.

While no analogous results to [GG98, AR04] are known for the mod 2 case, it still seems as an
important advantage that we are able to handle much higher noise levels (in some cases at the
expense of using DUE as well).

3 Overview of the proofs of Theorems 2.2 and 2.3

To highlight some of our techniques let us sketch the proofs of Thms. 2.2 and 2.3. We define
SearchLIN(d,m, ε) to be the problem of recovering x given a random d-sparse m × n matrix M
and the vector b = Mx + e, where x is chosen at random in GF(2)n and e ∈ GF(2)m is chosen at

6Indeed, as observed by Ron Rivest and Madhu Sudan (personal communication), both our linear scheme and
Alekhnovich’s have a common generalization, where the public key is a matrix G whose dual subspace has a “planted”
short vector, which serves as the private key. Similar structure occurs in many lattice-based cryptosystems such
as [AD97, Reg04], where the public key is roughly a generating set for a lattice whose dual lattice has a planted short
(in `2) basis.

8

random so that ei = 1 with probability ε (we call e an ε-noise vector). Note that with extremely
high probability this x to be recovered is unique. We let Search3LIN(m, ε) = SearchLIN(3, m, ε).

PKE from 3LIN(Ω(n1.4), O(n−0.2)). The proof proceeds by a sequence of reductions, ending with
showing that under our hardness assumption on the search problem, a related prediction problem
is hard as well. This prediction problem gets essentially the same input, a matrix M and a vector
b = Mx+ e except its last bit, and asks to predict that bit. In other words, given the value of m−1
noisy (3-sparse) equations, we are asked to predict the value of another independent equation. A
natural way to predict is to solve the search problem, and use the recovered solution x to evaluate
the new equation (which will predict it correctly with probability 1− ε). Our reduction shows that
essentially this is the only way to go about prediction. If search is hard, so is prediction, even if all
we ask for is a constant advantage (say 1/10) over guessing.

The twist is that the distribution of sparse matrices we use in this reduction is special. Formally,
for any distributionD on (m,n, 3)-matrices, define the following prediction problem Predict3LIN(D, ε):
given M drawn from D and the first m− 1 bits of Mx+ e where x, e as above, predict the m’th bit
of Mx+e with probability at least 3/5. We will reduce the search problem Search3LIN(m, ε) (where
matrices are drawn uniformly) to the prediction problem Predict3LIN(D0, ε), in which matrices are
drawn from a special distribution D0.

Our cryptosystem. Before explaining the reduction, let us explain how the prediction problem
Predict3LIN(D0, ε) can be turned into a public-key system. This system is also described in Figure 1.
The distribution D0 has the property that if M is in the support of D0, then there is a linear relation
involving M ’s last row and at most q ¿ 1/ε other rows. Moreover, it is possible to efficiently sample
a random matrix M from D0 together with such a set S of rows involved in this linear relation.
Since qε is small, if we add an ε-noise vector e to Mx, then with high probability no equation in S
will be noisy, which means that given the value of Mx + e on the coordinates in S, one can recover
the value of Mx on the mth coordinate. Thus, the linear relation can serve as a sort of “trapdoor”
for the Predict3LIN(D0, ε) problem. One can turn this observation into a PKE by using relatively
standard techniques such as hardness amplification [HR05].

Search to approximate search. To get from Search3LIN(m, ε) to Predict3LIN(D0, ε) we use a
chain of three reductions through two intermediate problems. The first is an “approximate search”
problem AppSearch3LIN(m, ε), which is the variant of Search3LIN in which the goal is relaxed to only
recover a vector x′ that is close to the true answer x in Hamming distance. We use error correcting
properties of sparse equations to show that the two problems are equivalent up to constant loss in
the parameters. In essence, we can use O(n lg n) more noisy equations to detect the “errors” in the
approximate solution vector x′ and correct them to recover x. (See Theorem 6.2.)

Search to prediction on the uniform distribution. The second intermediate problem is
Predict3LIN(m, ε) which is the problem Predict3LIN(D, ε) where D is the uniform distribution over
(m,n, 3)-matrices - the same distribution on matrices used in Search3LIN(m, ε) and AppSearch3LIN(m, ε).
We reduce AppSearch3LIN(m, ε) to Predict3LIN(m + O(n), ε). A key observation used in the proof
is that by adding two 3-sparse random equations that share a common variable, we get a random
4-sparse equation of the form xi + xj + xk + x` = b, and so given such an equation one can turn a

9

predictor for xi + xj + xk into a predictor to x`. By carefully combining many pairs of equations it
can be shown that at the end, we will get predictions for a large fraction of the variables, and that
most of these predictions will be correct. Hence, together they form a good approximation for x.
(See Theorem 6.5.)

Prediction on a different distribution. The last step (obtained in Theorem 6.9) is a reduc-
tion between the two prediction problems Predict3LIN(m, ε) to Predict3LIN(D0, ε) where D0 is the
special distribution above. This step is composed of two stages. First we use the results of Feige,
Kim, and Ofek [FKO06] to argue that small linear relations involving the last row of M will exist
in our setting of parameters with some (small) constant probability for the uniform distribution.
Therefore the statistical distance between D0 (in which such a relation is sampled first) and the
uniform distribution is bounded away from 1. We complete the proof by showing how to turn a good
predictor for Predict3LIN(D, ε) into a good predictor A for Predict3LIN(D′, ε) for every two distri-
butions D,D′ over matrices with related parameters whose statistical (or computational!) distance
is bounded away from 1. This differs from most proofs of this type, since we want the difference in
prediction probability of the two predictors to be much smaller than the statistical (or computa-
tionsl) distance of the two distributions! For example, even if A perfectly solves Predict3LIN(D, ε)
with no error, it might be a terrible predictor which errs with probability 1/2 when instances are
generated according to D′. Still, we show how to turn it into a useful predictor with respect to D′
as well. The idea is to identify (via sampling) the instances on which A is likely to succeed and use
it only for these cases. Then, we amplify the success probability by breaking a single instance of
Predict3LIN to many smaller instances of the problem. These instances are rerandomized by relying
on the symmetry and linearity of the 3-LIN constraints.

Thm. 2.3: PKE from DUE and dLIN. The description above completes the reduction of
Thm. 2.2. For Thm. 2.3, in which smaller values of m are used, such small linear relations between
rows of M will not exist, and hence the distribution D0 as above will be statistically far from the
uniform distribution on d-sparse matrices. Here our extra assumption DUE comes to the rescue,
basically to prove that computationally its distance from uniform will be bounded away from 1.
The next two paragraphs highlight the main ideas in that proof.

The use of DUE, as well as the extension to large sparsity d > 3 introduce some additional
difficulties that we need to overcome. In particular, for our cryptosystem we need DUE to hold
even if one of the members of the planted shrinking set is revealed. Hence, to prove security we
show that solving this variant of DUE assumption (denoted by DUE1) implies a solution to the
original DUE problem.

In particular, given a random (m,n, d) graph with a planted shrinking set, an algorithm for
DUE1 can be used to distinguish with some constant advantage between nodes that participate in
the shrinking set to other nodes. This distinguisher allows us to “shave” many nodes of the large
side of the graph while preserving the existence of a (smaller) shrinking set. The resulting graph
will have m′ top nodes and n bottom nodes where m′ < n. (Recall that we started with m > n top
nodes.) For this case, we can detect the existence of a shrinking set by using Hall’s theorem via a
matching based algorithm. This leads directly to a solution for DUE. Note that this argument shows
only that, under the DUE assumption, the distribution D0 is not completely computationally-far
from the uniform distribution. Here again, we need to rely on the strong version of the reduction
from PredictLIN(D, ε) to PredictLIN(D′, ε).

10

Another difficulty arises from the use of a large sparsity d > 3, as in this case the combination
of two equations with overlap of one variable does not lead to an equation of sparsity d + 1 as in
the d = 3 case. We overcome this problem by employing a different reduction from PredictLIN to
AppSearchLIN. Specifically, given an instance of AppSearchLIN with locality d, we combine pairs of
equations with no overlap to obtain a 2d-LIN instance. Then, we generate (2d−2)-LIN equations by
combining pairs of equations with a common variable. This information, together with a prediction
algorithm for 2d-LIN can be used to obtain a 2-LIN equation. By repeating this process we obtain a
random 2-LIN (or MAX-CUT) instance. Now we can employ one of the known algorithms (e.g.,the
SDP of [GW95]) to obtain a solution that satisfies a large fraction of the constraints. Finally,
we argue that since the 2-LIN instance is random the resulting assignment is close to the original
assignment and therefore it is a valid solution for AppSearchLIN.

The proof of Theorem 2.1 (a cryptosystem based on DUE and DSF) follows a roughly similar
high level structure, and we omit details from this overview.

Part I

Cryptosystems

4 Preliminaries

d-sparse matrices. A matrix M ∈ Fm×n
2 is d-sparse if each of its rows contains exactly d

ones. Such a matrix can also represent an (m,n, d) graph, which is a bipartite graph GM =
((VTop, VBot), E) with m “top” nodes (each node correspond to a row) and n “bottom” nodes
(each node correspond to a column) where each top node has degree d. We consider the uniform
distribution Mm,n,d over d-sparse matrices in which each of the m rows of the matrix is chosen
independently and uniformly at random from the set of all n-bit vectors of weight d. We will be
especially interested in 3-sparse matrices, hence, we abbreviate Mm,n,3 by Mm,n.

d-LIN. A d-LIN instance with m-clauses and n variables is described by an m-bit vector b and
a d-sparse matrix M ∈ Fm×n

2 . If there exists an assignment x for which the weight of Mx − b
is at most εm then the problem is (1 − ε)-satisfiable. Let Berm

ε be the distribution of an m-bit
vectors that each of its entries is 1 with probability ε independently of the others. A natural way
to generate “almost satisfiable” d-LIN instances is to choose a matrix M from some distribution
over d-sparse matrices (e.g., Mm,n,d) and let b = Mx + e where x

R← Un and e
R← Berm

ε ; that is, b
is a random vector of (expected) distance ε from Im(M).

Statistical distance and computational indistinguishability. The statistical distance be-
tween discrete probability distributions X and Y, denoted ∆(X ,Y), is defined as the maximum,
over all functions C, of the distinguishing advantage |Pr[C(X) = 1] − Pr[C(Y) = 1]|. We
say that two sequences of distributions Xn,Yn (where n is an implicit or explicit security pa-
rameter) are ε-indistinguishable if for every probabilistic polynomial time algorithm C, we have
|Pr[C(X) = 1]− Pr[C(Y) = 1]| < ε. A sequence of distributions Xn is ε-pseudorandom if Xn is
ε-indistinguishable from Un, the uniform distribution over n bits.

11

Public-key encryption schemes. A public-key encryption scheme (PKE) allows two parties to
communicate securely without sharing a secret key. We follow [HR05] and quantify the correctness
and privacy of the scheme by two error parameters α and β.7. The definition becomes equivalent to
the standard notion of semantic security [GM82] when both parameters are taken to be negligible,
i.e., when α and β go down to zero faster than any inverse polynomial.

Definition 4.1. A (α(n), β(n))-secure public-key bit encryption scheme is a triple (Gen, Enc, Dec)
of probabilistic polynomial time algorithms such that

• Algorithm Gen, on input 1n produces a pair (pk, sk).

• ((1−α)-correctness) For a random bit b
R← {0, 1}, Pr[Decsk(Encpk(b)) = b] > 1−α(n), where

(pk, sk) R← Gen(1n) and the probability is over the randomness of Gen, Enc, Dec, and the
choice of b.

• (β-privacy) The distributions (pk, Encpk(0)) and (pk, Encpk(1)) are β(n)-indistinguishable,

where (pk, sk) R← Gen(1n).

If α(n) and β(n) are constants that satisfy α < (1 −√β)/2, we say that the scheme is a weak
PKE. It was shown in [HR05, Thm. 6] that a weak PKE can be converted into semantically secure
PKE which supports arbitrary (polynomially) long messages.

5 PKE based on the Hardness of 3-LIN

5.1 The Search3LIN Problem

Definition 5.1. The Search3LIN(m, ε) problem is defined as follows:

• Input: a random ε-satisfiable 3-LIN instance (M, b) sampled as follows: M
R← Mm,n and

b = Mx + e where x
R← Un and e

R← Berm
ε .

• Output: the assignment x.8

Let m = m(n) and ε = ε(n) be some functions of n. We say that Search3LIN(m, ε) is intractable
if for every probabilistic polynomial-time algorithm A, and every sufficiently large n, A solves
Search3LIN(m(n), ε(n)) with probability smaller than 2/3.

It is not hard to show that the problem becomes harder when m is decreased and ε is increased.
Also, one can replace the constant 2/3 by any arbitrary positive constant at the expense of increasing
m by a multiplicative constant.

We will construct a public-key encryption scheme based on the following assumption:

Assumption 5.2. The problem Search3LIN(C0n
1.4, C1n

−0.2) is intractable for every constants C0 >
0 and C1 > 0.9

7Our definitions of (1 − α)-correctness and β-privacy are not exactly the same as in [HR05, Def. 8], but are
equivalent up to a simple linear transformation.

8Our setting of the parameters m and ε will guarantee a unique solution with probability 1− o(1).
9In fact, all our applications require a relaxed version of the assumption in which Search3LIN(C0n

1.4, C1n
−0.2) is

intractable for some fixed universal constants that can be explicitly calculated from our reductions.

12

While we define the notion of intractability with respect to polynomial time algorithms, one
may hope the assumption holds even for subexponential algorithms with time complexity 2nδ

for
some constant δ > 0. We now give some evidence for Assumption 5.2.

Unconditional resistance to limited attacks. Our assumption asserts that Search3LIN with
m = O(n1.4) equations and ε = Ω(n−0.2) noise rate is hard for all polynomial-time algorithms. This
hardness can be proven (unconditionally) for several restricted computational models as follows.
First, it is not hard to show that the distribution of the vector b looks random to an adversary
that looks at no more than k = nδ coordinates, for some fixed 0 < δ < 1. Hence, such a “myopic”
adversary cannot solve the problem. Furthermore, a recent breakthrough of Braverman [Bra09]
shows that k-wise independent distributions ε-fools the class of all AC0 circuits of sub-exponential
size. Finally, the recent work of Schoenebeck [Sch08] shows that our assumption cannot be refuted
by an expressive family of semidefinite programs which results from nδ levels of the Lasserre hi-
erarchy [Las01]. (The time complexity of these programs is exponential in the number of levels,
and so in our case the lower bound corresponds to programs of subexponential time.) This result
is especially interesting as semidefinite programs seem to be the strongest algorithmic tool that is
currently available to attack constraint satisfaction problems. Moreover, the Lasserre hierarchy is
strictly stronger than other hierarchies for linear and semidefinite programs such as the Lovasz-
Schrijver [LS91] hierarchies (LS, and LS+) and the Sherali-Adams [SA90] hierarchy [Lau03]. (See
Section 9 for formal statements of all these results.)

Relation to other variants of the problem. We can define other natural variants of the
Search3LIN problem. First, consider the distinguishing version Decide3LIN(m, ε) in which the goal
is to distinguish between a Yes-instance that comes from the distribution of Search3LIN(m, ε)
from a No-instance in which M

R← Mm,n and the vector b is uniformly chosen. An algorithm
that solves the search problem Search3LIN(m, ε) with probability δ can be directly used to solve
the distinguishing problem Decide3LIN(m, ε) with similar advantage. Hence, the intractability
of Decide3LIN(O(n1.4), Ω(n−0.2)) implies Assumption 5.2. In fact, all the lower bounds mentioned
above hold against the decision problem as well. In addition, several previous works [Ale03, MST03,
AIK06] assumed that the Decide3LIN(m, ε) problem, or close variants of it, is intractable for every
m = O(n) and constant 0 < ε < 1/2. It is also natural to consider the refutation version of
3-LIN Refute3LIN(m, ε) in which one has to distinguish between Yes and No instances with zero
error over Yes instances. (This can be seen as certifying an instance for not being ε-satisfiable.)
The work of Feige [Fei02] establishes a connection between the refutation problem for 3-LIN and
the refutation of 3-SAT formulas. In particular, it can be shown that an efficient solution to
Refute3LIN(O(n1.4),Ω(n−0.2)) allows to refute 3-SAT with m = O(n1.4) clauses. Such a refuta-
tion algorithm for 3-SAT would resolve an important open question as the best algorithm for the
problem works only for m = n1.5, or more generally, for m = nd/2 in the case of d-SAT [FGK05].
(We mention that a non-deterministic algorithm is known for m = n1.4 [FKO06].) While we do not
know of any formal connection between the hardness of Refute3LIN and the hardness of Search3LIN,
it seems that, at least in an intuitive level, the intractability of one supports the intractability of
the other.

13

5.2 A Public-Key Encryption Scheme

We will rely on the general bit-encryption scheme which is described in Figure 1. The public key
is matrix M , and the private-key is a short non-trivial linear dependency S among the rows of M
which includes the last row. To encrypt the bit σ, one generates an m-bit vector b by perturbing
a random vector in the image of M , and then XOR-s the last entry of b with the plaintext σ. The
knowledge of the short linear-dependency S allows to decrypt the ciphertext b′ by summing-up the
bits that are indexed by the set S. This algorithm works well as long as the noise rate ε is sufficiently
smaller than 1/|S|. Of course, one should instantiate the scheme with a key-generation algorithm
that describes exactly how to sample the matrix M together with the short linear dependency S.
To prove that the scheme is secure, it should be shown that it is hard to predict the last entry of
the ciphertext b.

Before we instantiate the scheme we can establish its correctness.

Lemma 5.3. For every pair (M, S) of public/private keys, and every plaintext σ ∈ {0, 1}, the
decryption errs with probability at most α = 1

2 − 1
2(1 − 2 · ε)q < εq, where the probability is taken

over the randomness of the encryption algorithm.

Proof. Let x
R← Un and e

R← Berm
ε be the random vectors used by the encryption algorithm. The

decryption algorithm outputs the value
∑

i∈S

(Mx)i + ei + σ =
∑

i∈S

ei + σ,

where the equality follows from the degeneracy of MS . Hence, the decryption errs whenever the sum
of the noise bits indexed by S is 1, which happens with probability at most 1

2− 1
2(1−2 ·ε)q < εq.

Instantiating the key generation algorithm. Let H2,3
q,n be the uniform distribution over ma-

trices with n columns and q rows, where each row contains exactly 3 ones and each column contains
exactly 2 ones. Let Tp,n be denote a distribution over 3-sparse matrices with n columns in which
each possible row is selected with probability p. Consider the distribution Tp,n,q which is simply
Tp,n conditioned on the event that the matrix T contains a submatrix of rows H ∈ support(H2,3

q,n)
that includes the last row of T . Since H2,3

q,n is efficiently samplable (via standard techniques), it is

possible to sample a triple (M,H, S) where M
R← Tp,n,q, H

R← H2,3
q,n and MS = H (i.e., S is a q-size

subset of the rows of M which points to the submatrix H). We will use this distribution for our
key-generation algorithm, with the parameters p = n−1.6, and q = Θ(n0.2) and set the noise rate
ε ¿ 1/q to Θ(n0.2). We show that the resulting scheme provides a non-trivial level of security and
correctness, and therefore can be later converted into a semantically secure cryptosystem.

First, we argue that the distribution Tp,n,q is not too far (in statistical distance) from Tp,n.

Lemma 5.4. There exists a function q(n) = Θ(n0.2), such that the statistical distance between
Tn−1.6,n and Tn−1.6,n,q is at most 1− δ, for some absolute constant 0 < δ < 1 which does not depend
on n.

Proof. Let E denote the event in which a matrix T
R← Tn−1.6,n contains a submatrix H ∈ support(H2,3

q,n)
that includes the last row of T . By the definition of Tn−1.6,n,q, it suffices to show that E happens
with probability δ for some constant δ. Consider the event Fα,β,γ,θ in which T contains at least αn1.4

14

copies of submatrices from support(H2,3
βn0.2,n

) such that each row of T participates in at most γn0.2

distinct copies. Furthermore T has at most θn1.4 rows. Feige, Kim and Ofek [FKO06, App. B]
showed that for some constants α, β, γ, θ > 0 the event F = Fα,β,γ,θ happens with probability
1 − o(1). Hence, it suffices to show that conditioned on the event F , the event E happens with
constant probability δ′ = δ′(α, β, γ, θ). Indeed, construct a bipartite graph in which the rows of
T are on the left side and the submatrices of support(H2,3

βn0.2,n
) are on the other side, and connect

a submatrix node to all its rows. Now, by counting edges, it follows that the average degree of
the right side (row side) is at least αβn1.6. However, the maximal degree of a row node is γn0.2

and there are at most θn1.4 such nodes. It follows, by a Markov inequality, that at least a fraction
of δ′ = αβ/(γθ) of the rows in T have positive degree, i.e., they participate in a submatrix from
support(H2,3

βn0.2,n
). By symmetry, it follows that the last row participates in such a submatrix with

probability δ′.

Let E(D, ε) be the scheme of of Figure 1 instantiated with noise ε = ε(n) and public-key taken
from some distribution ensemble D = {Dn}. Our main theorem shows that if D is not too far
from Tm/(n

3),n, and Search3LIN(Cm, ε) is intractable for sufficiently large C, then E(D, ε) is weakly
secure.

Theorem 5.5 (main theorem). For every constant 0 < δ < 1, there exists a constant C = C(δ),
such that for every function m(n) = Ω(n lg n), every ε = ε(n) ≤ 0.01, and every distribution
ensemble D = {Dn} which is (1− δ)-computationally indistinguishable from Tm/(n

3),n the following
holds. If Search3LIN(Cm, ε) is intractable then the public-key encryption scheme E(D, ε) is (1−δ/2)-
private.

The theorem transforms the intractability of Search3LIN which is a search problem over the
uniform distribution, into indistinguishability (with respect to any related distribution) by going
through several intermediate notions (e.g., approximate search and unpredictability with respect
to the uniform distribution). Section 6 is devoted to the proof of Theorem 5.5.

By choosing the parameters q and ε properly, we can now obtain a weak public-key bit encryp-
tion scheme and thus derive the following corollary.

Corollary 5.6. Under Assumption 5.2, there exists a semantically-secure public-key encryption
scheme.

Proof. Let p = n−1.6. Let q(n), δ and C = C(δ) be the parameters obtained from Lemma 5.4 and
Theorem 5.5. By combining Lemma 5.4, Theorem 5.5 and Assumption 5.2, we get that the scheme
the scheme E(Tp=n−1.6,n,q, ε) is β = (1 − δ/2)-private scheme for any choice of ε = Ω(n−0.2). By
letting ε = C1n

−0.2 for sufficiently small constant C1 > 0, we can make the decryption error α of
Lemma 5.3 arbitrarily close to 0. In particular, we can make sure that α is smaller than (1−√β)/2
as β = 1− δ/2 is bounded away from 1. Hence, we obtain a weak PKE which can be converted to
a semantically secure PKE via the transformation of [HR05].

Remark 5.7 (Oblivious Transfer from Assumption 5.2). Oblivious Transfer [Rab81] (OT) is a
useful cryptographic primitive which allows a sender to send a message to a receiver with probability
1/2, while the sender remains oblivious as to whether or not the receiver received the message. The
existence of OT implies a secure protocol for any multi-party functionality [GMW87], but is not
known to be implied by general public-key encryption scheme. However, [EGL85] shows how to

15

construct OT from a public-key encryption scheme in which one can generate a “bad public key”
that looks indistinguishable from the valid public key, but does not allow the generating party to
distinguish between the encryption of 0 and the encryption of 1. Interestingly, our scheme, as well
all other schemes presented in this paper, satisfy this additional property and therefore it implies
the existence of an OT-protocol.

6 Proof of Theorem 5.5

Roadmap. Theorem 5.5 will be proved in three steps. In Section 6.1 we will show that the exact
search problem Search3LIN reduces to an approximate search version of the problem AppSearch3LIN
in which the goal is to find an approximate solution x̂ which is close to the exact solution x. Then, in
Section 6.2, we show that AppSearch3LIN reduces to a prediction version of the problem Predict3LIN,
in which the goal is to predict the last bit of a random 3-LIN instance. Finally, in Section 6.3 we
relate the hardness of Predict3LIN with respect to the uniform distribution to the hardness of
Predict3LIN with respect to other distributions.

6.1 From Approximate Search to Search

We relate the search problem to the following approximate-search version.

Definition 6.1. The AppSearch3LIN(m, ε) problem is defined as follows:

• Input: a random ε-satisfiable 3-Lin instance (M, b) sampled as follows: M
R← Mm,n and

b = Mx + e where x
R← Un and e

R← Berm
ε .

• Output: an assignment x̂ which is 0.1-close to x.

Let m = m(n) and ε = ε(n) be some functions of n. We say that AppSearch3LIN(m, ε) is intractable
if for every probabilistic polynomial-time algorithm A, and every sufficiently large n, A solves
AppSearch3LIN(m(n), ε(n)) with probability smaller than 0.7.

Theorem 6.2. Suppose that Search3LIN(m + t, ε) is intractable where ε ≤ 1/4 and t ≥ Kn lnn for
some universal constant K. Then, AppSearch3LIN(m, ε) is also intractable.

Remark. The theorem holds for general constant sparsity d and general constant ε < 1/2 at the
expense of taking t to be O(m + n lnn) where the constant in the O notation depends in both ε
and d. Note that the overhead t is “swallowed” in a constant multiplicative overhead as long as
m = Ω(n lg n). This is essentially optimal and we cannot hope for a linear overhead t = O(n)
when m = O(n) since Search3LIN(O(n), ε) is information-theoretically hard. (There is not enough
information to recover x as about εd fraction of the bits of x are expected to be involved only in
noisy equations.)

To prove the theorem we show how to convert an algorithm A that solves AppSearch3LIN(m, ε)
with probability 0.7 for infinitely many n’s, into an algorithm C that solves Search3LIN(m + t, ε)
for the same input lengths. Given an input (M, b) ∈ F(m+t)×n

2 × Fm+t
2 , the algorithm C does the

following. At the first step C invokes the approximation algorithm A on the first m rows of the
input, and gets an approximation x̂ for x. Then, at the second step, C uses the information given

16

by the last t rows of the input to correct the errors in x̂. Specifically, given the additional list of
equations (T, v) ∈ Ft×n

2 × Ft
2, we will recover the i-th bit of x by letting each equation of the form

xi + xk + x` = vs to vote for the correct value of xi. This vote is simply x̂k + x̂` + vs, i.e., we
compute the value of xi assuming that vs is not noisy and that the approximation for x̂k and x̂` is
correct. Finally, we take the majority of all votes.

The following lemma, analyzes the probability that C guesses the right value of xi.

Lemma 6.3. Fix i ∈ [n] and let K be a sufficiently large constant. Conditioned on x̂ being an
0.1-close to x, the algorithm C outputs xi with probability at least 1− o(1/n), where the probability
is taken over the randomness of the last t = Kn ln n rows of the input, i.e., over the choice of
T

R←Mt,n and over the noise vector e′ R← Bert
ε which consists of the last t entries of the original

m + t-long noise vector.

The above lemma, together with a union bound, implies that, conditioned on x̂ being a good
approximation, the algorithm C recovers x with probability larger than 1−o(1). Hence, the overall
probability success is at least 0.7− o(1) > 2/3 for infinitely many n’s, and Theorem 6.2 follows.

6.1.1 Proof of Lemma 6.3

Fix x and x̂ and let S be the set of indices on which x and x̂ do not agree. By our assumption
the size of S is bounded by 0.1n. We will show that the index i is likely to participate in many
equations and that w.h.p most of these equations will vote for the correct value xi.

Let Q be the set of rows in T in which i participates. Let B ⊆ Q be the set of rows in which i
participates and, in addition, at least one of the other entries of the row is in S. We claim that,

Pr
T

R←Mt,n

[(|Q| > 0.5 · t/n)
∧

(|B| < 0.3|Q|)] > 1− 1/nΩ(K). (1)

Indeed, think of T as chosen by the following random process: for each row we first determine
whether it consists of the index i by tossing a coin whose success probability is α =

(
n
2

)
/
(
n
3

)
> 1/n;

then for those rows in which i appears we randomly choose two additional distinct random indices
from [n] \ {i}; finally, for those rows in which i does not appear, choose three distinct indices
uniformly at random from the set [n]\{i}. Hence, the random variable |Q| can be written as the sum
of t independent Bernoulli trials each with success probability α. Similarly, the random variable
|B| can be written as the sum of |Q| independent Bernoulli trials each with success probability
β < 2|S|

n < 0.2. Hence, Eq. 1 follows from a multiplicative Chernoff bound.
Fix a matrix T for which the event (|Q| > 0.5K lnn) ∧ (|B| < 0.3|Q|) holds. We claim that in

this case the algorithm C recovers xi with probability at least 1−1/nΩ(K), where the probability is
now taken over the choice of the error vector e′. Let χj be an indicator variable which equals to one
if the j-th equation outputs a good vote for xi. If j is in B = Q \ B, then χj is one whenever the
corresponding error bit e′j is zero which happens with probability 1−ε. On the other hand, if j ∈ B
then χj equals to one with probability at least ε. Also, the χj ’s are independently distributed. It
follows that the probability of getting a majority of correct votes increases when |B| decreases and
when ε decreases. Hence, it suffices to consider the case where |B| = 0.3|Q| and ε = 1/4. Let
χB =

∑
i∈B χi and χB =

∑
i∈B χi. Note that the expected value of χB is ε|B| = 0.075|Q| and

the expected value of χB is (1 − ε)|B| = 0.525|Q|. Therefore, the overall sum of the χj ’s is larger
than |Q|/2 as long as both χB and χB do not deviate too much from their expectation, which by a

17

Chernoff bound, happens with probability 1− 1/nΩ(K). Formally, we can lower bound the success
probability Pr[

∑
i∈Q χ > 0.5|Q|] by

Pr[(χB > 0.9ε|B|) ∧ (χB > 0.9(1− ε)|B|)] ≥ 1− 1/nΩ(K) (2)

where the inequality follows by applying a union bound and a Chernoff bound. The Lemma now
follows by combining Eq. 1 and 2 via a union bound, and by choosing a sufficiently large constant
K.

6.2 From Prediction to Approximate Search

We relate the Approximate Search problem to the following prediction version. We let D = {Dn}
be a sequence of distributions where Dn is distributed over 3-sparse matrices with n columns and
a polynomial number of rows.

Definition 6.4. The Predict3LIN(D, ε) problem is defined as follows:

• Input: a 3-weight vector v together with an ε-satisfiable 3-LIN instance (M, b) sampled as
follows: (M

v) R← Dn and b = Mx + e where x
R← Un and e

R← Berm
ε .

• Output: the inner product 〈x, v〉 =
∑

i xi · vi (mod 2).

We say that Predict3LIN(D, ε) is δ-intractable if for every probabilistic polynomial-time algorithm
A, and every sufficiently large n, A solves AppSearch3LIN(Dn, ε(n)) with probability smaller than
δ(n). By default we take δ = 0.99. In the special case where Dn is taken to be the uniform
distribution Mm,n for m = m(n) > n we use the abbreviation Predict3LIN(m, ε).

Theorem 6.5. Let ε ≤ 0.01. If AppSearch3LIN(m + 25n, ε) is intractable then Predict3LIN(m, ε)
is 0.99-intractable.

Before we introduce the reduction we will need the following lemma which transforms a random
3-LIN instance to a random 4-LIN instance.

Lemma 6.6. There exists an efficient algorithm B such that given an input pair (T, b) outputs a
pair (R, v) such that for every x ∈ {0, 1}n, if the input distribution is

(T, b = Tx + e), where T
R←M4t+n,n, e

R← Ber4t+n
ε ,

then the output distribution is exp(−t/4)-close (in statistical distance) to

(R,Rx + e′), where R
R←Mt,n,4, e

′ R← Bert
2ε(1−ε). (3)

Note that B does not know x. To prove Lemma 6.6 we view (T, b) as a system of 3-LIN equations
in x and partition them into pairs of equations that share a single variable xi, each pair can be
combined into a 4-LIN equation by simple addition. Furthermore, if the partition is done carefully,
then the resulting 4-LIN system is uniformly distributed. See Section A for a full proof of the
lemma.

We will prove Theorem 6.5 by showing how to convert an algorithm A that solves Predict3LIN(m, ε)
with probability 0.99 for infinitely many n’s, into an algorithm C that solves AppSearch3LIN(m +
25n, ε) for the same input lengths.

18

Algorithm C(M, b).

1. Partition M (resp. b) into two parts S and T (resp. w and z) where
S (resp. w) consists of the first m rows and T (resp. z) the remaining
25n rows.

2. Use the algorithm B of Lemma 6.6 to transform (T, z) to a a pair
(R, y) where each row of R ∈ Ft×n

2 has weight 4 and y ∈ {0, 1}t, where
t = 6n.

3. Let x̂ = 0n. For j = 1, . . . , t do the following:

(a) Let rj be the j-th row of R. Choose a random index ij from the
support of rj and define a 3-weight vector uj = rj \{ij}. If ij was
already chosen in one of the previous iterations than ignore the
current iteration. Invoke A on (S, w, uj) and record the result in
σj . Set x̂ij to be yj + σj .

4. Output x̂.

Theorem 6.5 follows from the following lemma.

Lemma 6.7. For those input lengths on which A solves Predict3LIN(m, ε) with probability 0.99,
the probability that C(M, Mx + e) outputs an assignment x̂ which is 0.1-close to x is larger than
0.8− o(1), where M

R←Mm,n, x
R← Un, e

R← Berm
ε .

6.2.1 Proof of Lemma 6.7

Fix an input length on which A succeeds. We say that the matrix S, the assignment x and the
error vector e′ (obtained by taking the first m coordinates of the m + 25n bit error vector e) are
good if

Pr[A(S, w = Sx + e′, v) = 〈x, v〉] > 0.95, (4)

where the probability is taken over the choices of x, e′ and v.

Claim 6.8. Suppose that S, x and e′ are good and that the output of B is distributed according to
Eq. 3 with no statistical deviation. Then, with probability 1− 2−Ω(n), the output x̂ is 0.1-close to x.

Proof. First observe that in each tuple (ij , uj , vj), the index ij is a random index in [n], the vector uj

is a random vector of weight 3 conditioned on being zero at the ij-th coordinate, and vj = 〈x, uj〉+χj

where χj is an error bit which equals to 1 with probability ε′ = 2(1− ε)ε < 0.02. Furthermore, all
ij , uj , χj are independently distributed.

Call an iteration j effective if ij was observed for the first time, and call it successful if x̂ij = xij .
We wish to lower-bound the number of iterations which are both effective and successful.

First, observe that, except with exponentially small probability (taken over the choice of ij ’s),
there are at least 0.99n effective iterations. Indeed, the indices (i1, . . . , it) contain less than 0.99n
distinct indices with probability at most

(
n

0.99n

)
0.996n < 2n(H2(0.99)+6 lg(0.99)) = 2−Ω(n).

19

Fix a sequence (i1, . . . , it) such that there are at least 0.99n effective iterations. We will show
that in this case, except with exponentially probability, at least 0.91n of the effective iterations are
also successful.

Let aj be an indicator random variable which is set to 1 if A fails to predict 〈x, ûj〉 in the j-th
iteration. The probability that the j-th iteration is successful is therefore Pr[χj + aj = 0]. Fix S, x
and e′, and let Q be the set of all weight-3 vectors v for which Eq. 4 holds. By the goodness of
S, x and e′, the set Q consists at least 0.95 fraction of all the possible

(
n
3

)
triples. Recall that uj

is uniformly distributed over all
(
n
3

) − (
n−1

2

)
triples in which ij does not participate. Hence, for

every fixed ij , the probability that uj lands in Q is at least 0.95−Θ(n2/n3) > 0.94. It follows that
the j-th iteration is successful with probability at least 0.98 · 0.94 + 0.02 · 0.06 > 0.92. Since each
iteration is successful independently of the others (as all the ξj ’s and aj ’s are independent) we get,
by a Chernoff bound, that except with exponentially small probability, at least 0.91 fraction of the
affective iterations are all successful. It follows that, whp, we have more than 0.9n iterations which
are both successful and affective, and the claim follows.

To finish the proof of Lemma 6.7 we note that by Markov’s inequality, the input (S, x, e′) is
good with probability at least 0.8 and that, by Lemma 6.6, the deviation of algorithm B results
only in error of 2−Ω(n). Hence, except with probability 0.2 + 2−Ω(n), the string x̂ is 0.1-close to x,
and the lemma follows.

6.3 Predicting over different distributions

In the following, we will consider variants of the Predict3LIN problem, in which the distribution of
the matrix (M

v) is changed.

Theorem 6.9. Let D = {Dn} be a distribution ensemble which is (1 − δ)-computationally indis-
tinguishable from Mm,n or Tp,n for p = m/

(
n
3

)
. Then, there exists a constant C = C(δ) for which

the 0.99-intractability of Predict3LIN(Cm, ε) implies that Predict3LIN(D, ε) is 1− δ/4 intractable.

We will prove the theorem in several steps. First, we show how to take a good predictor
A that solves Predict3LIN(D, ε) with probability θ and transform it into a good predictor for
Predict3LIN(C, ε) where the distributions C and D are not too far. If the distributions are close
(say, of statistical distance δ), then it is clear that A works well on Predict3LIN(C, ε) (i.e., solves
it with probability θ − δ). However, we are interested in the case where C and D are not very
close, i.e., the distance is at most 1 − δ for some small but fixed δ. In this case, even if A solves
Predict3LIN(D, ε) with very high probability (e.g., θ = 1), we cannot hope to turn A to a good
predictor on C as A might perform very badly on inputs which are common in C but exceptional
under D. The important observation is that we can efficiently detects these cases, and turn A into
an algorithm B for Predict3LIN(C, ε) which sometimes declares “I do not know”, but conditioned
on not saying so, outputs the correct prediction with good probability. Formally, we call such an
algorithm a weak predictor if, for infinitely many n’s, it outputs “I do not know” with no more
than constant probability α < 1, and, conditioned on not outputting “I do not know”, it outputs
a correct prediction with probability β > 1/2 which is bounded away from 1/2.

Lemma 6.10 (weak prediction over close distributions). Let D = {Dn} be a distribution ensemble
which is (1− δ)-statistically close to the ensemble C = {Cn}, for some constant 0 < δ < 1. Suppose
that there exists a predictor algorithm A that solves Predict3LIN(D, ε) with probability 1−δ/4. Then,
there exists a weak predictor B for Predict3LIN(C, ε).

20

Proof. Let α = (1− 3δ/4)/(1− δ/2) and let β = (α− 0.5)/4 by our assumption on 0 < δ < 1 being
a constant, both α and β are positive constants. Fix a good input length n for which A predicts
well. Let (M, b, v) be our input for Predict3LIN(C, ε). First, we estimate the probability

γ(M,v) def= Pr
x

R←Un,e
R←Ber`

ε

[A(T, Tx + e, u) = 〈x, u〉],

up to an additive error of β with confidence 1− 2−Ω(n) by using Chernoff bound. (This is done by
choosing n random x’s and e’s and checking how many of them satisfy A(M, Mx + e, v) = 〈x, v〉.)
If the estimation is smaller than α− β we output “I do not know”. Otherwise, we invoke A on the
triple (M, b, v) and output its prediction.

Analysis: Call a pair (M, v) good if γ(T, u) ≥ τ . By Markov’s inequality, when (M,v) is chosen
from D, it is good with probability at least 1−δ/2. Hence, a sample from C is good with probability
at least 1− δ/2− (1− δ) = δ/2 which is a constant. It follows that we output “I do not know” with
probability at most 1− δ/2 + 2−Ω(n) which is strictly smaller than 1. Moreover, if we do output a
prediction then it is correct with probability α − 2β − 2−Ω(n) > 1/2 which is bounded away from
1/2. Hence, we get a weak predictor.

Remark 6.11. It is not hard to verify that the above lemma generalizes to computational distance,
i.e., to the case where no efficient adversary can distinguish the ensemble Dn from the ensemble Cn

with probability greater than 1− δ.

Our next step is to show that the intractability of Predict3LIN overMm,n implies that Predict3LIN
is also intractable with respect to Tp,n where m ≈ p

(
n
3

)
. This is follows from the fact that Tp,n can

be emulated given a sample from M2m,n up to a statistical distance of 2−Ω(m). (We always assume
that p = p(n) is efficiently computable.)

Lemma 6.12. Let m = p
(
n
3

)
. Suppose that there exists a weak-predictor A for Predict3LIN(Tp,n, ε).

Then, there exists a weak-predictor for Predict3LIN(2m, ε).

Proof. The lemma follows from the fact that Tp,n can be easily emulated given a sample from
M2m,n up to a statistical distance of 2−Ω(m). Indeed, Tp,n can be written as a convex combination of

βt ·Mt,n. Hence, given an input for Predict3LIN(2m, ε) that consists of M
R←M2m,n, v

R←M1,n and

b = Mx+e where x
R← Un, and e

R← Berm
ε , we can sample an integer t according to β = (β1, . . . β(n

3)
)

if t > 2m, which happens with exponentially small probability, we fail. Otherwise, we output
(M ′, b′, v) where M ′ and b′ are the first t − 1 rows of M and b. Clearly, a good prediction for
(M ′, b′, v) is also good for (M, b, v).

Finally, we show that a weak predictor for Predict3LIN(m, ε) can be amplified into a predictor
that solves Predict3LIN(tm, ε) for sufficiently large constant t. The idea is to partition an instance
of Predict3LIN(tm, ε) into t instances for Predict3LIN(m, ε) and invoke the weak predictor on all
of them. The symmetric structure of the 3-LIN problem allows us to rerandomize each of the t
instances and therefore amplify the success probability.

Lemma 6.13 (Amplifying unpredictability via re-randomization). Suppose that we have a weak
predictor for Predict3LIN(m, ε) then there exists a constant t (which depends only in the parameters
of the weak predictor), for which Predict3LIN(tm, ε) is not 0.99-intractable.

21

Proof. Suppose that we have weak predictor A which outputs “I do not know” with probability
α < 1, and, conditioned on not outputting “I do not know”, it outputs a good prediction with
probability β > 1/2. Let t = t(α, β) be a constant that will be determined later. Given an input
(M, b, v) for Predict3LIN(Cm, ε) partition the matrix M (resp. the vector b) to t sub-matrices
M1, . . . , Mt (resp. vectors b1, . . . , bt) each with m rows. Rerandomize the i-th instance as follows:
choose a random xi

R← Un and a random permutation πi over [n]; Generate the triple (Ti =
πi(Mi), bi + Ti · πi(xi), π(v)), where we abuse notation and write π(A) to denote the matrix A with
columns permuted according to π.

Note that each of the t instances we created is a random instance of Predict3LIN(m, ε) and, in
addition, all the instances are independently distributed. Also, observe that given a good prediction
σi for the i-th instance we can compute a good prediction the original instance (M, v, x) by adding
σi (over F2) to 〈xi, v〉. Hence, we can apply A to each instance, translate its answer into a prediction
for (M,v, x) (or to an “I do not know” symbol) and output the majority over the actual predictions.
Since α and β are constants, we can use a Chernoff bound, to decrease the error probability below
0.01 by taking t to be a sufficiently large constant.

The proof of Theorem 6.9 now follows as a corollary from Lemmas 6.10, 6.12, 6.13 and Re-
mark 6.11.

6.4 Completing the proof of the main theorem

By combining Theorems 6.2, 6.5, and 6.9, we derive the following (stronger) version of Theorem 5.5.

Theorem 6.14 (main theorem - restated). For every constant 0 < δ < 1, there exists a constant
C = C(δ), such that for every function m = m(n), every ε = ε(n) ≤ 0.01, and every distribution
ensemble D = {Dn} which is (1− δ)-computationally indistinguishable from Mm,n or Tm/(n

3),n the
following holds. If Search3LIN(C(m+n lg n), ε) is intractable then the public-key encryption scheme
E(D, ε) is (1− δ/2)-private.

7 PKE based on d-LIN and Decisional Unbalanced Expansion

In Section 5 we constructed a PKE based on the intractability of Search3LIN(n1.4, n−0.2), our goal
in this section is to relax this assumption and replace it with the intractability of solving d-LIN
problem with a smaller number of equations (m = n log n), and larger noise rate (e.g., ε = n−0.1).
We do this at the expense of introducing an additional assumption regarding the hardness of
detecting the vertex expansion of random unbalanced bipartite graphs with planted shrinking set.

7.1 The Assumption

The DUE problem. In the following we view a d-sparse matrix M ∈ Fm×n
2 as a bipartite graph

G = ((VTop, VBot), E) with m “top” nodes (each node correspond to a row) and n “bottom” nodes
(each node correspond to a column) where each top node has degree d. Graphs chosen from
Mm,n,d will be, with high probability, very good expanders. That is, we expect that small sets S
of top vertices will have almost d|S| neighbors. The distribution Fq

n,m,d is a perturbed version of
Mm,n,d in which we plant a single q-size top subset S with a small (“shrinking”) neighborhood.
Formally, Fq

m,n,d is the result of the following random process: choose G from Mn,m,d, choose at

22

random subsets S ⊆ VTop and T ⊆ VBot of sizes q and q/3 respectively, and choose a random graph

H
R←Mq/3,q,d. Then replace all the d|S| edges in G that are incident to S with the edges from H.

In the DUE problem the goal is to distinguish between a random graph sampled from Mn,m,d to a
graph sampled from Fq

n,m,d.

Definition 7.1. Let m = m(n), d = d(n) and q = q(n) be some functions of n. We say that
DUE(d,m, q) is δ-intractable if the distribution ensembles Mn,m(n),d(n) and Fq

n,m(n),d(n) are δ com-
putationally indistinguishable.

The problem becomes harder when m is increased, and, at least intuitively, it is becomes easier
when d is increased as in this case it is harder to detect the shrinking subgraph. (This is opposed
to d-LIN where the problem becomes easier when m is increased, and harder when d is decreased.)
Again, one may hope that the problem is hard even for subexponential circuits (below the trivial
limit nq).

Dense hyper-subgraph formulation. The DUE problem can be seen as an average-case variant
of a combinatorial problem (graph expansion) that is NP-hard to solve exactly in the worst-case.
It can also be formulated as a conjecture on the hardness of a planted dense subgraph problem in
hypergraphs. We can look at an (m, n, d)-graph G as a d-uniform hypergraph H of n vertices and
m hyperedges, where the i-th hyperedge of H contains the d neighbors of the i-th top-vertex of G.
In this formulation, the DUE assumption is about the hardness of distinguishing hypergraphs that
contain a somewhat dense sub-hypergraph — a set T of q′ = q/3 vertices, such that the induced
sub-hypergraph on T has at least q hyperedges— from graphs where the induced sub-hypergraph
of every set of q′ vertices (for q′ up to roughly n0.1 size or some other super-logarithmic bound)
has only about q′/d edges. Thus DUE is equivalent to the problem of distinguishing between
a random fairly sparse hypergraph (m = O(n) hyperedges) and a random hypergraph with a
planted somewhat dense (average degree larger than 1) small subgraph. Indeed, the analog of this
problem for standard graphs (i.e., 2-uniform hypergraphs) has been studied by several works (e.g.,
[FPK01, Kho04, BCC+10, ABBG10]). This is known as the densest k-subgraph problem— finding
a subgraph of k vertices with highest average degree. The variant of this problem where we ask for
a subgraph of high minimum degree is fixed-parameter intractable [ASS08].

Let SearchLIN(d,m, ε) be the natural generalization of Search3LIN to sparsity d; that is, the
goal is to find a solution to a d-LIN instance chosen from the uniform distribution Mm,n,d with
noise rate ε. We will construct a public-key encryption scheme based on the following assumption
which combines the intractability of SearchLIN and DUE:

Assumption 7.2. There exists a function q = q(n) = o(n), and an even constant d, for which:

1. SearchLIN(d/2,mS , ε) is intractable for every mS ∈ O(n lg n) and every ε ∈ Ω(1/q).

2. DUE(d, mD = Cn, q) is 1/2000C2 intractable for sufficiently large constant C.

Remarks on Assumption 7.2.

• (Parameters) It seems likely that Assumption 7.2 holds for the following setting of the pa-
rameters: Take d to be a small constant, q to be nδ for some small constant 0 < δ ¿ 1/2
(e.g., 1/10), and set C to be much larger than d1/δ (say, 100d1/δ or even d2/δ). See Section 10
for a detailed discussion on the last constraint.

23

• (Evidence for SearchLIN) In addition to all the evidence listed in Section 5.1 (i.e., resistance
against k-wise adversaries, AC0 circuits, and Lasserre SDPs), we can rely on Viola [Vio08]
and prove that the current parameters supply resistance against adversaries that can be
represented as polynomials over F2 of degree α lg n for some constant α. (See Section 9.)

• (Evidence for DUE) A natural way to try and break DUE is by counting the numbers of small
subgraphs in the given graph, with the hope that they “pick up” the planted, denser part.
Indeed, this approach seems to yield the best known algorithms for the densest sub-graph
problem [BCC+10]. In Section 10 we show that DUE cannot be broken by counting short (up
to nε) cycles in the given graph. We feel that similar results hold for other subgraphs, and
that such “local attacks” are not too useful in our chosen parameters. We also relate DUE
(and its variants) to the hardness of variants of other natural combinatorial problems such
as the planted clique problem and small-set expansion in general (not necessarily bipartite)
graphs.

7.2 A Public-Key Encryption Scheme

Again, we rely on the general bit-encryption of Figure 1, but this time our key generation algorithm
will be based on the DUE planted distribution.

The key generation algorithm. We will sample a pair of private/public-keys as follows. Let
M be an d-sparse matrix chosen from Fq

n,m(n),d and let S be a shrinking set of size q. We say that a
row i in S is degenerate if it is spanned by the other rows in S. Go over the rows of S in a random
order, until a degenerate row i is found. (Such a row must exist as S is shrinking and therefore the
column rank of the rows indexed by S is smaller than q.) Then, permute the i-th row of M with
the last row, and set the public-key to be the permuted matrix M ′, and the private key to be the
set S′ which contains the last row of M ′ and the rows that span it, i.e.,

∑
j∈S′ M

′
j (mod 2) = 0.

7.2.1 Security

We will rely on a generalization of Theorem 5.5 in order to prove that the scheme is secure. Recall
that we use E(D, ε) to denote the scheme of of Figure 1 instantiated with noise ε = ε(n) and
public-key taken from some distribution ensemble D = {Dn}.
Theorem 7.3 (generalization of Thm 5.5). Let 0 < δ < 1 be a constant, d ∈ N be an even number,
and m(n) = Ω(n lg n), ε = ε(n) ≤ 0.01 be functions. Let D = {Dn} be a distribution ensemble
which is (1 − δ)-computationally indistinguishable from Mm,n,d or Tm/(n

d),n. Then there exists a

constant C which depends only in δ and d such that if SearchLIN(d/2, Cm, 1−√1−2ε
2) is intractable

then the public-key encryption scheme E(D, ε) is (1− δ/2)-private.

The main new ingredient in the proof of the theorem (compared to the proof of Thm 5.5) is a
new reduction from the prediction variant of d-LIN to the approximate-search variant of 2d-LIN
which uses MAX-CUT as an intermediate problem. See Section 7.4 for full details.

Let K = Kq
n,m,d be the distribution of the public key. Our goal now is to show that K is

(1 − δ) computationally close to the ensemble M = Mn,m,d for some constant δ, and then apply
Theorem 7.3. Recall that the intractability of DUE asserts that the above is true for the distribution

24

F = Fq
n,m,d, and note that F can be written as a convex combination αK + (1 − α)K, where K

is essentially F conditioned on the last row being out of the planted shrinking set. In general,
this does not necessarily means that a good distinguisher for K, yields a good distinguisher for F .
Consider, for example, an algorithm that always output 1 on inputs from K, but will output 0 on
inputs from K. Such an algorithm can be a very good distinguisher for K, and still be useless for F
(say, if it outputs 1 on the uniform distribution with probability α). The crux of the lemma, is to
show that in this case, we can distinguish K from K, and therefore can recover some information
regarding the planted shrinking set. This information allows us to certify the “shrinkage” of a
noticeable fraction of the graphs in F , and so it leads to a distinguisher for F .

Theorem 7.4. Suppose that DUE(d,Cm, q) is 1/2000C2 intractable. Then Kq
n,m,d is (1− δ) com-

putationally close to the ensemble Mn,m,d where δ = δ(C) is a constant which depends only in the
constant C.

We can prove the following corollary.

Corollary 7.5. Under Assumption 7.2, there exists a semantically-secure public-key encryption
scheme.

Proof. We will use the parameters d and q which satisfy Assumption 7.2, and set the length pa-
rameter m to the function mD(n) ∈ Θ(n) promised in Assumption 7.2. By Theorems 7.3 and 7.4,
Assumption 7.2 implies that the resulting scheme is β-private for some constant 0 < β < 1 as long
as the noise rate ε is taken to be 1/Cq for an arbitrary constant C. Furthermore, β does not depend
on the constant C. Hence, by taking C to be sufficiently large, we can reduce the decryption error
α = 1

2 − 1
2(1 − 2 · ε)q (see Lemma 5.3) below (1 − √

β)/2. Now, we have a weak PKE and the
corollary follows by [HR05, Thm. 6].

We mention that, again, our weak encryption scheme can be converted to an oblivious transfer
protocol.

7.3 Proof of Thm 7.4

We prove the following Theorem:

Theorem 7.6 (Thm 7.4 restated). Let q(n) = o(n) and d ≥ 3. Suppose that DUE(d,Cm, q)
is 1/2000C2 intractable. Then Kq

n,m,d is α computationally close to the ensemble Mn,m,d where
α = max(1− 1/500C2, 0.99).

Let Kn = Kq
n,m,d, Fn = Fq

n,m,d and Mn = Mn,m,d. For a matrix G ∈ support(Fn) we let S(G)
be the planted shrinking set of rows of G, let S(G) = [m] \ S(G) be the set of rows out of the
planted shrinking set, and let D(G) ⊆ S(G) be the subset of degenerate rows (the ones that are
spanned by other rows in S(G)), and let D(G) = S(G) \D(G).

Consider the following ensembles over pairs:

1. (G, i) where G
R← Fn and i

R← D(G).

2. (G, i) where G
R←Mn and i

R← [m].

25

It is not hard to see that a δ-distinguisher for this ensembles exists if and only if there exists a
δ-distinguisher for Kn and Mn. (Recall that Kn is just Fn conditioned on having the last row in
D(F).) Hence, we may prove the theorem in these terms.

Assume, towards a contradiction, that there exists a probabilistic polynomial time distinguisher
A such that for infinitely many n’s we have

Pr
G

R←Fn,i
R←D(G)

[A(G, i) = 1]− Pr
G

R←Mn,i
R←[m(n)]

[A(G, i) = 1] > max(1− 1/500C2, 0.99). (5)

We will present an algorithm B that given a graph G outputs “planted” with probability 1/20
when the graph G is chosen from Fn, and outputs “random” whp (1− o(1) over a random graph
G

R←Mn. Such an algorithm clearly breaks our assumption regarding DUE.

The algorithm B. Given a matrix G, we remove all the rows i for which A(G, i) outputs 0. Let
G′ be the resulting matrix. If G′ has more than n/18C rows output “random”. Otherwise, think of
G′ as a bipartite graph with (at most) n/18C left vertices with degree d and n right vertices, and
check whether there exists a perfect matching that consists of all left nodes. If so output “random”,
otherwise, output “planted”.

Claim 7.7. For all sufficiently large n’s, if G
R←Mn then B will output “random” with probability

at least 1− o(1).

Proof. Suppose that B(G) outputs “planted”. Then, G′ has no matching that consists of all left
vertices, and therefore, by Hall’s theorem, G′ has a shrinking left set. Since G′ is a subgraph of
G, it follows that G has a left set of vertices of size at most n/18C which shrinks. By standard
calculations, a random graph G

R←Mn, will have such a set only with probability o(1). Specifically,
this probability is bounded by

n/18C∑

s=d

(
Cn

s

)
·
(

n

s

)
·
(s

n

)ds
≤

n/18C∑

s=d

(
Cn2e2sd

s2nd

)s

≤
n/18C∑

s=3

(
Ce2s

n

)s

≤
lg2 n∑

s=3

(
Ce2 lg2 n

n

)3

+
n/18C∑

s=lg2 n

(
Ce2n

18Cn

)lg2 n

≤ o(1),

where the second inequality holds as d ≥ 3. This completes the proof of the claim.

It is left to prove the following lemma.

Lemma 7.8. For infinitely many n’s, if G
R← Fn then B will output “planted” with probability at

least 1/20.

Before we prove the lemma, let us collect several observations. By the assumption on the
indistinguishability of DUE, for all sufficiently large n’s we have

Pr
G

R←Fn,i
R←[m]

[A(G, i) = 1]− Pr
G

R←Mn,i
R←[m(n)]

[A(G, i) = 1] < 1/2000C2, (6)

26

as otherwise, we can tell whether a graph G came from Fn or from Mn by appending a random
index i and applying A to (G, i).

Fix an n for which both Eq. 5 and 6 hold, and let m = m(n), q = q(n), K = Kn, F = Fn and
M = Mn. We say that a matrix G chosen from F is good if the following holds:

Pr
i

R←S(G)

[A′(G, i) = 1] ≥ 0.6 (7)

Pr
i

R←S(G)

[A′(G, i) = 1] ≤ 1/20C2 (8)

Claim 7.9. A random G
R← F satisfies the first property of goodness (Eq. 7) with probability at

least 1/10.

Proof. By Eq. 5 we may assume that

Pr
G

R←F ,i
R←D(G)

[A(G, i) = 1] > 0.99.

Hence, by Markov’s inequality, with probability at least 1/10, a random G
R← F satisfies

Pr
i

R←D(G)

[A(G, i) = 1] > 0.9.

To finish the proof it suffices to show that for every G ∈ support(F) we have |D(G)| ≥ 2|S(G)|/3,
as in this case

Pr
i

R←S(G)

[A(G, i) = 1] ≥ 2/3 Pr
i

R←D(G)

[A(G, i) = 1] > 0.6.

Indeed, for a matrix G let H be the submatrix which consists of the rows of the shrinking set S(G).
Then, the number of non-degenerate rows |D(G)| is at most rank(H) which is bounded by q/3 as
H has only q/3 non-zero columns.

Claim 7.10. A random G
R← F which satisfies the first property of goodness (Eq. 7), will also

satisfy the second property (Eq. 8) with probability at least 1/2.

Proof. Let E be the distribution of G
R← F conditioned on the event that G satisfies Eq. 7 but

violates Eq. 8. If the claim does not hold we can write

Pr
G

R←F ,i
R←[m]

[A(G, i) = 1] >
1
2
· 1
10

Pr
G

R←E,i
R←[m]

[A(G, i) = 1]

=
1
20

(
Pr

G
R←E,i

R←S(G)

[A(G, i) = 1]
q

m
+ Pr

G
R←E,i

R←S(G)

[A(G, i) = 1](1− q

m
)

)

>
1
20

(
0.6

q

m
+ (1/20C2)(1− q

m
)
)

> 1/400C2,

where the last inequality follows as C ≥ 1. On the other hand, by 5, we know that

Pr
G

R←Mn,i
R←[m(n)]

[A(G, i) = 1] < 1/50C.

27

It follows that

Pr
G

R←Fn,i
R←[m]

[A(G, i) = 1]− Pr
G

R←Mn,i
R←[m(n)]

[A(G, i) = 1] > 1/400C2 − 1/500C2 = 1/2000C2,

which contradicts Eq. 6.

By combining the two claims it follows that a random G
R← F is good with probability at least

1/20. We can now prove Lemma 7.8 and finish the proof of the theorem.

Proof of Lemma 7.8. It suffices to show that B outputs “planted” whenever G is good. Indeed, if
G is good then G′ has at most q +(m− q)/20C2 < q +n/20C < n/18C rows (recall that q = o(n)).
In addition, by the first property of goodness, at least 0.6q rows of the shrinking set S(G) appear at
G′. Furthermore, the neighborhood of these rows is at most q/3 and therefore, by Hall’s theorem,
G′ has no perfect matching, and the claim follows.

7.4 Proof of Thm 7.3

The proofs of Theorems 6.2 and 6.9 directly generalize to the case of d-LIN for arbitrary constant
d (with a constant multiplicative loss of the parameters in the case of Theorem 6.2.) However, the
approach taken in the proof of Theorem 6.5 (which transforms a predictor to approximate-inverter)
is specifically tailored to the case of d = 3. Below, we show how to prove a generalization of this
theorem by relying on a different approach.

Theorem 7.11. There exists a constant C > 0 and a constant 0 < µ < 1/2 for which the following
hold. For every ε ≤ µ, m > n and a constant d ≥ 3, the intractability of AppSearchLIN(d,Cm, ε)
implies that PredictLIN(2d,m, 2ε(1− ε)) is (1− µ)-intractable.

The idea is to use the predictor to obtain a random instance of 2-LIN problem, then to use an
approximation algorithm to obtain a string x̂ which satisfies many of the constraints, and finally
argue that since the instance is random x̂ is close in Hamming distance to x.

7.4.1 Using a predictor to reduce AppSearchLIN to 2-LIN

We show how to convert an algorithm A that solves PredictLIN(2d,m, 2ε(1−ε)) with probability 1−µ
for infinitely many n’s, into an algorithm B that takes a random instance of AppSearchLIN(d,Θ(m+
t), ε) and generates a random instance of AppSearchLIN(2, t, ε′) with the same planted assignment
where ε′ = ε′(µ, ε) decreases with µ and ε. Given an input (M, b) ∈ F(5t+4m−4)×n

2 × F5t+4m−4
2 , the

algorithm B does the following.

28

Algorithm B(M, b).

1. Partition M (resp. b) into two parts M1 and M2 (resp. b1 and b2)
where M1 (resp. b1) consists of the first 5t rows and M2 (resp. b2) the
remaining 4m− 4 rows.

2. Use the algorithm A1 of Lemma A.1 to transform (M1, b1) to a pair
(R, y) where each row of R ∈ Ft×n

2 has weight 2d− 2 and y ∈ {0, 1}t.

3. Use the algorithm A2 of Lemma A.2 to transform (M2, b2) to a pair
(R′, y′) where each row of R′ ∈ F(m−1)×n

2 has weight 2d and y′ ∈
{0, 1}m−1.

4. For j = 1, . . . , t do the following:

(a) Generate an instance of PredictLIN(2d,m, 2ε(1 − ε)) as follows.
Let rj be the j-th row of R. Choose two distinct random indices
ij and kj that do not participate in the support of rj and define
a 2d-weight vector uj by taking rj and turning the ij and kj

components to 1’s. Invoke the predictor A on (R′, y′, uj) and
record the result in σ′j .

5. Output the pair (M ′, b′) where M ′ ∈ Ft×n
2 is the 2-sparse matrix whose

j-th row has ones in the locations ij and kj , and the j-th entry of the
vector b′ ∈ {0, 1}t is σ′j + yj (mod 2).

Lemma 7.12. If the input to B is a random instance of AppSearchLIN(d, 5t + 4m − 4, ε) with
planted assignment x, then the output of B is at most (0.1 + o(1))-far (in statistical distance) from
an instance of AppSearchLIN(2, t, ε′) with the same planted assignment x. Furthermore, ε′ decreases
with ε and µ.

Proof. First note that by definition the output matrix M ′ ∈ Ft×n
2 is a random 2-sparse matrix. Let

us assume for simplicity that Lemmas A.1 and A.2 perfectly generate uniform ε′ = 2ε(1− ε)-noisy
instances of 2d-LIN (resp. (2d− 2)-LIN) with no statistical deviation. (This assumption will have
only exponentially small affect on the final probability quantities.)

For a triple of (m − 1, n, 2d)-sparse matrix T , an n bit vector x, and an m − 1 noise vector e,
define

α(T, x, e) = Pr[A(T, Tx + e, z) = 〈x, z,]〉,
where the probability is taken over the coin tosses of A and the uniform choice of a 2d-sparse vector
z. Let us condition on the event that for the original planted assignment x and the pair (R′, y′)
generated in the 3-rd step of B, we have that α = α(R′, x, y′−R′x) is not smaller than β = 1−10µ.
We let E denote this event. By Markov’s inequality, E happens with probability at least 0.9 over
the choice of x,M2, b2 and the internal coin tosses of A2. (Recall that over a random instance, our
predictor succeeds with probability 1− µ.)

Claim 7.13. Conditioned on E, the output vector b′ can be written as M ′x + e′ where e′ R← Bert
ε′

and ε′ = 2ε(1− ε)α + (1− α)(1− 2ε(1− ε)) ≤ 2ε(1− ε)(1− 10µ) + (10µ)(1− 2ε(1− ε)).

29

Proof. Each of the entries of the vector σ′ is a good prediction with probability exactly α indepen-
dently of the other entries (where the probability is taken over the choice of the indices ij and kj

and the matrix R which in turn is induced by the choice of M1). In addition, By Lemma A.1, each
entry of y is noisy with probability 2ε(1− ε) independently of the other entries and independently
of R, and so independently of whether the σ′j ’s are correct. Hence, each of the entries of the output
vector b′ is noisy with probability 2ε(1− ε)α + (1− α)(1− 2ε(1− ε)), and the claim follows.

Hence, the output of the algorithm is at most 0.1+o(1)-far from an instance of AppSearchLIN(2, t, ε′),
and the lemma follows. (The o(1) terms is due to the deviation in Lemmas A.1 and A.2.)

7.4.2 Finding an approximate solution to 2-LIN

We should now solve a random instance of AppSearchLIN(2, t = Θ(n), ε′). Recall that there are
known algorithms which given a (1 − ε)-satisfiable 2-LIN instance find an assignment x′ which
satisfy (1 − ε′) of the constraint of the problem. (This is the standard notion of approximating
2-LIN.) In particular, the seminal work of [GW95] provides such an algorithm with ε′ = O(

√
ε).

However, we are interested in slightly different approximation task: we need to find an assignment
x̂ which is very close to the planted assignment x. Fortunately, when the 2-LIN instance is random
(more precisely, when the constraint graph is a good expander) we can show that the two tasks are
essentially equivalent.

Lemma 7.14. For every constant 0 < δ < 1 there exists a constant C = C(δ) > 1 for which the
following hold. Let (M, b) be a random 2-LIN instance where M

R← Mt=Cn,n,2 and b = Mx + e

with x
R← Un and e

R← Bert
ε. Then, except with exponentially small probability, any assignment x′

which violates less than a δ/5− 2ε fraction of the constraints will be at least δ-close (in Hamming
weight) to x.

Proof. Let C = C(δ) be a constant whose value will be determined later. Think of M as a random
(t, n, 2) graph ((VTop, VBot), E). For a set S of bottom vertices we define Γ1(S) to be the set of
neighbors of S which have only a single neighbor in S. We prove the following claim:

Claim 7.15. With all but exponentially small probability over the choice of M , for every set S of
size at most δn, we have |Γ1(S)| > δCn/5.

Proof. Consider the event F where for every set S of size at most δn, we have (F1) |E(S)| < 2.5δCn
and (F2) |Γ(S)| > 1.5δCn, where E(S) is the set of edges incident to S, and Γ(S) is the set of
neighbors of S. By counting edges we observe that whenever F holds we also have |Γ1(S)| > 0.2δCn.
Hence, it suffices to bound the probability of F . For a fixed set S the event (F1) is violated with
probability at most exp(− 1

16 · 2Cnδ
3). This follows by defining a random variable to each of the 2Cn

edges which indicates whether The i-th edge touches S. These are independent Bernoulli variables
with expectation p ≤ δ, hence the bound can be derived from a Chernoff bound.

Similarly, we can bound the probability that (F2) is violated for a fixed set S by exp(−Cnδ
16).

Again, this can be proved by defining Cn random variable which indicate whether the i-th top
node is connected to a node in S, and then applying a Chernoff bound.

By applying a union bound over all S’s we get that F is violated with probability at most
(

n

δn

)
· exp(−Cnδ/24),

30

which is smaller than exp(−Ω(n)) for sufficiently large constant C = C(δ).

Let us now condition on the event where M satisfies the claim and the planted assignment x
satisfies (1− 2ε)-fraction of the constraints of (M, b) (i.e., y = Mx is 2ε-close to b). By a Chernoff
bound and by the claim above, this happens with all but exponentially small probability. Assume
that x′ is δ-far from x. Then, the vectors y = Mx and y′ = Mx′ disagree in at least (δ/5)Cn
indices and so y′ differ from b in at least (δ/5− 2ε)Cn locations. It follows that x′ violates at least
a δ/5− 2ε fraction of the constraints.

7.4.3 Complementing the proof of Thm. 7.11

Let θ be a sufficiently small constant and let µ, ε < θ and let C be a sufficiently large constant.
Suppose that there exists an algorithm A that solves PredictLIN(2d,m, 2ε(1− ε)) with probability
1− µ for infinitely many n’s. Given an instance of AppSearchLIN(d, 5Cn + 4m− 4, ε) we will find,
with probability 0.8, an approximate assignment which is 0.1-close to the planted assignment, and
derive a contradiction.

Our approximate-inversion algorithm works as follows. First we transform the d-LIN instance to
an instance which is (0.1+o(1))-close to an instance of AppSearchLIN(2, Cn, ε′(θ)) via Lemma 7.12.
Then, we apply the algorithm of [GW95] to obtain a solution x̂ which satisfies a fraction of at least
1 − ε′′(θ) of the constraints with probability at least 0.9 − o(1) (where ε′′ = O(

√
ε′)). Now use

Lemma 7.14 to argue that with probability 0.9− o(1), the vector x̂ is at least δ-close (in Hamming
weight) to x for δ(C, θ) which is smaller than 0.1 for a proper choice of C and θ.

8 PKE based on DUE and DSF

We now describe a variant of our schemes, in which the d-LIN assumption is replaced by the hardness
of non-linear constraint satisfaction problem which relies on the existence of certain pseudorandom
generators in NC0. (This variant was announced in the preprint [BW08], subsumed by the current
work.) We also show that the security of the resulting scheme implies that O(log n) Juntas cannot
be learned efficiently.

8.1 The DSF assumption

For an (m,n, d) graph G = ((VTop, VBot), E), and a predicate f : {0, 1}d → {0, 1}, we define the
function Gf : {0, 1}n → {0, 1}m obtained by mapping every x ∈ {0, 1}n to (f(xΓ(1), . . . , f(xΓ(m)),
where Γ(i) denotes the neighbors of the i-th “top” node. Goldreich [Gol00] considered the case
where m = n and conjectured that whenever the graph G is a good expander (e.g., when G is
random) and the predicate f is non-trivial, the function Gf is one-way. This conjecture is supported
by several practical and theoretical evidences, including resistance against “myopic” backtracking
algorithms [Gol00, Pan01, CEMT09]. We rely on a similar (yet stronger assumption) and conjecture
that even when m is super-linear, the function Gf is a good pseudorandom generator. Our third
PKE will be based on a combination of this assumption and DUE. Formally,

Assumption 8.1. There exist parameters m = m(n) = ω(n), ε = ε(n) ≤ 1/10 and a constant d,
for which:

1. DUE(d, m, q) is ε intractable for some q ∈ Θ(log n).

31

2. (Decisional Sparse Function DSF) There exists a function f : {0, 1}d → {0, 1} for which
the distribution (G,Gf (Un)) is ε-indistinguishable from the distribution (G,Um) where G

R←
Mm,n,d.

Note that q = O(log n) and therefore, in order to avoid some attacks on DUE, we should let m
be superlinear in n (e.g., m = n1.1). We think of ε as a small constant (e.g., 0.01).

Evidence for DSF. In Section 11 we identify simple combinatorial properties that makes a
function f a plausible candidate for the DSF assumption. Specifically, we suggest to use the
majority of three parities on d/3 bits each. Some of our evidence for the SearchLIN assumption
hold for this (and other) instantiations of the DSF assumption as well. In particular, the following
theorem is proved in Section 11:

Theorem 8.2. Assumption DSF instantiated with the “majority of three parities” function cannot
be refuted using distinguishers that compute AC0 circuits, linear tests, or myopic distinguishers
reading all the entries of G and

√
n of the remaining output bits.

Recently, [BQ09] showed that Goldreich’s function becomes vulnerable when the output length
m is sufficiently large and the predicate f is biased towards a pair of the inputs. Theorem 8.2 (and
its generalization for δ-resilient functions see Section 11) complements this result and shows that
when the predicate is not sensitive to small sets of inputs, the resulting function seems to be secure
even for large values of m’s.

DSF and NC0 cryptography. The DSF assumption implies the existence of a pseudorandom
generator of large (superlinear) stretch in NC0. The existence of such generator was studied
recently in a sequence of works [CM01, MST03, AIK04, MST03]. Under widely believed assump-
tions, Applebaum et al [AIK04] show that there exists a pseudorandom generator mapping n bits
to n +

√
n bits that can be computed in NC0. A construction that achieves linear stretch (e.g.,

n 7→ 2n) based on a specific assumption (closely related to SearchLIN) was given in [AIK06]. Finally,
a candidate construction with polynomial stretch was given by [MST03], who also showed that a
generator where each output bit depends on d input bits cannot have output of length longer than
Õ(nd/2). Our DSF assumption can be phrased as the assumption that a polynomial (say n 7→ n1+δ)
stretch10 NC0 generator exists, and in fact it can be defined by mapping the inputs to the outputs
via a random graph. This assumption is related to the [MST03] construction.

8.2 Constructing PKE

Let m = m(n), q = q(n), ε = ε(n), d ∈ N, and f : {0, 1}d → {0, 1} be parameters which sat-
isfy Assumption 8.1. We rely on the following construction which is inspired by Naor’s commit-
ment [Nao91]:

• Key generation: Given security parameter 1n, we will choose a graph G
R← Fq

n,m,d together

with a q-size shrinking set S, as well as a random string r
R← Um. We publish the pair (G, r)

as the public-key. We let the private key consists of the shrinking set S, and the graph H
which is the subgraph of G induced by the set S and its neighbors.

10The use of logarithmic-size shrinking set forces us to take m to be super linear in n.

32

• Encryption: Choose a random x
R← Un. To encrypt the bit 0 output y = Gf (x); To encrypt

the bit 1, output y = Gf (x) + r (mod 2).

• Decryption: given a ciphertext z, output 0 if and only if zS the restriction of z to the set S
is in the image of Hf . (This verification can be implemented efficiently by trying all possible
2q/3 = poly(n) preimages.)

Lemma 8.3. All but a 2−q/3 fraction of the keys are errorless. In fact, for every G sampled from
Fq

n,m,d for all but a 2−n/3 fraction of r ∈ {0, 1}m, we have perfect correctness Dec(Enc(σ;x)) = σ
for every randomness x and plaintext σ ∈ {0, 1}.
Proof. Fix G,S and H. Let r′ = rS . Call r′ bad if there are two different preimages w0, w1 ∈
{0, 1}q/3 for which Hf (w0) = Hf (w1) + r′. Clearly, a decryption error can happen only if r′ is bad.
Since any bad r′ corresponds to (at least) one pair of w0, w1, we can bound the number of bad r’s
by 2q/3 · 2q/3 ≤ 22q/3. However, r′ R← Uq and therefore r′ is bad with probability at most 2−q/3.

Lemma 8.4. Under Assumption 8.1, the above scheme is 4ε private.

Proof. Let G
R← Fq

n,m,d, r
R← Um) be the real public-key and Ĝ

R← Mn,m,d be a “fake” public-key.
Define the following hybrids:

D1 = (G, r,EncG(0)), D2 = (Ĝ, r,EncĜ(0)), D3 = (Ĝ, r,Um)

D4 = (Ĝ, r,Um + r), D5 = (Ĝ, r,EncĜ(1)), D6 = (G, r,EncG(1)).

By the DUE assumption, the pair D1 and D2 (resp., D5 and D6) are ε-indistinguishable. Moreover,
by the DSF assumption, the pair D2 and D3 (resp., D4 and D5) are also ε-indistinguishable.
Finally, it is not hard to see that D4 and D3 are just equivalent. Hence, D1 and D6 are 4ε
indistinguishable.

Since, ε < 1/10 and q ∈ Θ(log n) we get a weak PKE scheme with 1 − 1/poly(n)-correctness
and 2/5-privacy. Hence, we derive the following corollary

Corollary 8.5. Under Assumption 8.1, there exits a semantically secure PKE.

8.3 Hardness of Learning Juntas

A function g : {0, 1}m → {0, 1} is k-junta if it depends in at most k of its variables. The problem of
learning k-juntas in less than mΩ(k) time is a well-known open problem in computational learning
theory [Blu94, BL97]. We can use Assumption 8.1 to argue that O(log m)-juntas cannot be PAC-
learned in polynomial time. The idea is to use the fact that given an m-bit ciphertext our decryption
algorithm looks at only O(log n) = O(log m) of the bits of the ciphertext, and hence it computes
an O(log n) = O(log m)-junta. The security of the PKE implies that this function is hard to learn.
Formally,

Lemma 8.6. Under Assumption 8.1, no efficient algorithm PAC-learns O(log m) juntas.

33

Proof. By Lemma 8.4, for every efficient algorithm A, and all sufficiently large n’s we have

Pr
G,s,σ,x

[A(G, r,EncG,r(σ; x)) = σ] ≤ 1
2

+
4ε

2
< 0.7. (9)

Suppose that we have a learner L with accuracy 0.9 and confidence 0.9. Then, we can use it to attack
the scheme. Given an input (G, r, w = EncG,r(σ;x)), we will use L to learn the decryption function

g = DecH,S with instances coming from the distribution z
R← EncG,r(U1). We can sample labeled

examples from this distribution by choosing a random label b
R← U1 and letting z = EncG,r(b;Un).

When L outputs an hypothesis h, we apply it to w and output the resulting label.

Analysis. Suppose that the input comes from the “right” distribution, i.e., G
R← Fq

n,m,d, r
R←

Um, σ
R← U1, and x

R← Un. If the key is errorless, which by Lemma 8.3 happens with probability
1−o(1), the emulation of the distribution (z R← EncG,r(U1), g(z)) is perfect, and therefore we output
the right result with probability 1− 0.1− 0.1 = 0.8. Overall we break the scheme with probability
0.8− o(1) which contradicts Eq.9.

Part II

Investigating assumptions

9 Unconditional hardness of d-LIN

Assumptions 5.2 and 8.1 asserts that SearchLIN is hard (for different choices of parameters). We
show that this hardness can be proven unconditionally for several restricted computational models.
In fact, we prove a stronger statement: for almost all d-sparse matrices M ∈ Fm×n

2 the distribution

DM,ε of the m-bit vector b = Mx + e, where x
R← Un and e

R← Berm
ε , looks pseudorandom to a

large family of algorithms. Roughly speaking, we show that this is the case as long as M forms a
good expander. More formally, we view a M as a bipartite graph (VTop, VBot, E) and say that it is
a (k, α) expander if for every S ⊆ VTop with |S| ≤ k, the neighborhood ΓM (S) of S has cardinality
at least α|S|. We say that a distribution D over {0, 1}m ε-fools a class F of boolean functions over
{0, 1}m if for every f ∈ F we have |Pr[f(D) = 1]− Pr[f(Um) = 1]| ≤ ε. We can now prove the
following theorem.

Theorem 9.1. Let M ∈ Fm×n
2 be a d-sparse matrix that is a (k, 0.51d) expander. Then, DM,ε

1. 0-fools k-wise tests. (DM,ε is k-wise independent.)

2. δ = 1
2 · (1− 2ε)k-fools linear tests. (DM,ε is δ-biased.)

3. 8 · (1− 2ε)k/2t−1
-fools degree t polynomials over F2.

Proof. The first two items follow from the analysis of [MST03]. We sketch them here for complete-
ness. We break the distribution DM,ε into two independent parts: Y and E such that DM,ε = Y +E.
This is done by letting Y = M · Un, and E be a random m-bit error vector whose entries take the
value 1 with probability ε independently of each other.

34

We prove (1) by showing that for every subset S ⊆ [m] with |S| ≤ k,

Pr

[∑

i∈S

Yi = 1

]
=

1
2

(10)

Indeed, by a simple counting argument, there exists i ∈ S with a unique neighbor j ∈ ΓM (i) \
ΓM (S \ {i}). Therefore, if we fix all inputs in ΓM (S \ {i}) (thus fixing Yu for all u ∈ S with u 6= i),
then, the probability over the choice of the input j that Yi = 1 is equal to 1

2 , establishing (10).
For (2), it suffices to prove that for every subset S ⊆ [m] with |S| ≥ k,

Pr

[∑

i∈S

Ei = 1

]
=

1
2
− 1

2
· (1− 2ε)k.

This follows by the fact that the sum of t independent Bernoulli random variables with expectation
ε is 1 with probability 1

2 − 1
2(1− 2 · ε)t.

We proceed with (3). The following claim shows that the distribution DM,ε can be written as
the sum of t independent copies of DM,α for a related α.

Claim 9.2. Let α = 1
2 − 1

2(1− 2ε)1/t. Then,

DM,ε ≡
t∑

i=1

D(i)
M,α,

where the D(i)
M,α’s are independent copies of DM,α.

Proof of claim. For every x(1), . . . , x(t) ∈ {0, 1}n we have

t∑

i=1

M(x(i) + E(i)) ≡ M ·
(

t∑

i=1

x(i)

)
+

t∑

i=1

E(i) ≡ Mx + E,

where E(1), . . . , E(t) are t independent error vectors of error-rate α, E is an error vectors of error-
rate ε, and x =

∑t
i=1 x(i). The last equality follows by noting that the entries of the vector

∑
i E

(i)

are independently distributed with expectation 1
2 − 1

2(1−2 ·α)t = ε. The claim follows by choosing
x(1), . . . , x(t) uniformly and independently.

Hence, by item 2, DM,ε is the sum of t independent samples from δ-biased distribution, where
δ = 1

2 · (1− 2α)k = 1
2 · (1− 2ε)k/t. Viola [Vio08] recently proved that in this case, the distribution

DM,ε also 8 · (2δ)1/2t−1
-fools degree t polynomials11, which completes the proof.

We can use Theorem 9.1 to validate the average hardness of our constructions.

Corollary 9.3. The cryptosystem constructed in Section 5.2 which is based on Search3LIN(m =
O(n1.4), ε = Ω(n−0.2)) cannot be broken with probability greater than o(1) by the following classes
of algorithms:

11The original bound is stated in terms of character distance and is translated here to statistical distance terms.
The difference between these two notions, over GF(2), is just a factor of two [BV07, Claim 33].

35

1. Semidefinite programs which results from nδ levels of the Lasserre hierarchy [Las01] where
δ > 0 is some constant.

2. Myopic algorithms that given a 3-LIN instance (M, b) apply an arbitrary function to (M, b′)
where b′ is the restriction of b to at most nδ indices which can be chosen adaptively, where
δ > 0 is some constant.

3. For any constant depth d, boolean circuits of that have NOT gates, and unbounded fan-in AND
and OR gates (AC0 circuits) of size exp(−nδd), where δd > 0 is a constant that depends on
d.

Proof. The first item is proved by Schoenebeck [Sch08]. The second item follows from the first item
of Theorem 9.1 together with the fact that a sample from Mm,n is guaranteed to be a (nδ, 0.51 · 3)
expander with probability 1 − o(1) for some constant δ > 0. Now we know that for almost all
M ’s the vector b

R← DM,ε is k = nδ-wise independent, and therefore we can apply the recent
breakthrough of Braverman [Bra09] to show that it also resists AC0 circuits. Specifically, [Bra09]
shows that k-wise independent distributions α-fools the class of all AC0 circuits of depth d and
size ` as long as k = log(`/α)O(d2). Hence, when k is polynomial in n (i.e., k = nδ), as in our case,
we get subexponential hardness of exp(−nδd) for circuits of depth d for any constant d.

For the parameters used in Assumption 7.2 (used for our second cryptosystem), we can obtain
a stronger corollary.

Corollary 9.4. Let a > 0 be a positive constant. The problem SearchLIN(d ≥ 3,m = O(n lg n), ε =
1/na) cannot be solved with probability greater than o(1) by the following classes of algorithms:

1. Semidefinite programs which results from nδ levels of the Lasserre hierarchy [Las01] where
δ > 0 is some constant.

2. Myopic algorithms that given a 3-LIN instance (M, b) apply an arbitrary function to (M, b′)
where b′ is the restriction of b to at most nδ indices which can be chosen adaptively, where
δ > 0 is some constant.

3. For any constant d > 0, AC0 circuits of depth d and size exp(−nδd).

4. Polynomials of degree t = Ω(log n) over F2.

Proof. It is not hard to show that a sample from Mm,n,d is guaranteed to be a (k = nδ, 0.51 · d)
expander with probability 1 − o(1) for every constant 0 < δ < 1. Now the first three items are
proved similarly to the proof of the previous corollary. For the last item use Theorem 9.1 and note
that the noise rate satisfies 1/ε = na and the expansion holds for polynomially larger sets of size
k = na+b. Hence, we get subexponential hardness of exp(−nb/2) against polynomials of degree
smaller than 0.49b log(n).

10 On the hardness of DUE

In this section we provide some evidence for the validity of Assumption DUE. Assumption DUE
can be seen as an average-case variant of a combinatorial problem (graph expansion) that is NP-
hard to solve exactly in the worst-case. This assumption also implies a fairly strong hardness of

36

approximation result for graph expansion (hardness to distinguish between expansion ratio (1 −
o(1))d vs. 1) that is beyond what is known to be implied by P 6= NP. We start by considering
how various natural algorithms fare against this problem. We then relate variants of the DUE
assumption to the hardness of variants of other natural combinatorial problems such as the planted
clique problem and small-set expansion in general (not necessarily bipartite) graphs. The technical
details and the proofs of this section are deferred to Section B.

10.1 Counting cycles

Key to the validity of the DUE assumption is careful choices of the parameters: the stretch c = m/n,
the degree d and the size q of the planted nonexpanding set S. It is instructive to see how (and
which) simple algorithms can break this assumption for the wrong parameters. All attacks use in
different ways the fact that the subgraph induced on S ∪ Γ(S) is much denser than the rest of the
graph.

• Assume c = 1, namely no stretch. Then it is well known that approximating expansion can
be done via the second eigenvalue [AM84, Alo86], and hence this value will vary considerably
between the distributions M and F .

• In fact, as long as c ¿ d, we can distinguish between the two cases by just looking at the
degree distribution, since d, the amount added to the degrees in Γ(S) in F is larger than the
standard deviation of the input degree, which on average is cd. Using similar considerations
one can show that as long as c ¿ d2 we can distinguish between the two distribution by
looking at the number of 4 cycles.

• Assume d ¿ c but c is still small enough to allow clogd q ¿ n. Even in this case the density
of the planted set can be used, but now with a more sophisticated algorithm, which follows a
suggestion of Moses Charikar.12. Pick k such that 10q = d2k, and for each vertex in the graph
check if it is contained in at least two 2k-cycles. The calculations we do later show that, in
expectation, the density of the planted subgraph guarantees that this property will hold for
almost every vertex in the planted subgraph, but no vertex outside it! We note that using
the “color-coding” algorithm of [AYZ95] this algorithm can be implemented in polynomial
time despite the fact that k is logarithmic in n.

As demonstrated, subjecting the DUE assumption is to standard algorithmic attacks serves as
both a “sanity check”, and helps understand the range of parameters in which the assumption
might hold. All the algorithms above essentially rely on counting the numbers of small subgraphs
in the given graph, with the hope that they “pick up” the planted, denser part. Here we focus on
counting short (actually, up to nε so as to examine the possibility of subexponential attacks) cycles
in the given graph. We feel that similar results hold for other subgraphs, and that such “local
attacks” are not too useful in our chosen parameters.

We let Ĝ and F̂ denote the variants of M and F where each edge is chosen with probability
d/n independently (rather than insisting on d-regularity). We also assume that the planted set has
only mild shrinkage of q to q−1 (rather than q vs. q/3). Our analysis for cycle counts is done with
respect to these distributions. We believe that it can be extended for the distributions M and F

12His original algorithm used a certain quasipolynomially large linear program

37

above. Moreover, by dropping vertices with too small a degree, M̂ and F̂ can be used for (variants
of) our cryptosystems as well.13

Theorem 10.1. For cycles of length ¿ logd n, the distributions of the cycle count in M̂ and F̂
are o(1)-close. For cycles of length ¿ q1/4, the two distributions cannot be distinguished by any
threshold test (i.e., a test that checks if the count is above or below some threshold between the two
expectations).

See Section B.1 for a more precise statement of the theorem, as well as the proof. To prove
Theorem 10.1 we first compute fairly tight bounds on the first few moments of both these random
variables. In the case of very short cycles (length ¿ logd n), we are then able to show that both are
very close to Poission random variables with very close expectations. In the case of larger cycles
this may not hold, but we are still able to use the moment bounds to rule out threshold tests. We
conjecture that threshold tests are actually optimal and thus the result can be extended to show
o(1) statistical distance even in this case.

We remark that by the well known trace formula connecting eigenvalues and cycle counts, the
results above suggest that the two distributions will produce extremely close 2nd eigenvalues of
GGT . However, to make this into a proof one would need to extend the results on distribution and
concentration of the second eigenvalue known for random regular graphs to matrices of the form
GGT where G is a random regular unbalanced graphs.

10.2 Reductions from other graph problems

The best evidence for DUE would be to show that it is implied by a much more standard hardness
assumption, by reducing some widely-studied computational problem to the task of distinguishing
between the distribution M and F of DUE. This is of course much preferred over just ruling out
certain types of algorithms, as is done in Section 10.1. Unfortunately we have no such results,
and indeed there seems to be an inherent difficulty in reducing between average-case problems
with natural distributions over the inputs, as the image of a reduction typically induces a rather
restricted distribution on inputs. However, we are able to show some evidence for a variant of
the DUE assumption (which we denote by DUE′) in which the distribution M is an arbitrary
distribution over expander graphs and F is an arbitrary distribution with planted shrinking set
(which also suffices, in conjunction with a variant of DUE or PredictLIN, for our cryptosystems).
But even for this case the evidence is not as strong as we’d like, and we believe further research
is needed. We state the results below informally. More general and precise statements and proofs
can be found in Section B.2.

Theorem 10.2 (See also Theorem B.10). If it is hard to distinguish given a (not necessarily
bipartite) d regular n vertex graph G, between the case that set S ⊆ V (G) of size q has |ΓG(S)| ≤ 2|S|
and the case that G is is a (q′, 0.99d) (i.e., lossless) expander for q′ > q, then DUE′ is true with the
same parameters up to constant factors.

The reduction (presented in Theorem B.10) is very simple. We remark that the hard instances
for this problem would be graphs that in both cases are not very good expanders for large sets, so
that the lack of expansion in the first case would not be detectable using eigenvalues.

13For the second cryptosystem this would require to assume the intractability of DecideLIN rather than SearchLIN,
this is a stronger, yet plausible, assumption for which all our evidences hold as well.

38

Theorem 10.3 (See Theorems B.12,B.13). If the planted k-clique problem is hard in G
n,2− log0.99 n

then it is hard to:

1. (Shrinking vs. moderate expansion) Given a bipartite graph G = (VBot, VTop, E) distinguish
between the case that there is a q = poly(k)-sized set S ⊆ VTop with |ΓG(S)| < |S|, and
the case where for every set S ⊆ VTop with |S| < 2log0.9 n, |ΓG(S)| > d0.9|S| (where d is the
degree).

2. (Shrinking vs. unique neighbor expansion) Given a bipartite graph G = (VBot, VTop, E) dis-
tinguish between the case that there is a q = poly(k)-sized set S ⊆ VTop with |ΓG(S)| < |S|,
and the case where for every set S ⊆ VTop with |S| < 2log0.9 n, S has a unique neighbor: a
vertex v ∈ Γ(S) that has only one neighbor in S.

The first part is obtained by a very simple reduction. We start by mapping a graph G = (V,E)
into an (|V |, |E|, 2)-bipartite graph by having VBot = V and VTop = E, and connecting every vertex
in VTop to the two vertices that the corresponding edge touches. We then duplicate vertices to
translate the expansion parameters to the desired range. The second part starts with the same
reduction, but then modifies it by composing it with a lossless disperser in a way motivated by
the zig-zag construction. We remark that unique neighbor expansion seems very closely related to
lossless expansion, and hence the conclusion of the second part can be viewed as a close variant of
DUE′.

Remark 10.4. Other problems that seem closely related to the DUE problem are (1) certifying
expansion— show an efficient algorithm that outputs 1 with high probability on a random graph,
but never outputs 1 if there exists a q-sized set S with < |S| neighbors and (2) search unique-
neighbor variant show an algorithm that given every graph with a q-sized set S with < |S| neighbors
finds a subset S′ of size q′ (for q′ perhaps somewhat larger than q) such that S′ has no unique
neighbors.

11 On the hardness of DSF

In this section we discuss what candidate nonlinear predicates can be used to instantiate Assump-
tion DSF.

Definition 11.1 (δ-resilient functions). Let δ > 0. We say that a function f : {0, 1}d → {0, 1} is
δ-resilient if for every subset S ⊆ [d] with |S| < δd and a ∈ {0, 1}S:

1. Pr
w

R←WS,a
[f(w) = 1] = 1

2 , where WS,a is the distribution over w ∈ {0, 1}d chosen such that

wS = a and for i 6∈ S, wi is a random bit.

2. For every i 6∈ S, Pr
w

R←WS,a
[f(w) = f(w⊕ ei)] ∈ (0, 1), where ei is the vector that has 1 in the

ith coordinate and 0 everywhere else.

For ε > 0, we say that the function f is (δ, ε)-resilient if in Condition 2 the probability is not
just in the interval (0, 1) but in the interval [ε, 1 − ε]. Note that this probability is over a sample
space of size at most 2d, and hence every δ-resilient function is (δ, 2−d)-resilient. (Recall that in
our application we think of d as small or even a constant.)

39

Condition 1 is equivalent to requiring that the function is a perfect bit-fixing extractor for bit-
fixing sources of entropy more than (1 − δ)d (this is also known as a δd perfect exposure resilient
function).

The parity function satisfies Condition 1, even with δ = 1, but does not satisfy Condition 2
no matter how small δ is. An example for a 1/10-resilient function is the “majority on three parities”
function. This is the function f : {0, 1}3k → {0, 1} such that on input w = x1, .., xk, y1, ..yk, z1, .., zk ∈
{0, 1}3k, f outputs the majority of the three bits x, y, z where x = x1 ⊕ · · · ⊕ xk, y = y1 ⊕ · · · ⊕ yk,
and z = z1 ⊕ · · · ⊕ zk. Indeed, as long as less than a third of the bits are fixed, all the values
x, y, z will be uniform and independent, and hence MAJ(x, y, z) will equal 1 with probability 1

2 .
For Condition 2, note that for any fixing of at most 1/10 of the bits, when we choose at random
all bits except for xi (for i that is not fixed) then with probability 1

2 we will have y = z, in which
case the value of f will stay the same no matter whether xi is equal to 0 or to 1. On the other
hand, there’s also a probability 1

2 that we will have y 6= z, in which case changing the value of xi

will flip the value of f .

11.1 k-wise independence

We start by showing that our generator is k-wise independent for k = n0.1:

Theorem 11.2. Let G be an (m,n, d)-graph that is a (k, (1−ε)d) expander, and let f be a δ-resilient
function for δ > 2ε. Then, the distribution Gf (Un) is k-wise independent.

Proof. The proof follows the proof of Part 1 of Theorem 9.1. Let Y = G(Un). We will prove the
theorem by showing that for every subset S ⊆ [m] with |S| ≤ k,

Pr[
⊕

i∈S

Yi = 1] =
1
2

(11)

Indeed, by a simple counting argument, there exists i ∈ S such that |ΓG(i)\ΓG(S\{i})| ≥ (1−2ε)d.
Therefore, if we fix all inputs in ΓG(S \ {i}) (thus fixing Yj for all j ∈ S with j 6= i), then by the
2ε-resiliency of f , the probability over the choice of inputs in ΓG(i) \ ΓG(S \ {i}) that Yi = 1 is
equal to 1

2 , establishing (11).

Note that in this proof we only used Condition 1 of the definition of δ-resilient functions. In
particular, Theorem 11.2 holds even if we use the parity function for f . (This was known before,
see for example [MST03].) Note that, as mentioned above, Theorem 11.2 implies that Gf fools
every AC0 circuit (of sub-exponential size) via the result of Braverman [Bra09].

11.2 Fooling linear tests

We say that an (m,n, d)-graph is almost right regular if the right-degree of each vertex is at most
2(m/n)d. We now show that if G is almost right regular and a good expander and f is a resilient
function, then the distribution Gf (Un) fools all linear tests (i.e., is an ε-bias sample space). Note
that random graphs satisfy these properties with high probability.

40

Theorem 11.3. Let G be an almost right regular (n`, n, d)-graph that is a (k, (1 − ε)d)-expander
for k > ω(`2). If f is δ resilient for δ > 2ε then for every S ⊆ [m],

Pr[
⊕

i∈S

Yi = 1] ∈ 1
2
± 2−Ω(k/`2) , (12)

where the constant in the Ω notation depends on d but not on `, n.

Proof. We may assume that |S| ≥ k, since otherwise (12) is implied by k-wise independence (i.e.,
Theorem 11.2). Let X1 be an bottom vertex that is connected to S. Let S1 be the set of at most
d` top vertices in S that are connected to X1, let V1 = ΓG(S1) and let S′1 = ΓG(V1) be the set of at
most 2d`2 top vertices that share an input with a member of S1. Remove S′1 from S and continue
in this way to obtain X2, . . . , Xt for t ≥ |S|/(2d`2) = Ω(k/`2). Note that by construction, the sets
V1, . . . , Vt are disjoint.

Claim: If we fix at random an assignment for the variables in Vi \ {Xi}, then with probability at
least 2−d, the function mapping the bit Xi to

∑
j∈Si

Yj is equal to Xi or to 1⊕Xi.

The claim concludes the proof since then with probability 1 − (1 − 2−d)t = 1 − 2−Ω(t), for any
fixing of [n] \ {X1, . . . , Xt}, the resulting function is a non-constant affine function of X1, . . . , Xt

and hence equals 1 with probability 1
2 .

Proof of claim: Note that since Xi has right degree 2`d < k, |Si| < k, and hence Si is an
expanding set, implying that there exists an output j ∈ Si with |ΓG(j) \ ΓG(Si \ {j})| ≥ (1− 2ε)d.
Now fix all inputs except for Xi in ΓG(Si \ {j}), this means that for every k ∈ Si \ {j}, Yk is now a
function of Xi, which is either a constant function or Xi ⊕ b for some b ∈ {0, 1}, and in particular
the same holds for

⊕
k∈Si\{j} Yk. But now by the fact that f is δ-resilient for δ > 2ε, if we choose

at random the inputs in ΓG(j) \ ΓG(Si \ {j}) then we have positive (and at least 2−d) probability
for both the event that Yj is a constant function of Xi, and the event that Yj is equal to Xi ⊕ b
for some constant b. Thus, no matter that was the function

⊕
k∈Si\{j} Yk, with probability at least

2−d the function Yj ⊕
⊕

k∈Si\{j} Yk =
⊕

k∈Si
Yk will be a non-constant affine function of Xi.

We note that a generator of small locality (number of inputs connected to each output) fooling
linear tests was constructed before by Mossel et al [MST03]. The difference is that they were
interested in a single construction with as small locality as possible while we want to show that
a random graph (and even a sufficiently good expander) gives rise to such a generator. Their
construction was obtained by XOR’ing together two generators on independent seeds. The first
generator handled sparse tests using k-wise independence as in Theorem 11.2. [MST03]’s second
generator used a different construction and analysis than ours— they used a specific construction
of locality two.

12 Discussion and open problems

Structure in computational problems. In the worst-case setting, “lack of structure” is cap-
tured nicely by NP-completeness. In the average-case setting we don’t have a fully satisfactory
analog, though it does seem that some NP-complete problems (e.g., 3SAT) have natural distri-
butions on which they are hard. Thus we feel that it would be a breakthrough to base a public

41

key cryptosystem on, say, the hardness of finding assignments for a random 3CNF with number of
clauses close to the satisfiability threshold. The 3LIN assumption and its non-linear variant DSF do
seem at least close in spirit to this assumption, for different constraint-satisfaction problems. As for
DUE, its nature seems more combinatorial than algebraic, being a basic question about expansion.
Still, while we know of many works on related questions, this particular one deserves more scrutiny,
being far less studied than “parity with noise”. Nevertheless, we believe that our results, showing
relations between DUE and problems such as planted clique and unbalanced expansion, and ruling
out certain natural algorithms for it, do provide some very preliminary evidence for the “lack of
structure” for DUE. More generally, we believe that breaking either the 3LIN or DUE assumption
will be of interest beyond cryptography, to areas such as coding and learning theory (for 3LIN) and
combinatorial optimization (for DUE).

Insights from approximation algorithms. Average-case assumptions with “planted” struc-
tures such as 3LIN and DUE immediately imply hardness of approximation results. There is of
course no reduction in the other direction, since an NP-hardness result does not yield average-case
hardness for the “natural” distribution on inputs, even if one assumes that there is an NP-language
that is hard on the average. Still we believe that some insight into the structure or lack thereof of
an average-case problem could be gained from the hardness of corresponding approximation/gap
problems. For DUE, while testing expansion is (co-)NP-hard, there is still a significant gap between
the best known algorithms and the best hardness of approximation results. For this reason we re-
late it to the better studied planted clique problems, and to the (possibly more accessible) problem
of non-expansion of small sets in standard (not unbalanced bipartite) graphs. (Note that this is
vertex expansion, and not edge expansion.) For 3LIN however, a related well studied gap problem
is dLIN. The input is a set of m equations, each depending on at most d of the n variables, and
one needs to decide whether there is an assignment that satisfies least a 1− µ fraction of them, or
every assignment satisfies at most 1

2 +µ fraction (these two cases roughly correspond to decrypting
1 and 0 respectively). This is known to be NP-hard for d = 3 and µ = (log n)−Ω(1) [H̊as97] (using
quasipolynomial reductions) and µ = (log log n)−Ω(1) [MR08] (using polynomial reductions). It
is possible the problem remains hard (possibly under slower reductions) for much smaller noise,
perhaps down to µ ∼ n−ε. (For the related nearest codeword and closest vector problems, hardness
for µ = n−1/ log log n is known [ABSS93, DKRS03].) l

A different way of defining structure in a cryptosystem is to ask what complexity consequences
it has. Any secure public-key system implies NP * BPP. But many, if not most public-key
systems in use, if secure, imply the (seemingly) stronger conditions AM ∩ coAM * BPP or
BQP * BPP.14 These consequences hold for all factoring and discrete log based systems, and the
first holds also for all lattice or “learning with errors” based systems [GK90, GG98, AR04, Sho97].
Our preliminary attempts to find such consequences for our systems failed, though of course more
effort is required. (We note however that the system of Theorem 2.2 does satisfy a condition of a
somewhat similar flavor in the sense that it’s based on a search problem for which the corresponding
refutation problem has a non-deterministic algorithm.) We also note that other coding-based

14Some of these consequences only hold for promise problem version of these problems. Defining these promise
version analogs is subtle as there are trivial NP hard problems in promise−NP∩promise− coNP. Nevertheless,
it is possible to define more restricted classes promise(NP∩coNP) and promise(AM∩coAM) that do not contain
an NP-hard problem unless the polynomial hierarchy collapses, and the task of breaking the above cryptosystem
falls in these restricted classes [Gol05, Vad05].

42

schemes such as [McE78, Ale03] also seem to resist such implications.

Acknowledgements. We thank Noga Alon, Moses Charikar, Shafi Goldwasser, Thomas Holen-
stein, Ron Rivest, Madhu Sudan and Salil Vadhan for useful discussions. We also thank Aditya
Bhaskara for sharing with us a copy of [BCC+10].

References

[ABBG10] S. Arora, B. Barak, M. Brunnermeier, and R. Ge. Computational complexity and
information asymmetry in financial products. In ICS, 2010.

[ABSS93] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima in
lattices, codes, and systems of linear equations. J. Comput. Syst. Sci., 54(2):317–331,
1997.

[ACO08] D. Achlioptas and A. Coja-Oghlan. Algorithmic barriers from phase transitions. In
FOCS, pages 793–802, 2008.

[AD97] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equiv-
alence. In STOC, pages 284–293, 1997.

[AIK04] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. SIAM J. Comput,
36(4):845–888, 2006.

[AIK06] B. Applebaum, Y. Ishai, and E. Kushilevitz. On pseudorandom generators with linear
stretch in NC0. In Proc. of RANDOM, volume 4110, pages 260–271, 2006.

[AKS98] N. Alon, M. Krivelevich, and B. Sudakov. Finding a large hidden clique in a random
graph. Random Struct. Algorithms, 13(3-4):457–466, 1998.

[Ale03] M. Alekhnovich. More on average case vs approximation complexity. In FOCS, pages
298–307, 2003.

[Alo86] N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.

[AM84] N. Alon and V. D. Milman. Eigenvalues, expanders and superconcentrators (extended
abstract). In FOCS, pages 320–322, 1984.

[AR04] D. Aharonov and O. Regev. Lattice problems in NP intersect coNP. J. ACM, 52:749–
765, 2005.

[ASS08] O. Amini, I. Sau, and S. Saurabh. Parameterized complexity of the smallest degree-
constrained subgraph problem. In IWPEC, pages 13–29, 2008.

[AYZ95] N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

[Bar82] A. D. Barbour. Poisson convergence and random graphs. Math. Proc. Cambridge Philos.
Soc., 92(2):349–359, 1982.

43

[BCC+10] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detecting
high log-density — an O(n1/4)-approximation for densest k-subgraph. In STOC, 2010.

[BFKL94] A. Blum, M. Furst, M. Kearns, and R. J. Lipton. Cryptographic primitives based on
hard learning problems. In CRYPTO, pages 278–291, 1994.

[BGI08] E. Biham, Y. J. Goren, and Y. Ishai. Basing weak public-key cryptography on strong
one-way functions. In TCC, volume 4948, pages 55–72, 2008.

[BL97] A. L. Blum and P. Langley. Selection of relevant features and examples in machine
learning. Artificial Intelligence, 97(1-2):245–271, 1997.

[Blu94] A. L. Blum. Relevant examples and relevant features: Thoughts from computational
learning theory. AAAI Fall Symposium on Relevance, 1994.

[BMG09] B. Barak and M. Mahmoody-Ghidary. Merkle puzzles are optimal — an O(n2) attack
on key exchange from a random oracle. In Proceedings of CRYPTO ’09, 2009.

[Bol01] B. Bollobás. Random Graphs. 2001.

[BQ09] A. Bogdanov and Y. Qiao. On the security of goldreich’s one-way function. In APPROX-
RANDOM, pages 392–405, 2009.

[Bra09] M. Braverman. Poly-logarithmic independence fools AC0 circuits. In CCC, pages 3–8,
2009.

[BV07] A. Bogdanov and E. Viola. Pseudorandom bits for polynomials. In FOCS, pages 41–51,
2007.

[BW08] B. Barak and A. Wigderson. Public key cryptography from different assumptions. Cryp-
tology ePrint Archive, Report 2008/335, 2008. Contains a preliminary annoucement of
some of the results in this paper.

[CEMT09] J. Cook, O. Etesami, R. Miller, and L. Trevisan. Goldreich’s one-way function candidate
and myopic backtracking algorithms. In TCC, 2009.

[CM01] M. Cryan and P. B. Miltersen. On pseudorandom generators in NC0. In Proc. 26th
MFCS, 2001.

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22(5):644–654, 1976.

[DKRS03] I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating cvp to within almost-
polynomial factors is np-hard. Combinatorica, 23(2):205–243, 2003.

[EGL85] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28(6):637–647, 1985.

[Fei02] U. Feige. Relations between average case complexity and approximation complexity. In
STOC, pages 534–543, 2002.

44

[FGK05] Friedman, Goerdt, and Krivelevich. Recognizing more unsatisfiable random k-SAT
instances efficiently. SIAM J. Comput, 35, 2005.

[FKO06] U. Feige, J. H. Kim, and E. Ofek. Witnesses for non-satisfiability of dense random
3CNF formulas. In FOCS, pages 497–508, 2006.

[FPK01] U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001.

[GG98] O. Goldreich and S. Goldwasser. On the limits of nonapproximability of lattice prob-
lems. J. Comput. Syst. Sci., 60(3):540–563, 2000.

[GK90] O. Goldreich and E. Kushilevitz. A perfect zero knowledge proof for a problem equiv-
alent to discrete logarithm. In CRYPTO, pages 57–70, 1990.

[GKL88] O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom generators.
SIAM J. Comput, 22:1163, 1993.

[GM82] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–
299, 1984.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game — A com-
pleteness theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[Gol00] O. Goldreich. Candidate one-way functions based on expander graphs. Technical Report
TR00-090, Electronic Colloquium on Computational Complexity (ECCC), 2000.

[Gol05] O. Goldreich. On promise problems. Available on the author’s home page at http:
//www.wisdom.weizmann.ac.il/~oded/prpr.html, 2005.

[GW95] Goemans and Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. J. ACM, 42, 1995.

[H̊as97] J. H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

[HR05] T. Holenstein and R. Renner. One-way secret-key agreement and applications to circuit
polarization and immunization of public-key encryption. In CRYPTO, pages 478–493,
2005.

[IKOS08] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography with constant
computational overhead. In STOC, pages 433–442, 2008.

[Imp95] R. Impagliazzo. A personal view of average-case complexity. In Structure in Complexity
Theory Conference, pages 134–147, 1995.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permu-
tations. In STOC, pages 44–61, 1989.

[JP00] A. Juels and M. Peinado. Hiding cliques for cryptographic security. Designs, Codes
and Cryptography, 20(3):269–280, 2000.

45

[Kho04] S. Khot. Ruling out PTAS for graph min-bisection, densest subgraph and bipartite
clique. In FOCS, pages 136–145, 2004.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203–209,
1987.

[Las01] J. B. Lasserre. An explicit exact SDP relaxation for nonlinear 0-1 programs. In IPCO:
8th Integer Programming and Combinatorial Optimization Conference, 2001.

[Lau03] M. Laurent. A comparison of the Sherali-Adams, Lovasz-Schrijver, and Lasserre relax-
ations for 0-1 programming. MOR: Mathematics of Operations Research, 28:470–496,
2003.

[Lip97] H. Lipmaa. Cryptology pointers: Public key cryptography: Concrete systems, 1997.
Web site, url: http://www.adastral.ucl.ac.uk/~helger/crypto/link/public/
concrete.php.

[LS91] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization.
SIAM Journal on Optimization, 1(2):166–190, 1991.

[McE78] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report, pages 42–44, 1978.

[Mer78] R. Merkle. Secure communications over insecure channels. Commun. ACM, 21(4):294–
299, 1978.

[Mil85] V. S. Miller. Use of elliptic curves in cryptography. In CRYPTO, volume 218, pages
417–426, 1985.

[MR08] D. Moshkovitz and R. Raz. Two query PCP with sub-constant error. In Proc. 49th
FOCS, 2008.

[MST03] E. Mossel, A. Shpilka, and L. Trevisan. On epsilon-biased generators in NC0. Random
Struct. Algorithms, 29(1):56–81, 2006.

[Nao91] M. Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158, 1991.

[Pan01] S. K. Panjwani. An experimental evaluation of goldreich’s one-way function. Technical
report, IIT, Bombay, 2001.

[Pat96] J. Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two
new families of asymmetric algorithms. In EUROCRYPT, pages 33–48, 1996.

[Pei09] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In
STOC, pages 333–342, 2009.

[PVW08] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and compos-
able oblivious transfer. In CRYPTO, pages 554–571, 2008.

[Rab79] M. O. Rabin. Digitalized signatures and public-key functions as intractable as factor-
ization. Technical Report MIT/LCS/TR-212, 1979.

46

[Rab81] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81,
Harvard Aiken Computation Laboratory, 1981.

[Reg04] O. Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899–942,
2004.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In
STOC, pages 84–93, 2005.

[RSA78] R. L. Rivest, A. Shamir, and L. Adelman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[RVW00] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders and extractors. In FOCS, pages 3–13, 2000.

[SA90] H. D. Sherali and W. P. Adams. A hierarchy of relaxation between the continuous and
convex hull representations for zero-one programming problems. SIAM J. Disc. Math.,
3:411–430, 1990.

[Sch08] G. Schoenebeck. Linear level Lasserre lower bounds for certain k-csps. In FOCS, pages
593–602, 2008.

[Sho97] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM J. Comput, 26(5):1484–1509, 1997.

[Vad05] S. Vadhan. Personal communication, November 2009., 2005.

[Vio08] E. Viola. The sum of d small-bias generators fools polynomials of degree d. In CCC,
pages 124–127, 2008.

[Zhu01] H. Zhu. Survey of computational assumptions used in cryptography broken or not by
Shor’s algorithm. Master’s thesis, School of Computer Science McGill University, 2001.

A Two Sampling Lemmas

We will show how to transform a random instance of d-LIN with m equations and noise rate of ε
into a random instance of 2d-LIN or (2d− 2)-LIN with m′ < m equations and noise rate of ε? > ε
while preserving the planted solution x. Here and in the rest of this section we let

ε? = 2 · ε · (1− ε). (13)

Notation: It will be convenient to think of d-weight vectors as sets of size d. For x ∈ {0, 1}n,
we let Pd,ε(x) denote the distribution (S, y) where S is a random d-sized subset of [n] (i.e., S is
chosen by selecting d distinct elements from [n] uniformly and independently, and y =

∑
i∈S xi + ξ

(mod 2) where ξ is an “error” coin which is 1 with probability ε. We write Pm
d,ε(x) to denote m

independent samples from Pd,ε(x). Note that the distribution Pm
d,ε(x) is just a representation of

the input distribution (M,Mx + e) of PredictLIN(d, m, ε).

47

Lemma A.1. [Generalization of Lemma 6.6] There exists an efficient algorithm C such that for
every x ∈ {0, 1}n, and d <

√
n/4, the random variable C(P4m+n

d,ε (x)) is exp(−m/4)-close (in
statistical distance) to the random variable Pm

2d−2,ε?(x), where ε? is defined as in Eq. 13.

Proof. Our algorithm will output a special failure symbol with probability at most exp(−m/4),
and, conditioned on not failing, will perfectly emulate the distribution Pm

2d−2,ε?(x). Let (Si, yi)4m+n
i=1

denote C’s input and (S′i, y
′
i)

m
i=1 denote C’s output conditioning on not failing. The idea is to find

m disjoint pairs of input sets Si1 and Si2 such that Si1 and Si2 have a single common entry j,
and combine them to a new output set S′i that contains the entries (Si1 \ {j}) ∪ (Si2 \ {j}). The
corresponding output bit y′i will be the sum (modulo 2) of yi1 and yi2 . It is not hard to see that
the conditional distribution [y′i|S′i] is distributed correctly. Indeed,

y′i = yi1 + yi2 =


 ∑

k∈(Si1
\{j})

xk + ei1


 +


 ∑

k∈(Si2
\{j})

xk + ei2


 =


∑

k∈S′i

xk


 + (ei1 + ei2),

where ei1 and ei2 are independent noise bits of rate ε and therefore their sum is a noise bit of rate
2ε(1− ε).

It is left to explain how to match the input sets. We partition the input sets Si into n buckets Bj

indexed by {1, . . . , n}. For each set S, we randomly choose a representative index j ∈ S (uniformly
from all d entries of S), and throw S to the corresponding bucket Bj . Then, we partition the sets
in each bucket to pairs arbitrarily. Clearly, each pair shares a common entry. If a pair shares more
than one common entry, we call it bad and throw it away. We let S′i be the union of the i-th
good pair. If we have less than m good pairs we output a failure symbol ⊥. Since for every pair
the matching does not depend on the other (non-representative) entries of the pair, the resulting
combined sets (S′i)i are uniformly and independently distributed over all 2d − 2-size sets. For the
same reason, the probability that a pair is bad is at most d2/(n−d) < 1/4. Finally, for each bucket
at most a single set does not participate in the matching (in case the number of sets in the pile
is odd), and so we try to merge at least (4m + n − n)/2 = 2m pairs. By a Chernoff bound, the
probability that more than m of them will be bad is at most exp(−4m · (1/4)2) ≤ exp(−m/4),
which completes the proof.

To prove the security of our second encryption scheme we will also need the following variant
of the sampling lemma.

Lemma A.2. There exists an efficient algorithm C such that for every x ∈ {0, 1}n, and d <
√

n/4,
the random variable C(P4m

d,ε (x)) is exp(−m/4)-close (in statistical distance) to the random variable
Pm

2d,ε?(x), where ε? is defined as in Eq. 13.

Proof. Again, C will output a special failure symbol ⊥ with probability at most exp(−m/4), and,
conditioned on not failing, will perfectly emulate the distribution Pm

2d,ε?(x). Let (Si, yi)4m
i=1 denote

C’s input and T = (S′i, y
′
i)

m
i=1 denote C’s output. For all odd i ∈ [4m − 1] check whether the sets

Si and Si+1 are disjoint. If so, call i good, and add the set S′ = Si ∪ Si+1 together with the label
y′ = yi +yi+1 to the output list T . If T has less than m entries output ⊥, otherwise output the first
m entries. It is not hard to verify that the entries of T are distributed independently according
to P2d,ε?(x). Also, the probability for i to be bad is at most d2/(n − d) < 1/4, and hence, by a
Chernoff bound, the failure probability is at most exp(−4m · (1/4)2) ≤ exp(−m/4).

48

B Hardness of DUE: Technical details

We complement missing technical details from Section 10.

B.1 Counting cycles

Notation: For convenience of analysis, we use here slightly different distributions F̂ and M̂ over
random and planted graphs than the candidate distributions M and F suggested in Section 7.1.
We believe that the results below do extend to the distributions of Section 7.1, and in any case our
cryptosystem can be modified to work with the distributions used here. We let M̂ = M̂m,n,d be
a random bipartite graph with m left-side vertices, n right-side vertices, and where each edge is
chosen independently with probability d/n.The distribution F̂ is chosen by taking a random graph
from M̂m−q,n−q+1,d and then adding q vertices to the left side, connecting them to a randomly
chosen subset of size q− 1 of the right side. We let c denote the value m/n, and assume c > d > 2.
We let 2k denote the length of the cycles we are considering (since this is a bipratite graph, the
cycles must all be even). We always assume k < q1/4 (recall that the running time of an algorithm
using such cycle counts is roughly nk). We let X = Xm,n,d,k denote the number of 2k-cycles in M̂
and X ′ = X ′

m,n,d,q,k denote the number of 2k-cycles in F̂ . It can be shown that E[X ′] > E[X].
We present two results showing the limitations of cycle counts to distinguish between the two

distributions when the stretch is large:

Theorem B.1. In the notation above it holds that:
∣∣E[X]− E[X ′]

∣∣ < 10qk√
m

σ(X) ,

where σ(X) =
√

Var[X] denotes the standard deviation of X. Moreover, for k > 10 log n/ log c and
every threshold τ ∈ [E[X],E[X ′]], if qk = o(

√
n) then

∣∣Pr[X < τ]− Pr[X ′ < τ]
∣∣ < o(1)

Theorem B.2. In the notation above, for every ε > 0, if d2/c < ε, d10k/q < ε, and qd10k/n < ε
then the statistical distance of X and C ′ is at most ε.

Theorem B.2 is only meaningful for k ¿ log q/ log d, but rules out the existence of any algorithm
that uses only graph cycle count to distinguish between the two cases of DUE. By setting the stretch
c to be a large enough power of d, we can ensure that Theorem B.1 is meaningful for every k that
is not covered by Theorem B.2 and is not very large (e.g.,, k < m1/4). However Theorem B.1 does
not rule out all possible algorithms using the cycle count but only certain natural ones that test
whether the count is above or below some threshold in [E[X], E[X ′]]. (For example, it does not rule
out an algorithm that bases its decision on whether the count is even or odd.) We conjecture that
(for k that is not too large) these natural algorithms are in fact optimal for these two distribution,
and hence the statistical distance between X and X ′ is o(1) as long as q is not too large (say
k < q1/4).

B.1.1 Expectation and variance of cycle count: proof of Theorem B.1

We now prove Theorem B.1. We start by computing the expectation and variance of X. We
let n(k) = n!/(n − k)!. Note that nk ≥ n(k) ≥ nk(1 − k2/n) and hence we’ll frequently use the

49

approximation n(k) ∼ nk. The expectation of the number of cycles in an (n,m, d) graph from M
is easily shown to be:

E[X] = m(k)n(k)(d/n)2k/k ∼ ckd2k/k (14)

To compute the variance, we write X =
∑

α Xα, where α ranges over all the m(k)n(k)/k potential
2k-cycles in a graph with n input and m output vertices, and Xα is the indicator random variable
that is equal to 1 if the cycle α exists in the graph. Note that E[Xα] = (d/n)2k. Now

Var[X] = E[X2]− E[X]2 =
∑

α,β

E[XαXβ]−
∑

α,β

(d/n)4k (15)

Clearly for every α, β, E[XαXβ] ≥ E[Xα] E[Xβ] = (d/n)4k. Thus for every set H of pairs (α, β),
the RHS of (15) is lower bounded by

∑

(α,β)∈H

(E[XαXβ]− (d/n)4k) .

Let H be the set of pairs α, β that share exactly one edge (and hence two vertices). We can verify
that |H| = m(2k−1)n(2k−1) and (using the approximation n(k) ∼ nk) this implies the following claim:

Claim B.3. Var[X] ≥ |H|(d/n)4k ≥ c2kd4k/(2m) = E[X]2(k/m)

The first part of Theorem B.1 now follows from the following lemma:

Lemma B.4. E[X ′] = (1± 10kq/m) E[X]

Proof. We write X ′ =
∑

0≤a,b≤k Xa,b where Xa,b denotes the number of 2k cycles that have a
of their k output-side vertices in the planted shrinking set and b of their k input-side vertices
in the neighborhood set of this planted set. Thus, X0,0 = Xn,m−q,d and hence has expectation
(m−q)(k)n(k)(d/n)2k/k, which as can be seen by writing m−q = m(1−q/m), contributes a factor at
most kq/m to the difference between E[X] and E[X ′]. On the other hand, Xk,k = Xq,q−1,d which has
expectation ∼ d2k which is negligible compared to E[X]. We claim that for (a, b) 6∈ {(0, 0), (k, k)},
E[Xa,b] ≤ ckd2k

k
q
n = (q/n) E[X]. Indeed, if a > b then Xa,b = 0 with probability one, since in any

cycle in a bipartite graph, a set of ` left-side vertices has at least ` neighbors. Thus, if the cycle
contains a left-side vertices that are in the planted shrinking set, then there must be at least a
right-side vertices in the neighborhood of this set. Note also that the only case a = b is if the cycle
is fully contained in either the planted set and its neighborhood, or has no vertices in either of
them (i.e., if a = b = k or a = b = 0). Thus we may assume a < b. Now,

E[Xa,b] = 1
km(k−a)q(a)n(k−b)(q − 1)(b)

(
d
n

)2(k−a)(d
q

)2a ≤
1
kck−an2k−a−bqa+bd2kq−2an−2k+2a ≤ ckd2k

k

(q
n

)b−a ≤ ckd2k

k
q
n

50

Proof sketch of “moreover” part. By following the above calculation, we can see that the
variance can also be upper bounded by the sum, for i = 1...2k of ti = |Hi|(d/n)4k−i, where Hi

denotes the set of pairs of cycles that share i edges. Since for i < 2k, these must share at least
i + 1 vertices, we can bound the term ti for i < 2k by m2kn2k−i−1(d/n)4k−i ≤ c2kd4k/n = E[X]2/n,
while the term tk is equal to E[X]. Thus we have that

E[X2] ≤ E[X]2 + 2k
n E[X]2 + E[X] .

(Note that for E[X] À n, the rightmost term is negligible.) We can use the same idea to also bound
higher moments of X, and show that for every fixed `

E[X`] ≤ E[X]` + O(k
n E[X`] + E[X]) .

This upper bound on moments can be used to show the following:

Claim B.5. Let Z = (X − E[X])2. Then E[Z2] ≤ (1 + (100qk)/m) E[Z]2.

We then use the following consequence of Cauchy-Schwarz that is sometimes known as the
Paley-Zygmund inequality:

Lemma B.6. For a nonnegative random variable Z, if E[Z2] ≤ (1 + ε) E[Z]2 then

Pr[Z < τ E[Z]] < τ2 + ε

This implies the following “anti-concentration” bound. Let δ > 0 be arbitrarily smal and fix T

to be
√

δ
m E[X]. Then

Pr[|X − E[X]| < T] = Pr[(X − E[X])2 < T 2] < 100qk/m + δ .

That is X is unlikely to be “too close” to its expectation. Roughly speaking, we then use the
characterization of the proof of Lemma B.4 to present X ′ as equal to Y ′+Y ′′ where Y ′ is distributed
identically to X and E[|Y ′′|] = O(qk

n E[X]) ¿ T , meaning that |Y ′′| < T/10 with 1−o(1) probability.
Since E[X]− E[X ′] < T/10, this means that for every τ ∈ [E[X], E[X ′]], we can bound |Pr[E[X] <
τ]−Pr[E[X ′] < τ]| by the probability that X is in [E[X]−T/2,E[X]+T/2] up to some o(1) additive
term.

B.1.2 Poisson approximation of short cycle count: proof of Theorem B.2

Theorem B.2 will follow from the following lemma:

Lemma B.7. Let the numbers n,m = cn, d, q, k and random variables X, X ′ be as above, then

∆(X, Pλ) < ε (16)
∆

(
X ′, Pλ′ + Pλ′′

)
< ε (17)

where ε = 10kd4k
(
c2kq/n + 1/q

)
, λ = ckd2k/k, λ′′ = (1 − q/m)kλ, λ′ = d2k/k, Pλ denotes the

Poisson distribution with expectation λ, and ∆(·) denotes statistical distance.

Using basic properties of the Poisson distribution we get the following corollary:

51

Corollary B.8. For any ε > 0, if d2 < εc, d10k < εq, and q < εn/d10k then ∆(X, X ′) < ε

Proof. We use the facts that Pλ + Pλ′ ≡ Pλ+λ′ and that ∆(Pλ, Pλ(1+ε)) ≤ ε
√

λ. In our case,
the condition d2 < εc implies that λ′2/λ = d4k

kckd2k < εk/k ≤ ε2/2 (we can assume k ≥ 2). For
the purposes of bounding statistical distance increasing c only helps,15 and hence we may assume
c = d2/ε. Plugging this into the bounds of Lemma B.7 gives the corollary.

We now turn to proving Theorem B.7:

Proof of Theorem B.7. We start by showing (16). As in the proof of Theorem B.1, we write X =∑
α Xα where α ranges over all the m(k)n(k)/k) potential 2k cycles and Xα is the indicator variable

that is equal to 1 if the cycle α exists in the graph. We note that if α, β do not share an edge then
Xα and Xβ are independent.

Barbour [Bar82] (see exposition in [Bol01, § 4.3,Pf of Thm 4.16] proved the following lemma:

Lemma B.9. Let X =
∑

α Xα where for every α, Xα is an indicator variable. Suppose moreover
that E[XαXβ] ≥ E[Xα]E[Xβ] for every α, β and there is a symmetric reflexive relation ∼ such that
α 6∼ β implies that Xα, Xβ are independent. Then,

∆
(
X, PE[X]

) ≤ 4




∑

α∼β
α6=β

E[XαXβ] +
∑
α

E[Xα]2


 (18)

In our case the relation ∼ is sharing at least one edge, and for each ` ∈ {1..2k − 1} we count
the contribution to the RHS of (18) of the pairs of cycles that share ` edges. Since they must share
at least ` + 1 vertices, this contribution can be bounded by

m(2k−b(`+1)/2c)n(2k−d(`+1)/2e)(d/n)4k−` ≤ d4kc2k/n ,

thus establishing (16).16

To show (17), we follow the proof of Lemma B.4, and write X ′ as X ′ =
∑

0≤a,b,≤k Xa,b. The
same calculation as above says that Xk,k is within 4kd4k/q distance to the Poisson distribution
Pλ′ . Thus X0,0 + Xk,k is 4kd4k

(
c2k/n + 1/q

)
-close to Pλ + Pλ′ . Thus all that is left is to bound

the probability that Xa,b is non zero for (a, b) 6∈ {(0, 0), (k, k)}. But in the proof of Lemma B.4,
we show that E[Xa,b] ≤ ckd2k

k
q
n . Hence by Markov we get that the probability that Xa,b > 0 (and

hence greater or equal to 1) is this expectation.

B.2 Reductions from other graph problems

To state our results we introduce the following notation. Fixing n,m, d, for every q, e, q′, e′ with
q′ > q, e′ > e we let DUE′(q,e)vs (q′,e′) denote the gap problem of distinguishing, given a bipartite
graph G = (VBot, VTop, E), between the following two case:

15We can always transform an input graph with m left vertices into a graph with m′ > m vertices by adding m′−m
vertices each with random neighbors.

16Note that
∑

α E[X2
α] ≤ ckd4k/n4k ≤ (cd/n)k.

52

YES case: There exists a subset S ⊆ VBot of size at most q such that |Γ(S)| < e|S|
NO case: For every subset S ⊆ VBot of size at most q′, |Γ(S)| > e′|S|.

By abuse of notation, we also denote by DUE′(q,e)vs (q′,e′) the assumption that the above problem
is hard on the average, in the sense that there exist two sampleable distributionsM,F over (m,n, d)-
graphs such that F is in the YES case with 1−o(1) probability, andM is in the NO case with 1−o(1)
probability, but no polynomial-time algorithm can distinguish between the two with advantage
better than, say, 1/100.17 The DUE′ assumption corresponds to the DUE′(q,e)vs (q′,e′) assumption for
e = 1, e′ = 0.9d, and q′ equalling the parameter k.

Small set expansion. Fix n to be some graph size parameter. For every q, q′, e, e′ such that
q′ > q, e′ > e we define the promise problem SSE(q,e)vs (q′,e′) whose input is an n vertex graph
G = (V,E) (not necessarily bipartite) as follows:

YES case: There is a set S ⊆ V of size at most q such that |ΓG(S)| < e|S|.
NO case: For every S ⊆ V of size at most q′, |ΓG(S)| > e′|S|.

We show the following theorem:

Theorem B.10. For every ε > 0 and integer e that divides d, SSE(q,e)vs (q′,(1−ε)d) on n-sized graphs
of degree d reduces to DUE′(eq,1)vs (q′,(1−2eε)d) on (en, n, d/e) graphs.

(The condition that e is an integer that divides d can be easily dropped at the cost of a slightly
more cumbersome statement.)

Proof. Given a graph G = (V,E) input to SSE, we construct the graph G′ = (VTop, VBot, E) as
follows. Each vertex u ∈ V has one corresponding vertex u′ ∈ VBot and e corresponding vertices
u′1, . . . , u

′
e in VTop. We split the d neighbors of u arbitrarily to e groups S1, . . . , Se of size d/e each.

For every v ∈ Si, we connect u′i to v′. Thus each vertex u′i will have d/e neighbors corresponding
to d/e of the neighbors of u in G.

Clearly, for every set S in G, the corresponding set S′ in G′ has size e|S| and |ΓG(S)| neighbors.
In particular, if |ΓG(S)| < e|S| then |ΓG′(S′)| < |S′|. On the other hand we claim that if every
set S of size at most q′ in G has (1 − ε)d|S| neighbors, then every set S′ of size q′ in G′ has at
least (1−2εe)(d/e)q′ neighbors. Suppose otherwise, then S′ has more than 2εdq′ non-unique edges,
where we say that an edge (u, v) out of S′ is non unique if there is some other edge (w, v) in G′

with w ∈ S′. Now let S be the set (of size at most q′) of all vertices in G corresponding to the
vertices in S′. Then S will have also more than 2εdq′ ≥ 2εd|S| non-unique edges, implying that it
has less than (1− ε)d|S| neighbors.

Remark B.11. The resulting graph of the reduction does not seem highly imbalanced, in the sense
that if, say e = 2, then it will be only an (2n, n, d). However, imbalance can always be increased by
either adding more vertices to VTop and connecting each one to d random neighbors, or “hashing
down” VBot by composing it with, say, a random unabalanced expander.

17For simplicity of analysis, we will allow both distributions F and M to be over graphs G = (VBot, VTop, E) such
that it does not necessarily hold that |VBot| = n and |VTop| = m, but rather |VBot| and |VTop are random variables
concentrated around n and m respectively. Note that this does not matter for our cryptosystem applications. We
believe our analysis can extend to the case that Pr[|VBot| = n, |VTop| = m] = 1.

53

Planted clique problem. We define the decisional planted k-clique problem in Gn′,p (kDPCn′,p
for short) as the problem of distinguishing between a random graph from Gn′,p and a random
graph in Gn′,p in which we add edges to make a random k-sized subset of vertices a clique. The
search variant of this problem (where one is looking to find the planted set) has been fairly widely
studied for p = 1

2 and currently the best-known polynomial-time algorithms only work when k =
Ω(
√

n) [AKS98]. To our knowledge, for substantially smaller k (e.g., k = n0.1 or even k = 2log0.9 n)
there are no non-trivial algorithms for either the search or decision problems, and even for smaller
values of p. (Note that there is a trivial nO(log n)-time distinguishing algorithm, since a random
graph has maximum clique of size at most 2 log n with high probability.) Our first result is the
following:

Theorem B.12. The kDPCn′,2−` problem reduces to DUE′
(k2/3,1)vs (2`/10,dk/(30 log n′)) in (m,n, d)

graphs for m = Θ(n22−`), n = n′polylog(n′) and d = k/3.

A seemingly reasonable setting of parameters would be ` = 100 log0.99 n′ and q = 2log0.95 n, in
which case the conclusion will be the hardness of DUE′

(q,1)vs (2log0.9 n,d0.9)
. However, this conclusion

is not fully satisfying since the expansion is only d0.9 as opposed to, say, 0.9d. Since our goal
is to use this in variants of our cryptosystem, we need better expansion parameters that ensure
that the adjacency matrix of the graph has no short (i.e., less than 1/µ) linear dependency as
otherwise the system becomes insecure. To have expansion imply any non-trivial condition on
such linear dependencies, we need the expansion to be lossless— namely larger than d/2. While we
can’t get quite that, we do get a somewhat close condition— unique neighbor expansion. A graph
G = (VBot, VTop, E) is a unique neighbor expander for q sets if for S ⊆ VTop with |S| ≤ q, there
exists u ∈ Γ(S) that has only one neighbor in S. It’s easy to see that such a graph G has expansion
factor greater than 1 for sets of size ≤ q, and that there are no q rows in the adjacency matrix of
G that are linearly dependant. We have the following result on unique neighbor expansion:

Theorem B.13. The kDPCn′,2−` problem reduces to DUE′
(k2/3,O(log2 n/k`))vs (2`/10,u.n.))

, where by this
we denote the variant of DUE′ where the NO condition is replaced with being a unique neighbor
expander for sets of size at most 2`/10.

Remark B.14. Note that our reduction for small set expansion is a worst-case gap preserving
reduction, which in particular means that DUE′ if there is some distribution that makes, say,
SSE(q,2)vs (q′,0.99d) hard. In contrast, the reduction from planted clique is an average-case to average-
case reduction that uses the particular distribution over the inputs in the planted clique problem.

B.2.1 Proof of Theorem B.12

Our reduction is very simple, and uses the notion of an edge-vertex incidence graph. This allows to
relate the clique question to expansion, as is encapsulated by the following immediate observation:

Claim B.15. For every graph G = (V,E), let Ĝ be the edge-vertex incidence graph of G.18 Then,
G has a k-clique if and only if there is a subset S of

(
k
2

)
left vertices of Ĝ such that |ΓĜ(S)| ≤ k.

18That is, Ĝ is the (|E|, |V |, 2) bipartite graph such that the eth left vertex of Ĝ is connected to the two vertices
of the eth edge in G.

54

The following simple lemma is the heart of the proof. It implies that the edge-vertex incidence
graph of a random graph G from Gn,p will be a decent expander:

Lemma B.16. With high probability over G chosen from Gn′,2−`, for every t < 2`/10, every subset
of t edges of G touches at least t · `

10 log n′ vertices.

Proof. Let’s bound the probability pk,t that there exists a set of k vertices whose induced graph
has at least t edges. By using the simplest bounds,

pk,t ≤
(

n′

k

)(
k2

t

)
2−`t ≤ n′kk2t2−`t .

Taking logs we see that as long as
k ¿ t`/10 log n′

this probability will be very close to 0. In our setting log k ¿ `, and hence we only need to show
k log n′ ¿ `t, which holds if t > (10 log n′/`)k.

Proof of Theorem B.12 from Lemma B.16. Let Ĝ be the edge-vertex incidence graph of
G. Note that in the planted case we’ll have a set S of size at least k2/3 + 1 (actually

(
k
2

)
) output

vertices with only k neighbors. Now make k/3 copies of every input vertex u of Ĝ and connect
these copies to the same neighbors as u. The resulting graph has degree 2k/6 and the expansion
has increased by a factor k/3, meaning that still |Γ(S)| < |S|. On the other hand in the random
case, the lemma implies that for every set S of size at most 2`/10, its expansion in the new graph
is at least `k/(30 log n).

B.2.2 Proof of Theorem B.13

We now sketch the proof for Theorem B.13. The proof is inspired by the Zig-Zag product [RVW00].
Say that a function D : [m] × [d′] → [s′] is an s-lossless disperser if for every s-sized subset S of
[m], there exists i ∈ [d′] such that the mapping |D(S, {i})| > 0.9|S|. For d′ = 100 log m, a random
function D : [m]× [d′] → [100s] will be such a disperser with high probability.

We can look at an (m,n, d) graph G as a function from [m]× [d] to [n], which we also denote by
G. Let s = 100 log n/` and define the function G′ : [m]× ([d]× [d′]) → [n]× [100s]× [d] as follows:

G′(u, i, j) = 〈G(u, i), D(u, j), j〉 .
For every set S ⊆ [m] of vertices of G, if |ΓG(S)| ≥ |S|/s then there exists u ∈ ΓG(S) with at

most s preimages in G. Let Su be the set of these preimages. For some i ∈ [d′], this set Su will be
mapped by D to at 0.9|Su| outputs, and hence there will be some x ∈ Su with the unique neighbor
〈u,D(x, i), i〉. On the other hand, clearly for every S ⊆ [m],

|ΓG′(S)| ≤ |ΓG(S)| ·O(sd′) .

Now let G be the (m,n, 2) graph obtained from the proof of Theorem B.12. In the NO case
every not too large (less than 2`/10 vertices) subset S of G has at least |S|`/(10 log n) vertices.
Thus, setting s = 10 log n/`, the graph G′ will be a unique neighbor expanders. However, in the
YES case there will be a set of k2 vertices with k neighbors, and hence in G′ this set will have at
most O(ksd) = O(k log2 n/`) neighbors.

55

