
Non-Black-Box Techniques In Crytpography

Thesis for the Ph.D degree

Boaz Barak

Introduction

A computer program (or equivalently, an algorithm) is a list of symbols – a finite string. When
we interpret a string Π as a program, we associate with this string a function that the string Π
computes. For example, if we interpret the string

int f(int x) {
return x+1;

}

as a program in the C programming language, then we associate with it the function f(·) where

f(x)
def
= x + 1 for any integer x. Given a program Π and a value x, it is possible to compute

f(x), where f(·) is the function associated with the program Π, by executing the program Π on a
computer. We sometimes call the string Π the representation or code of the function f(·).

Since a program is a string, it sometimes makes sense to use it as input to a different program.
Indeed, algorithms that take other programs as input are very common in Computer Science. In
most cases, these algorithms use their input program as a subroutine. By this we mean that, on
input a program Π, the algorithm’s operation does not depend on the particular representation of
the program Π, but rather, the algorithm only uses its input program Π to evaluate the function
that the program Π computes. That is, the algorithm only uses Π to obtain a “black box” for
computing f(·), such that the algorithm can feed inputs to and receive outputs from this box. We
call such an algorithm (that only uses black-box access to the program it gets as input) a black-box
algorithm.

As mentioned above, black-box algorithms are very popular in computer science. Many times,
when trying to solve a particular task, one would write an algorithm that solves the task if it is
given black-box access to programs that solve some simpler tasks, and then write programs that
solve these simpler tasks. This approach is a basic paradigm of software engineering, and almost
all programming languages implement mechanisms (such as function calls) to facilitate it.

Black-box algorithms are also very popular in the more theoretical aspects of Computer Science.
For example, when proving that a decision problem L is NP-complete, one needs to show the
existence of a black-box algorithm B (where B is usually called a reduction), such that if B
is given black-box access to an algorithm A that solves the problem L, then B can solve the
Satisfiability problem. Such reductions also appear in cryptography. For example, consider
the constructions of public key encryption schemes whose security can be reduced to the factoring
problem [Rab79, BG84]. This is shown by providing a black-box algorithm B, such that if B is given
black-box access to an algorithm A that compromises the security of the encryption scheme, then
B can solve the factoring problem.

Why are black-box algorithms so popular? The reason that black-box algorithms are so
popular is that it seems very hard to make use of the particular representation of a program as a
string. Understanding the properties of a function from the code of a program that computes it (also

1



known as reverse-engineering) is a notoriously hard problem. In fact, considerable efforts are made
at writing programs so they would be easy to understand. Programs written without such efforts,
or programs written or compiled to low level languages are considered to be quite incomprehensible.
In fact, in some cases it is either proven (e.g., the Halting problem, Rice’s theorem) or widely
conjectured (e.g., the Satisfiability problem) that when trying to learn properties of a function,
there is no significant advantage to getting its representation as a program, over getting black-box
access to it. Thus, a common intuition is the following:

The only useful thing one can do with a program is to execute it (on chosen inputs).

In this thesis, we test this intuition in several settings in cryptography. Somewhat surprisingly,
we find several cases in which it does not hold. That is, we find several cases in which it can be
shown that non-black-box algorithms have significantly more power than black-box algorithms. We
use this additional power of non-black box algorithms to obtain new results. Some of these results
were previously proven to be impossible to obtain when using only black-box techniques.

1 Our Results

The main theme of this thesis is that non-black-box techniques can indeed be more powerful than
black-box techniques in several interesting contexts in cryptography. Below, we elaborate more
on our specific results in particular contexts. We only mention here our results, and we do not
elaborate on the ideas and techniques used to obtain these results. Each chapter in this thesis has
its own introduction, which contains a much more detailed (but still high level) discussion on the
results of the chapter and on the ideas used in the proofs. We note that we present the results
here in a different order than the order of the chapters. This is because the results of Chapter 6
are somewhat easier to state than the results of Chapters 4 and 5, but the proofs of Chapter 6 are
actually more complicated and use some ideas from the previous chapters.

1.1 Code Obfuscation

Code obfuscation is about trying to make practical use of the difficulty of reverse-engineering
programs. Informally, an obfuscator O is an (efficient, probabilistic) “compiler” that takes as
input a program Π and produces a new program O(Π) that has the same functionality as Π yet is
“unintelligible” in some sense. Obfuscators, if they exist, would have a wide variety of cryptographic
and complexity-theoretic applications, ranging from software protection to homomorphic encryption
to complexity-theoretic analogues of Rice’s theorem. Most of these applications are based on an
interpretation of the “unintelligibility” condition in obfuscation as meaning that O(Π) is a “virtual
black box,” in the sense that anything one can efficiently compute given O(Π), one could also
efficiently compute given black-box access to Π.

Several constructions of software obfuscators have been previously suggested (c.f., [CTL97] and
the references therein). However, no formal definition of obfuscation has been suggested, and so
in particular none of these candidates has been proven to meet some formal security definition. In
Chapter 3 of this thesis, we initiate a theoretical investigation of obfuscation. Our main result is
that, even under very weak formalizations, obfuscation is impossible. We prove this by constructing
a family of programs P that are inherently unobfuscatable in the sense that

1. There is an efficient algorithm A such that for every program Π ∈ P and every program Π′

that computes the same function as Π, A(Π′) = Π. That is, for every possible obfuscator O,
A can recover the original source code of Π from O(Π).

2



but

2. When given only black box access to a program Π chosen at random from P, it is infeasible
to compute the program Π.

We extend our impossibility result in a number of ways, including even obfuscators that (a) are
not necessarily computable in polynomial time, (b) only approximately preserve the functionality,
and (c) only need to work for very restricted models of computation (TC0). We also rule out
several potential applications of obfuscators, by constructing “unobfuscatable” signature schemes,
encryption schemes, and pseudorandom function families.

1.2 Non-black-box Proofs of Security

A typical cryptographic theorem has the following form “Scheme X (e.g., a secure voting protocol)
is as secure as Problem Y (e.g., factoring random Blum integers)”. This statement means that if
there exists an efficient algorithm A that breaks the security of the scheme X, then there exists an
efficient algorithm B that can solve the problem Y . In all previous cases that we are aware of, such
statements were proven via black-box reductions. That is, to show that the statement is true, one
gave a construction of a generic algorithm B that takes as input both an instance of the problem Y
and uses black-box access to an algorithm A. Then, one proves that if A is an algorithm to break
the scheme X, then when given access to A, Algorithm B solves the problem Y .

A natural question is whether one can gain more power by using a non-black-box reduction.
That is, whether by considering also reductions that let the algorithm B use also the code of A one
can obtain new cryptographic schemes. In Chapter 6 we give a positive answer to this question.
We use there a non-black-box proof of security to construct the first constant round non-malleable
commitment scheme and the first constant-round non-malleable zero-knowledge argument system,
as defined by Dolev, Dwork and Naor [DDN91].

Non-malleability is a strengthened notion of security that is needed for some applications of
secure protocols. In particular, non-malleable commitment schemes capture better the intuitive
notion of “digital envelopes” in the sense that the committed value is not only hidden from the
receiver of such a commitment scheme but also the receiver cannot form a commitment to any
related value. In contrast, when using a standard (i.e., malleable) commitment scheme, it may be
the case that the receiver of a commitment to a value x, can form a commitment to a value related
to x (e.g., x + 1) even though he cannot learn x.

Previous constructions of non-malleable commitment schemes and zero-knowledge proofs either
used a non-constant number of rounds, or were only secure under stronger setup assumptions (such
as the availability of a public string that is chosen at random and published by a trusted third
party).

As an intermediate step we define and construct a constant-round non-malleable coin tossing
protocol. This coin-tossing protocol may be of independent interest.

1.3 Non-Black-Box Simulation

The simulation paradigm, introduced by Goldwasser, Micali, and Rackoff [GMR85], is one of the
most important paradigms in the definition and design of cryptographic primitives. For example,
this paradigm arises in a setting in which two parties, Alice and Bob, interact in some secure
protocol (e.g., a zero-knowledge proof) and Bob knows a secret. We want to make sure that Alice
hasn’t learned anything about Bob’s secret as the result of this interaction, and do so by showing
that Alice could have simulated the entire interaction by herself. Therefore, she has gained no

3



further knowledge as the result of interacting with Bob, beyond what she could have discovered by
herself.

Formally, this is shown by exhibiting a simulator. A simulator is an algorithm, that gets as
input an algorithm A∗ which describes Alice’s strategy in the protocol, and outputs a distribution
that is indistinguishable from the distribution of the messages that Alice sees in a real interaction
with Bob when she is using the strategy A∗. The existence of such a simulator demonstrates that
regardless of the strategy A∗ that Alice’s uses, she has not learned anything about Bob’s secret that
she couldn’t have learned by herself without having any interaction with Bob (by simply running
the simulator).

Almost all previously known simulators used only black-box access to the algorithm A∗ they
received as input.1 In Chapter 4, we present the first construction of a protocol with a non-black-
box simulator under standard assumptions. Using these new non-black-box techniques we obtain
several results that were previously shown to be impossible to obtain using black-box simulators.

Specifically, assuming the existence of collision-resistent hash functions, we construct a new zero-
knowledge argument (i.e., a computationally-sound proof) for any language in NP that satisfies
the following properties:

1. It is zero-knowledge with respect to non-uniform adversaries with auxiliary information.

2. It has a constant number of rounds and negligible soundness error.

3. It remains zero-knowledge even if executed concurrently n times, where n is the security
parameter. We call a protocol that satisfies this property a bounded concurrent zero-knowledge
protocol.2

4. It is an Arthur-Merlin (public coins) protocol.

5. It has a simulator that runs in strict probabilistic polynomial-time, rather than expected
probabilistic polynomial-time.

The above protocol should be contrasted with the following impossibility results regarding black-
box zero-knowledge arguments for non-trivial languages: Goldreich and Krawczyk [GK90] showed
that such protocols cannot satisfy both Properties 2 and 4. Canetti, Kilian, Petrank and Rosen
[CKPR01] showed that such protocols cannot satisfy both Properties 2 and 3. In Chapter 5, we also
show that such protocols cannot satisfy Properties 2 and 5.

In addition, in Chapter 5 we use this zero-knowledge system to obtain other new results in
cryptography. These applications include (a) a construction of constant-round zero-knowledge
argument of knowledge with a strict polynomial-time knowledge extractor, (b) a zero-knowledge
resettably sound argument for NP, and (c) a resettable zero-knowledge argument of knowledge.
We show that all these three applications are impossible to obtain when restricted to black-box
techniques.

We remark that application (b) in particular, is somewhat counter-intuitive, and demonstrates
well the power of non-black-box techniques. In particular it means that if you are given a device
(e.g., a smart-card) that proves some statement σ in this system then you are not able to learn

1One exception is the zero-knowledge proof system of [HT99]. However, that protocol was constructed under a
computational assumption that the authors themselves describe as unreasonable.

2The choice of n repetitions is quite arbitrary and could be replaced by any fixed polynomial (e.g. n3) in the
security parameter. This is in contrast to a standard concurrent zero-knowledge protocol [DNS98, RK99] that
remains zero-knowledge when executed concurrently any polynomial number of times.

4



anything new about σ except its validity by “playing” with the device – feeding it with different
inputs, and examining its outputs. However you can still be certain that if you were to open the
device and examine its internal workings, you would be able to extract a witness for σ.

Relation to non-black-box proofs of security. We remark that in some sense non-black-box
simulation is a special case of non-black-box proofs of security. This is because one can view the
existence of a simulator as a proof that the protocol is secure, and so a non-black-box simulator can
be viewed as a non-black-box proof of security. Indeed, usually when a zero-knowledge protocol
is used as a component in a larger sub-protocol, the security reduction for the larger protocol
involves using the simulator for the zero-knowledge protocol. Thus, if the zero-knowledge protocol
used has a non-black-box simulator, then the security reduction for the larger protocols will be
non-black-box.

References

[BG84] M. Blum and S. Goldwasser. An Efficient Probabilistic Public-Key Encryption Scheme
which Hides All Partial Information. In Crypto ’84, pages 289–299, 1984. LNCS No.
196.

[CKPR01] R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-Box Concurrent Zero-Knowledge
Requires Ω̃(log n) Rounds. Record 2001/051, Cryptology ePrint Archive, June 2001.
Extended abstract appeared in STOC’ 01.

[CTL97] C. Collberg, C. Thomborson, and D. Low. A Taxonomy of Obfuscating Transformations.
Technical Report 148, University of Auckland, July 1997. See also http://www.cs.
arizona.edu/~collberg/Research/Obfuscation/index.html.

[DDN91] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. Comput.,
30(2):391–437 (electronic), 2000. Preliminary version in STOC 1991.

[DNS98] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero Knowledge. In Proc. 30th STOC,
pages 409–418. ACM, 1998.

[GK90] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems.
SIAM J. Comput., 25(1):169–192, Feb. 1996. Preliminary version appeared in ICALP’
90.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186–208, 1989. Preliminary version in STOC’ 85.

[HT99] S. Hada and T. Tanaka. On the Existence of 3-Round Zero-Knowledge Protocols.
Cryptology ePrint Archive, Report 1999/009, 1999. http://eprint.iacr.org/.

[Rab79] M. O. Rabin. Digitalized Signatures and Public-Key Functions as Intractable as Factor-
ization. Technical Report MIT/LCS/TR-212, Massachusetts Institute of Technology,
Jan. 1979.

[RK99] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs.
In Eurocrypt ’99, 1999. LNCS No. 1592.

5

http://www.cs.arizona.edu/~collberg/Research/Obfuscation/index.html
http://www.cs.arizona.edu/~collberg/Research/Obfuscation/index.html
http://eprint.iacr.org/

	Our Results
	Code Obfuscation
	Non-black-box Proofs of Security
	Non-Black-Box Simulation

	Bibliography

