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Abstract

We give two applications of Nisan–Wigderson-type (“non-cryptographic”) pseudorandom
generators in cryptography. Specifically, assuming the existence of an appropriate NW-type
generator, we construct:

1. A one-message witness-indistinguishable proof system for every language in NP, based on
any trapdoor permutation. This proof system does not assume a shared random string or
any setup assumption, so it is actually an “NP proof system.”

2. A noninteractive bit commitment scheme based on any one-way function.

The specific NW-type generator we need is a hitting set generator fooling nondeterministic
circuits. It is known how to construct such a generator if E = DTIME(2O(n)) has a function
of nondeterministic circuit complexity 2Ω(n) (Miltersen and Vinodchandran, FOCS ‘99).

Our witness-indistinguishable proofs are obtained by using the NW-type generator to deran-
domize the ZAPs of Dwork and Naor (FOCS ‘00). To our knowledge, this is the first construction
of an NP proof system achieving a secrecy property.

Our commitment scheme is obtained by derandomizing the interactive commitment scheme
of Naor (J. Cryptology, 1991). Previous constructions of noninteractive commitment schemes
were only known under incomparable assumptions.

Keywords: interactive proofs, witness-indistinguishable proofs, commitment schemes, com-
plexity theory, pseudorandom generators.
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1 Introduction

The computational theory of pseudorandomness has been one of the most fertile grounds for the
interplay between cryptography and computational complexity. This interplay began when Blum,
Micali, and Yao (BMY) [BM84, Yao82], motivated by applications in cryptography, placed the
study of pseudorandom generators on firm complexity-theoretic foundations. They gave the first
satisfactory definition of pseudorandom generators along with constructions meeting that defini-
tion. Their notion quickly acquired a central position in cryptography, but it turned out that the
utility of pseudorandom generators was not limited to cryptographic applications. In particular,
Yao [Yao82] showed that they could also be used for derandomization — efficiently converting
randomized algorithms into deterministic algorithms. Pseudorandom generators and their general-
ization, pseudorandom functions [GGM86], also found a variety of other applications in complexity
theory and the theory of computation (e.g., [RR97, Val84]).

Focusing on derandomization, Nisan and Wigderson (NW) [NW94] proposed a weakening of the
BMY definition of pseudorandom generators which still suffices for derandomization. The benefit
was that such NW-type pseudorandom generators could be constructed under weaker assumptions
than the BMY ones (circuit lower bounds for exponential time, rather than the existence of one-
way functions).1 Thus, a long body of work developed around the task of constructing increasingly
efficient NW-type pseudorandom generators under progressively weaker assumptions. One of the
highlights of this line of work is the construction of Impagliazzo and Wigderson [IW97] implying
that P = BPP under the plausible assumption that E = DTIME(2O(n)) has a problem of cir-
cuit complexity 2Ω(n). More recently, the work on NW-type pseudorandom generators has also
been found to be intimately related to randomness extractors [Tre01], and has been used to prove
complexity-theoretic results which appear unrelated to derandomization [IKW01].

While allowing remarkable derandomization results such as the Impagliazzo–Wigderson result
mentioned above, NW-type pseudorandom generators have not previously found applications in
cryptography (for reasons mentioned below). In this work, we show that a stronger form of NW-type
pseudorandom generators, namely ones fooling nondeterministic circuits [AK01, KvM02, MV99,
SU01], do have cryptographic applications. Using such pseudorandom generators (which can be
constructed under plausible complexity assumptions), we:

1. Construct witness-indistinguishable “NP proofs” (i.e. one-message2 proof systems, with no
shared random string or other setup assumptions) for every language in NP, assuming the
existence of trapdoor permutations.

2. Construct noninteractive bit commitment schemes from any one-way function.

Thus, each of these results requires two assumptions — the circuit complexity assumption for
the NW-type pseudorandom generator (roughly, that E has a function of nondeterministic circuit
complexity 2Ω(n)) and a “cryptographic” assumption (one-way functions or trapdoor permutations).

Result 1 is the first construction of witness-indistinguishable NP proofs under any assumption
whatsoever, and refutes the intuition that interaction is necessary to achieve secrecy in proof
systems. It is obtained by derandomizing the ZAP construction of Dwork and Naor [DN00]. We note
that Dwork and Naor [DN00] themselves also constructed one-message witness-indistinguishable
proofs that are nonuniform in the sense that the prover and verifier require a polynomial-length

1Strictly speaking, the assumptions for NW-type generators are only weaker when considering generators of the
same stretch (and when fooling nonuniform circuits). In this paper, the NW-type generators we use have much
greater stretch than the BMY-type generators we use, and hence the assumptions are incomparable.

2We use “messages” rather than “rounds”, as the latter is sometimes used to refer to a pair of messages.
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string to be hardwired in advance as nonuniform advice. Those can be viewed as “NP/poly
proofs”.

Result 2 is not the first construction of noninteractive commitment schemes, but is based on
assumptions that appear incomparable to previous ones (which were based on the existence of
one-to-one one-way functions). We obtain this result by derandomizing the Naor’s interactive bit
commitment scheme [Nao91].

These two examples suggest that NW-type pseudorandom generators (and possibly other “non-
cryptographic” tools from the derandomization literature) are actually relevant to the foundations
of cryptography, and it seems likely that other applications will be found in the future.

NW-type Generators fooling Nondeterministic Circuits. The most important difference
between BMY-type and NW-type pseudorandom generators is that BMY-type pseudorandom gen-
erators are required to fool even circuits with greater running time than the generator, whereas
NW-type pseudorandom generators are allowed greater running time than the adversarial circuit.
Typically, a BMY-type pseudorandom generator must run in some fixed polynomial time (say nc),
and fool all polynomial-time circuits (even those running in time, say, n2c). In contrast, an NW-
type pseudorandom generator may run in time nO(c) (e.g. n3c) in order to fool circuits running in
time nc. BMY-type pseudorandom generators are well-suited for cryptographic applications, where
the generator is typically run by the legitimate parties and the circuit corresponds to the adversary
(who is always allowed greater running time). In contrast, NW-type pseudorandom generators seem
non-cryptographic in nature. Nevertheless we are able to use them in cryptographic applications.
The key observation is that, in the protocols we consider, (some of) the randomness is used to
obtain a string that satisfies some fixed property which does not depend on the adversary (or its
running time). Hence, if this property can be verified in polynomial time, we can obtain the string
using an NW-type pseudorandom generator of fixed polynomial running time. We then eliminate
the randomness entirely by enumerating over all possible seeds. This is feasible because NW-type
generators can have logarithmic seed length. Also, we show that in our specific applications, this
enumeration does not compromise the protocol’s security.

In the protocols we consider, the properties in question do not seem to be verifiable in poly-
nomial time. However, they are verifiable in nondeterministic polynomial time. So we need
to use a pseudorandom generator that fools nondeterministic circuits. Fortunately, it is pos-
sible for an NW-type pseudorandom generator to fool nondeterministic circuits, as realized by
Arvind and Köbler [AK01] and Klivans and van Melkebeek [KvM02].3 Indeed, a sequence of
works have constructed such pseudorandom generators under progressively weaker complexity as-
sumptions [AK01, KvM02, MV99, SU01]. Our results make use of the Miltersen–Vinodchandran
construction [MV99] (which gives only a “hitting set generator” rather than a pseudorandom gen-
erator, but this suffices for our applications).

Witness Indistinguishable NP Proofs. In order to make zero-knowledge proofs possible,
the seminal paper of Goldwasser, Micali, and Rackoff [GMR89] augmented the classical notion of
an NP proof with two new ingredients — interaction and randomization. Both were viewed as
necessary for the existence of zero-knowledge proofs, and indeed it was proven by Goldreich and
Oren [GO94] that without either, zero-knowledge proofs exist only for trivial languages (those in
BPP). The role of interaction was somewhat reduced by the introduction of “noninteractive”

3It is impossible for a BMY-type pseudorandom generator to fool nondeterministic circuits, as such a circuit can
recognize outputs of the pseudorandom generator by guessing the corresponding seed and evaluating the generator
to check. Some attempts to bypass this difficulty can be found in [Rud97].
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zero-knowledge proofs [BFM88, BDMP91], but those require a shared random string selected by
a trusted third party, which can be viewed as providing a limited form of interaction. Given
the aforementioned impossibility results [GO94], reducing the interaction further seems unlikely.
Indeed, a truly noninteractive proof system, in which the prover sends a single proof string to the
verifier, seems to be inherently incompatible with the intuitive notion of “zero knowledge”: from
such a proof, the verifier gains the ability to prove the same statement to others.

Despite this, we show that for a natural weakening of zero knowledge, namely witness in-
distinguishability [FS89], the interaction can be completely removed (under plausible complexity
assumptions). Recall that a witness-indistinguishable proof system for a language L ∈ NP is an
interactive proof system for L that leaks no knowledge about which witness is being used by the
prover (as opposed to leaking no knowledge at all, as in zero-knowledge proofs) [FS89]. Witness
indistinguishability suffices for a number of the applications of zero knowledge [FS89], and also is
a very useful intermediate step in the construction of zero-knowledge proofs [FLS99].

Several prior results show that witness-indistinguishable proofs do not require the same degree
of interaction as zero-knowledge proofs. Feige and Shamir [FS89] constructed 3-message witness-
indistinguishable proofs for NP (assuming the existence of one-way functions), whereas the ex-
istence of 3-message zero-knowledge proofs is a long-standing open problem. More recently, the
ZAPs of Dwork and Naor [DN00] achieve witness indistinguishability with just 2 messages (assum-
ing trapdoor permutations), whereas this is known to be impossible for zero knowledge [GO94]. As
mentioned earlier, Dwork and Naor also showed that the interaction could be further reduced to
one message at the price of nonuniformity (i.e. if the protocol can use some nonuniform advice of
polynomial length); they interpret this as evidence that “proving a lower bound of two [messages]
is unlikely.”

We construct 1-message witness-indistinguishable proofs for NP in the “plain model”, with no
use of a shared random string or nonuniformity. Our proof system is obtained by derandomizing the
Dwork–Naor ZAPs via an NW-type generator against nondeterministic circuits. Since our verifier is
deterministic, we actually obtain a standard NP proof system with the witness indistinguishability
property. More precisely, for any language L ∈ NP with associated NP-relation R, we construct
a new NP-relation R′ for L. The relation R′ has the property that one can efficiently transform
any witness with respect to R into a distribution on witnesses with respect to R′, such that the
distributions corresponding to different witnesses are computationally indistinguishable.

Converting AM proof systems to NP proof systems was actually one of the original applications
of NW-type generators versus nondeterministic circuits [AK01, KvM02]. The novelty in our result
comes from observing that this conversion preserves the witness indistinguishability property.

The randomness requirements of zero-knowledge proofs have been examined in previous works.
Goldreich and Oren [GO94] showed that only languages in BPP have zero-knowledge proofs in
which either the prover or verifier is deterministic. Thus De Santis, Di Crescenzo, and Per-
siano [DDP97, DDP99, DDP02] have focused on reducing the number of random bits. Specifi-
cally, under standard “cryptographic” assumptions, they constructed noninteractive zero-knowledge
proofs with a shared random string of length O(nε+log(1/s)) and 2-message witness-indistinguishable
proofs (actually, ZAPs) in which the verifier uses only O(nε + log(1/s)) random bits, where ε > 0
is any constant and s is the soundness error. They posed the existence of 1-message witness-
indistinguishable proofs for NP as an open problem. One of their main observations in [DDP02] is
that combinatorial methods for randomness-efficient error reduction, such as pairwise independence
and expander walks, preserve witness indistinguishability. As mentioned above, we make crucial
use of an analogous observation about NW-type generators.
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Noninteractive Bit Commitment Schemes. Bit commitment schemes are one of the most ba-
sic primitives in cryptography, used pervasively in the construction of zero-knowledge proofs [GMW91]
and other cryptographic protocols. Here we focus on perfectly (or statistically) binding and com-
putationally hiding bit commitment schemes. As usual, noninteractive bit commitment schemes,
in which the commitment phase consists of a single message from the sender to the receiver, are
preferred over interactive schemes. There is a simple construction of noninteractive bit commitment
schemes from any one-to-one one-way function [Blu82, Yao82, GL89]. From general one-way func-
tions, the only known construction of bit commitment schemes, namely Naor’s protocol [Nao91]
(with the pseudorandom generator construction of [HILL99]), requires interaction.

We show how to use an NW-type pseudorandom generator against nondeterministic circuits
to remove the interaction in Naor’s protocol, yielding noninteractive bit commitment schemes
under assumptions that appear incomparable to the existence of one-to-one one-way functions. In
particular, ours is a “raw hardness” assumption, not requiring hard functions with any semantic
structure such as being one-to-one.

From a different perspective, our result shows that “non-cryptographic” assumptions (nondeter-
ministic circuit lower bounds for E) can reduce the gap between one-way functions and one-to-one
one-way functions. In particular, a noninteractive bit commitment scheme gives rise to a “par-
tially one-to-one one-way function”: a polynomial-time computable function f(x, y) such that x
is uniquely determined by f(x, y) and x is hard to compute from f(x, y) (for random x, y). It
would be interesting to see if this can be pushed further to actually construct one-to-one one-way
functions from general one-way functions under a non-cryptographic assumption.

Perspective. The assumption required for the NW-type generators we use is a strong one, but
it seems to be plausible (see Section 2.6). Perhaps its most significant feature is that it is very
different than the assumptions typically used in cryptography (e.g. it is a worst-case assumption);
nevertheless, our results show it has implications in cryptography. In our first result, we use it
to demonstrate the plausibility of nontrivial 1-message witness-indistinguishable proofs, which will
hopefully lead to efficient constructions for specific problems based on specific assumptions. As for
our second result, the plausibility of noninteractive commitment schemes was already established
more convincingly based on one-to-one one-way functions [Blu82]. What we find interesting instead
is that a “non-cryptographic” assumption can imply new relationships between basic cryptographic
primitives, and in particular reduce the gap between one-way functions and one-to-one one-way
functions.

2 Preliminaries

2.1 Nondeterministic Computations

A significant advantage of NW-type generators that we will use is that they can fool nondetermin-
istic circuits, because even if such a circuit can guess the seed, it does not have enough time to
evaluate the generator on it.

We define nondeterministic circuit to be a (nonuniform) Boolean circuit that has the additional
power of nondeterminism.

Definition 2.1. A nondeterministic Boolean circuit C(x, y) is a circuit that takes x as its primary
input and y as a witness. For each x ∈ {0, 1}∗, we define C(x) = 1 if there exist a witness y such
that C(x, y) = 1.
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A co-nondeterministic Boolean circuit C(x, y) is a circuit that takes x as its primary input
and y as a witness. For each x ∈ {0, 1}∗, we define C(x) = 0 if there exist a witness y such that
C(x, y) = 0.

Denote SN(f) to be the minimal sized nondeterministic circuit computing f .

Nondeterministic and co-nondeterministic algorithms can be defined in a similar fashion, with
the nonuniform circuit C being replaced by a uniform algorithm. Naturally, we measure the running
time of a nondeterministic algorithm A(x, y) in terms of the first input x. Therefore NP and
coNP are the classes of languages decidable by polynomial-time nondeterministic algorithms and
co-nondeterministic algorithms, respectively.

Definition 2.2. A nondeterministic algorithm A(x, y) is a uniform algorithm that takes x as its
primary input and y as a witness. For each x ∈ {0, 1}∗, we define A(x) = 1 if there exist a witness
y such that A(x, y) = 1.

Likewise, a co-nondeterministic algorithm A(x, y) is a uniform algorithm that takes x as its
primary input and y as a witness. For each x ∈ {0, 1}∗, we define A(x) = 0 if there exist a witness
y such that A(x, y) = 0.

A nondeterministic (or co-nondeterministic) algorithm A is said to run in time t(n), if for every
x and y, the running time of A(x, y) is at most t(|x|).

2.2 Interactive Proofs

An interactive proof is an interactive protocol in which a prover (with unlimited computational
powers) tries to convince a probabilistic polynomial-time verifier the validity of a certain state-
ment. Since interactive protocols are probabilistic, the soundness and completeness criteria are
also probabilistic. The formal definition of interactive proofs follows.

Definition 2.3 (interactive proofs [BM88, GMR89]). An interactive protocol (P, V ) is called an
interactive proof system for a language L if the following conditions hold.

1. (Efficiency) On common input x, the number and total length of messages exchanged between
P and V are bounded by a polynomial in |x|, and V is a probabilistic polynomial-time
machine.

2. (Completeness) If x ∈ L, then Pr[(P, V )(x) = 1] ≥ 2
3 .

3. (Soundness) If x /∈ L, then for any P ∗, Pr[(P ∗, V )(x) = 1] ≤ 1
3 .

The class of languages possessing interactive proofs is denoted as IP.

We say that an interactive proof system has perfect completeness if the completeness condition
holds with probability 1 instead of 2

3 . We say that a system has perfect soundness if the soundness
condition holds with probability 0 instead of 1

3 .
An interactive proof system is called public-coin if the verifier’s messages consist only of random

strings and acceptance is computed as a deterministic polynomial-time function of the interaction’s
transcript. An interactive proof system that is not public-coin is called private-coin.

The number of rounds in an interactive proof is the total number of messages exchanged in the
interaction (that is, both prover messages and verifier messages). A proof system with one round
is called noninteractive.
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2.3 The Class AM

The class AM, also known as Arthur-Merlin games, has two equivalent formulations. The first
is as the class of languages with constant-message interactive proofs. The second is as the class
of languages decidable by polynomial-time probabilistic nondeterministic algorithms. Formally, a
probabilistic nondeterministic algorithm A(x, r, y) takes a random input r in addition to its regular
input x and nondeterministic input y. We say A computes a function f if the following two
conditions hold.

1. If f(x) = 1, then Prr[∃yA(x, r, y) = 1] = 1.

2. If f(x) = 0, then Prr[∃yA(x, r, y) = 1] ≤ 1/2.

Then AM is the class of languages decidable by such algorithms A(x, r, y) running in time
poly(|x|). The equivalence of the two definitions of AM is due to [BM88, GS89, FGM+89]. More
generally, AMTIME(t(n)) denotes the class of languages that are decided by probabilistic non-
deterministic algorithms running in time t(n), and [i.o.−AMTIME](t(n)) denotes the class of
languages that are decided by probabilistic-time t(n) nondeterministic algorithms for infinitely
many input lengths. Formally, we say L ∈ [i.o.−AMTIME](t(n)) if there exists an algorithm A
running in time t(n) such that for infinitely many n ∈ N, the following two conditions hold for all
x of length n.

1. If x ∈ L, then Prr[∃yA(x, r, y) = 1] = 1.

2. If x /∈ L, then Prr[∃yA(x, r, y) = 1] ≤ 1/2.

Note that the above definition of [i.o.−AMTIME](t(n)) is slightly nonstandard in the sense
that infinitely-often complexity classes are often defined in the following manner: If C is a complex-
ity class, then i.o.−C is the class of all languages L such that there exists a language L′ ∈ C such
that L ∩ {0, 1}n = L′ ∩ {0, 1}n for infinitely many n ∈ N. Observe that i.o.−AMTIME(t(n)) ⊆
[i.o.−AMTIME](t(n)). Discussions about the subtle difference between these two classes can be
found in [GST03].

2.4 Pseudorandom Generators

A pseudorandom generator (PRG) is a deterministic algorithm G : {0, 1}` → {0, 1}m, with ` < m.
Pseudorandom generators are used to convert a short random string into a longer string that looks
random to any efficient observer.

Definition 2.4 (Pseudorandom generator). We say that G : {0, 1}` → {0, 1}m is a (s, ε)-pseudorandom
generator against circuits if for all circuits C : {0, 1}m → {0, 1} of size at most s, it holds that
|Pr[C(G(U`)) = 1]− Pr[C(Um) = 1]| < ε, where Uk denotes the uniform distribution over {0, 1}k.

BMY-type vs. NW-type Generators. As mentioned above, there are two main types of
pseudorandom generators: Blum-Micali-Yao (BMY) [BM84, Yao82] type and Nisan-Wigderson
(NW) [NW94] type generator. Both can be defined for a wide range of parameters, but here
we focus on the “classic” settings that we need. A BMY-type generator is the standard kind of
pseudorandom generator used in cryptography.

Definition 2.5 (BMY-type generators). A function G =
⋃

m Gm : {0, 1}` → {0, 1}m is a BMY-type
pseudorandom generator with seed length ` = `(m), if G is computable in time poly(`), and for
every constant c, Gm is a (mc, 1/mc)-pseudorandom generator for all sufficiently large m.
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Note that a BMY-type generator is required to have running time that is a fixed polynomial,
but must fool circuits whose running time is an arbitrary polynomial. H̊astad, Impagliazzo, Levin,
and Luby [HILL99] proved that BMY-type pseudorandom generators with seed length `(m) = mδ

(for every δ > 0) exist if and only if one-way functions exist.
NW-type generators differ from BMY-type generators most significantly in the fact that the

generator has greater running time than the circuits it fools.

Definition 2.6 (NW-type generators). A function G =
⋃

m Gm : {0, 1}` → {0, 1}m is an NW-type
pseudorandom generator with seed length ` = `(m), if G is computable in time 2O(`) and Gm is a
(m2, 1/m2)-pseudorandom generator for all m.4

We will be interested in the “high end” NW-type generators, which have seed length `(m) =
O(log m), and thus have running time which is a fixed polynomial in m.5 Impagliazzo and Wigder-
son [IW97] proved that such a generator exists if E = DTIME(2O(n)) has a function of circuit
complexity 2Ω(n). Note that when the seed length is ` = O(log m), all 2` seeds can be enumerated
in time poly(m), and hence the generator can be used for complete derandomization. In particular,
the existence of such a generator implies that BPP = P.

2.5 Hitting Set Generators

A hitting set generator (HSG) is a deterministic algorithm H(1m, 1s) that outputs a set of strings
of length m. We say H is efficient if its running time is polynomial (in m and s). Hitting set
generators are weaker notions of pseudorandom generators.

Definition 2.7 (Hitting set generators). We say that H is an ε-hitting set generator against circuits,
if for every m, s ∈ N, and circuit C : {0, 1}m → {0, 1} of size at most s, the following holds.

Pr[C(Um) = 1] > ε =⇒ ∃y ∈ H(1m, 1s) such that C(y) = 1.

Hitting set generators against nondeterministic and co-nondeterministic circuits are defined in a
similar fashion. In addition, we say that H is an ε-hitting set generator against co-nondeterministic
uniform algorithms, if for every co-nondeterministic uniform algorithm A : {0, 1}∗ → {0, 1} running
in time at most s(m) on inputs of length m,6 the following holds for all sufficiently large m.

Pr[A(Um) = 1] > ε =⇒ ∃y ∈ H(1m, 1s(m)) such that A(y) = 1.

The construction of a one-message witness-indistinguishable proof system in Section 3 requires
a hitting set generator against co-nondeterministic circuits. However, we will only need a (weaker)
hitting set generator against co-nondeterministic uniform algorithms for the construction of a non-
interactive commitment scheme in Section 4.

Note that a pseudorandom generator G : {0, 1}` → {0, 1}m fooling circuits of size s gives rise to a
hitting set generator, by taking the set of outputs of G over all seeds. The hitting set generator will
be efficient if G is computable in time poly(s,m) and has logarithmic seed length ` = O(log m +
log s). In this sense hitting set generators are weaker than pseudorandom generators. Indeed,
hitting set generators can be directly used to derandomize algorithms with one-sided error (i.e.
RP algorithms), whereas pseudorandom generators can be used to derandomize circuits with two-
sided error (BPP algorithms). Also note that we allow the hitting set generators to run in greater

4One can replace m2 in this definition with any fixed polynomial in m.
5The running time of the generator is still greater than the size of the circuits it fools.
6The function s(·) should be proper.
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time than circuits it fools, so they correspond to NW-type generators. Since the error in AM
proof systems can be made one-sided [FGM+89], the existence of an efficient 1/2-HSG against
co-nondeterministic circuits implies that AM = NP.

The first constructions of efficient HSG (in fact pseudorandom generators) against co-nondeter-
ministic circuits was given by Arvind and Köbler [AK01]. Their construction was based on the
assumption that there are languages in E that are hard on average for nondeterministic circuits of
size 2Ω(n). Klivans and van Melkebeek [KvM02] gave a construction based on a worst-case hardness
assumption. Their assumption was the existence of languages in E with 2Ω(n) worst-case SAT-oracle
circuit complexity, that is circuits with SAT-oracle gates. Miltersen and Vinodchandran [MV99]
managed to relax the hardness condition to nondeterministic circuits (yet only obtained a hitting
set generator rather than a pseudorandom generator). We state their main result.

Theorem 2.8 ([MV99]). 7 If there exist a function f ∈ E such that SN(f) = 2Ω(n), then there exists
an efficient 1/2-HSG against co-nondeterministic circuits. In particular, under this assumption
AM = NP.

Shaltiel and Umans [SU01] subsequently extended Theorem 2.8 in two ways: First, they ob-
tained a pseudorandom generator rather than a hitting set generator. Second, they obtained anal-
ogous results for quantitatively weaker assumption (e.g., when the SN(f) is only superpolynomial
rather than exponential) yielding correspondingly less efficient generators. However, we will not
need these extensions in our paper.

Uniform Hitting Set Generators. Gutfreund, Shaltiel and Ta-Shma [GST03] extended Theo-
rem 2.8 to give a hitting set generator against co-nondeterministic uniform algorithms from uniform
hardness assumptions. They used the same hitting set generator as Miltersen and Vinodchandran,
but proceeded with a better analysis.

Theorem 2.9 ([GST03]). If E * [i.o.−AMTIME](2δn) for some δ > 0, then an efficient 1/2-HSG
against co-nondeterministic uniform algorithms exists.

Since nonuniformity can simulate randomness, the existence of a function f ∈ E such that
SN(f) = 2Ω(n) (assumption of Theorem 2.8) implies that E * [i.o.−AMTIME](2δn) for some
δ > 0 (assumption of Theorem 2.9).

2.6 Discussions

Are the Assumptions Reasonable? Our two results rely on the existence of hitting set gener-
ators as constructed in Theorems 2.8 and 2.9, which in turn make assumptions about E containing
functions of high nondeterministic complexity. In our opinion, these assumptions are plausible.
The two most common reasons to believe a hardness assumption are empirical evidence and philo-
sophical (or structural) considerations. The widely held P 6= NP assumption is supported by
both. Empirically, much effort has been invested to finding efficient algorithms for NP problems.
Philosophically, it seems unlikely that proofs should always be as easy to find as they are to verify.
Other hardness assumptions, such as the hardness of factoring, are supported mainly by empirical
evidence. Some, like E * NP (equivalently, EXP 6= NP), are supported mainly by philosophical

7[MV99] actually use a seemingly weaker assumption, only needing a function of exponential “single-valued”
nondeterministic circuit complexity. But, as noted in [SU01], the fact that E is closed under complement can be used
to show that the two assumptions are actually equivalent. In addition, [MV99] present the HSG as a (1− δ)-HSG for
δ = 2mγ

/2m, but it can be converted into a 1/2-HSG using dispersers as done implicitly in their paper.
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considerations: it seems unlikely that it should always be possible to prove the correctness of expo-
nentially long computations with polynomial-sized proofs. The assumptions of Theorems 2.8 and
2.9 are natural strengthenings of this assumption, where we extend NP both by letting the running
time grow from polynomial to subexponential and by allowing nonuniformity or randomization.

How do we find the function f? Once we accept the existence of some function f ∈ E such
that SN(f) = 2Ω(n), can we find a specific function f satisfying that condition? The answer is yes.
It is not hard to show that if there exists a function f satisfying the condition of Theorem 2.8,
then every function that is E-complete via linear-time reductions also satisfies that condition. In
particular, we can take the bounded halting function BH(·) defined as follows: BH(M,x, t) = 1 if
the Turing machine M outputs 1 on input x after at most t steps (where t is given in binary), and
BH(M,x, t) = 0 otherwise.

3 Witness Indistinguishable NP Proofs

In this section we use efficient hitting set generators against co-nondeterministic circuits to de-
randomize the ZAP construction of Dwork and Naor [DN00] and obtain a noninteractive witness
indistinguishable (WI) proof system for any language in NP. We call this an “NP proof system”
because it consists of a single message from the prover to the verifier, as is the case in the trivial
NP proof of simply sending the witness to the verifier.

As in the trivial NP proof system, our verifier algorithm will be deterministic. However, our
prover algorithm will be probabilistic. 8 We stress that our proof system is in the plain model,
without assumptions of a shared random string or nonuniformity. As far as we know, this is the
first noninteractive proof system for NP in the plain model that satisfies a secrecy property.

3.1 Definitions

Witness Relation. Let W ⊆ {0, 1}∗ × {0, 1}∗ be a relation. Define W (x) = {w | (x, w) ∈ W}
and L(W ) = {x | ∃w s.t. (x,w) ∈ W}. If w ∈ W (x) then we say that w is a witness for x. Recall
that the class NP is the class of languages L such that L = L(W ) for a relation W that is decidable
in time polynomial in the first input. If L = L(W ) is an NP language then we say that W is a
witness relation corresponding to L.

Efficient Provers. Recall the notion of interactive proofs as defined in Section 2.2. Let L be an
NP language with witness relation W . We say that an interactive proof for L has an efficient prover
if the honest prover strategy can be implemented by a probabilistic polynomial-time algorithm given
w ∈W (x) as auxiliary input. In this paper we will only be interested in interactive proofs for NP
that have efficient provers.

NP Proof Systems. An NP proof system is an interactive proof system that is degenerate
in that it (a) consists of only a single message from the prover to the verifier, (b) that it has a
deterministic verifier, and (c) satisfies both perfect completeness and perfect soundness. Because
the verifier is deterministic, an NP proof system for a language L induces a witness relation W
corresponding to L by setting W (x) to contain all the prover messages accepted by the verifier.

8It remains open as to whether a probabilistic prover strategy is necessary to achieve the witness indistinguishability
property.
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Witness Indistinguishability. We recall the notion of witness indistinguishability (WI), as
defined by Feige and Shamir [FS89].

Definition 3.1 (witness indistinguishability, [FS89]). Let L be an NP language with witness
relation WL. Let (P, V ) be a proof system for L where P is an efficient (probabilistic polynomial-
time) prover that gets a witness as auxiliary input.

We say that (P, V ) is witness indistinguishable (WI) if for every nonuniform polynomial-time
verifier V ∗ and every x ∈ L, and for any w,w′ ∈ WL(x), the view of V ∗ when interacting with
P (x,w) is computationally indistinguishable9 from its view when interacting with P (x,w′).

Feige and Shamir also proved that WI is closed under concurrent composition [FS89].

ZAPs. A ZAP [DN00] is a two-message public-coin interactive proof system that is witness
indistinguishable. Dwork and Naor proved the following theorem.

Theorem 3.2 ([DN00]). If trapdoor permutations (secure against polynomial-sized circuits) exist,10

then every language in NP has a ZAP.

We note that the construction of ZAPs by [DN00] is actually based on the possibly weaker
assumption that NIZK (noninteractive zero-knowledge in the shared random string model) systems
exist for every language in NP. Thus, our construction can also be based on this possibly weaker
assumption.

3.2 Our Result

The main theorem of this section follows.

Theorem 3.3. Assume that there exists an efficient 1/2-HSG against co-nondeterministic circuits
and that trapdoor permutations exist. Then every language in NP has a witness-indistinguishable
NP proof system.

3.3 Proof of Theorem 3.3

We prove Theorem 3.3 by converting the ZAPs for languages in NP into witness indistinguishable
NP proof systems. Let L be an NP language with witness relation WL, and let (P, V ) be the ZAP
for L. We denote the first message in a ZAP (the verifier’s random coins sent to the prover) by r
and denote the second message (sent by the prover to the verifier) by π. We let `(n) denote the
length of the verifier’s first message in a proof for statements of length n. Let x ∈ {0, 1}n \ L. We
say that r ∈ {0, 1}`(n) is sound with respect to x if there does not exist a prover message π such
that the transcript (x, r, π) is accepting. The statistical soundness of the ZAP scheme implies that
for every x ∈ {0, 1}n \L, the probability that r ← {0, 1}`(n) is sound with respect to x is very high,
and in particular it is larger than 1

2 .
Our construction is based on the following observation. Let q(n) be a polynomial that bounds

the running time of the honest ZAP verifier in a proof of statements of length n. For every
x ∈ {0, 1}n \ L, there exists a co-nondeterministic circuit Cx of size less than p(n) < q(n)2 that

9Here and throughout Section 3, computationally indistinguishability refers to indistinguishability against
polynomial-sized circuits.

10We refer the reader to [Gol01a][Sec. 2.4.4] for the definition of trapdoor permutations. Actually, the definition
we use is what is called by Goldreich an enhanced trapdoor permutation collection. See discussion on [Gol01b]. Such
a collection is known to exist based on either the RSA or factoring hardness assumptions [RSA78, Rab79].
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outputs 1 if and only if a string r is sound with respect to x. We stress that the time to verify the
soundness of a string r only depends on the running time of the honest verifier (in our case it is
p(n)).

On input r, the circuit Cx will output 1 if there does not exist a prover message π such that
the transcript (x, r, π) is accepting, and 0 otherwise. Note that Pr[Cx(U`(n)) = 1] > 1

2 . Since H is
a 1/2-HSG against co-nondeterministic circuits, we have that for every x ∈ {0, 1}n \L, there exists
r ∈ H(1`(n), 1p(n)) such that Cx(r) = 1. In other words, for every x ∈ {0, 1}n \ L, there exists a
string r ∈ H(1`(n), 1p(n)) such that r is sound with respect to x.

Our construction is as follows.

Protocol 3.4 (One-message WI NP proof for L ∈ NP). On common input x ∈ {0, 1}n and
auxiliary input w for the prover, such that (x,w) ∈WL, do the following.

Prover’s message

1. Compute (r1, . . . , rm) def= H(1`(n), 1p(n)).

2. Using the auxiliary input (witness) w and the ZAP prover algorithm, compute for every
i ∈ [1,m], a string πi that is the prover’s response to the verifier’s message ri in a ZAP
proof for x.

3. Send to verifier (π1, . . . , πm).

Verifier’s Test

1. Compute (r1, . . . , rm) def= H(1`(n), 1p(n)).

2. Given prover’s message (π1, . . . , πm), run the ZAP verifier on the transcript (x, ri, πi),
for every i ∈ [1,m].

3. Accept if the ZAP verifier accepts all these transcripts.

Note that Protocol 3.4 is indeed a one-message system with a deterministic verifier, and it
satisfies the perfect completeness property. Thus, to prove Theorem 3.3, we need to prove that it
has perfect soundness and is witness indistinguishable.

Lemma 3.5. Protocol 3.4 is a perfectly sound proof system for L.

Proof. Let x /∈ L, with |x| = n. Since H is a HSG, there exists an ri ∈ H(1`(n), 1p(n)) that is sound
with respect to x. This means that no prover’s message πi will make the ZAP verifier accept the
transcript (x, ri, πi). Therefore, no string π = (π1, . . . , πm) will make the verifier of Protocol 3.4
accept. �

Lemma 3.6. Protocol 3.4 is a witness indistinguishable (WI) proof system for L.

Proof. This follows from the fact that the prover algorithm of Protocol 3.4 simply invokes m times
the prover algorithm for the ZAP on m different verifier messages. Since the WI property of
the ZAP holds for every verifier strategy and is closed under parallel composition, it follows that
Protocol 3.4 is witness indistinguishable. �

11



3.4 Applications of Noninteractive WI Proofs

1-out-of-2 Oblivious Transfer. As an application of ZAPs, Dwork and Naor [DN00] con-
structed a 3-message 1-out-of-2 oblivious transfer (OT) protocol based on the Quadratic Residu-
osity Assumption. Informally, an OT protocol consists of two parties, a sender and a receiver. The
sender has two secret input bits b0 and b1. The goal of the receiver is to select an input bit of the
sender without letting the sender know which bit it had selected. The goal of the sender is to allow
the chooser to learn only its selected input bit.

The first two rounds of the Dwork-Naor OT protocol consist of a ZAP (2-message WI proof)
of a certain NP statement. Replacing the ZAP with our WI NP proofs, we prove that same NP
statement in only one message, thus allowing for a 2-message OT with the same security properties.

We begin with the formal definition of OT that we use. Let outputS(S(b0, b1; rS), R(c, rR)) de-
note the output of sender S (on inputs b0 and b1, and private randomness rS) after interacting with
receiver R (on inputs the choice bit c and private randomness rR). We define outputR(S(b0, b1; rS), R(c, rR))
in an analogous manner.

Definition 3.7. An 1-out-of-2 oblivious transfer (OT) protocol (with security parameter k) consists
of a polynomial-time sender S and polynomial-time receiver R, satisfying the following conditions.

1. (Completeness) For all b0, b1, c ∈ {0, 1}, we have that PrrS ,rR [outputR(S(b0, b1; rS), R(c, rR)) =
bc] > 1− neg(k).

2. (Computational privacy of receiver) For all probabilistic polynomial-time cheating S∗, we have
that outputS∗(S∗, R(0; rR)) is computationally indistinguishable from outputS∗(S∗, R(1; rR)).

3. (Statistical privacy of sender) For every deterministic receiver strategy R∗, one of the two
following conditions holds:

(a) outputR∗(S(0, b; rS), R∗) is statistically indistinguishable from outputR∗(S(1, b; rS), R∗)
for every b ∈ {0, 1}, or

(b) outputR∗(S(b, 0; rS), R∗) is statistically indistinguishable from outputR∗(S(b, 1; rS), R∗)
for every b ∈ {0, 1}.

Condition 3 intuitively says that the receiver obtains no information about at least one of
the sender’s inputs. Unlike simulation-based definitions, however, it does not guarantee that the
receiver “knows” which of the two inputs it is learning. Similar definitions have been used in
previous works on OT with few rounds.

As mentioned above, we obtain a 2-message OT protocol by using noninteractive WI proofs
in the Dwork–Naor [DN00] protocol. The computational assumptions we make are the existence
of HSG against co-nondeterministic circuits and the Quadratic Residuosity Assumption11, the
latter being inherited from [DN00]. (We can drop the assumption of trapdoor permutations in
Theorem 3.3, because it is implied by the Quadratic Residuosity Assumption.) The formal theorem
is stated below.

Theorem 3.8. Suppose that there exists an efficient 1/2-HSG against co-nondeterministic circuits
and that the Quadratic Residuosity Assumption holds. Then there exists a 2-message 1-out-of-2
OT protocol.

11For further information on the Quadratic Residuosity Assumption, we refer the reader to [GB01, Section 2.5.1].
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There are two points that we would like to note. First, our protocol does not use any public
key. If we allow the sender to publish a public key, the Dwork-Naor OT protocol can be reduced
to two messages by having the sender S publish the random string of the ZAP in the public key
(this random string corresponds to the first message of the ZAP).

Second, there are several previous works giving constructions of 2-message OT protocols (sat-
isfying similar security properties as Definition 3.7). Naor and Pinkas [NP01] and Aiello, Ishai,
and Reingold [AIR01] independently constructed 2-message OT protocols based on the Decisional
Diffie–Hellman (DDH) Assumption. Recently and independently of our work, Kalai [Kal05] con-
structed 2-message OT protocols based on a variant of “smooth projective hash families” [CS02].

Weak Zero-knowledge. The standard notions of zero knowledge require at least three rounds
of interaction for languages outside BPP [GO94, BLV03]. Subsequent to this work, Barak and
Pass [BP04] proposed a weak form of zero-knowledge protocols for all languages in NP that consist
only of a single round, i.e., a single message from the prover to the verifier. Their construction
of such protocols utilizes noninteractive WI proofs, as constructed in this paper. The properties
achieved are weaker in the following sense: The weak zero-knowledge condition allows the simulator
to run in quasi-polynomial time instead of polynomial time, and the computational soundness is
only guaranteed against uniform probabilistic polynomial-time cheating provers.

4 Noninteractive Bit Commitment

Bit commitment schemes are basic primitives in cryptography. Informally, a bit commitment
scheme is a protocol that consists of two interacting parties, the sender and the receiver. The first
step of the protocol involves the sender giving the receiver a commitment to a secret bit b. In the
next step, the sender decommits the bit b by revealing a secret key. The commitment alone (without
the secret key) must not reveal any information about b. This is called the hiding property. In
addition, we require that the commitment to b be binding, that is the sender should not be able
to decommit to a different bit b̄. Note that given a bit-commitment scheme, a string-commitment
scheme can be obtained by independently committing to the individual bits of the string (cf.,
[Gol01a]).

In an interactive bit commitment scheme, the sender and the receiver are allowed to interact
during the commitment and decommitment steps. The formal definition of an interactive bit
commitment scheme can be found in [Gol01a]. Often, however, noninteractive bit commitment
schemes are preferred or even crucial. For these, a simpler definition can be given.

Definition 4.1 (noninteractive bit commitment). A noninteractive bit commitment scheme is a
polynomial-time algorithm S which takes a bit b ∈ {0, 1} and a random key K ← {0, 1}poly(k),
where k is the security parameter, and outputs a commitment C = S(b;K). The algorithm S must
satisfy the following two conditions:

1. (Binding) There do not exist keys K, K ′ such that S(0;K) = S(1;K ′).

2. (Hiding) The commitments to 0 and 1 are computationally indistinguishable. This means that
the probability distributions {S(0;K)}K←{0,1}poly(k) and {S(1;K)}K←{0,1}poly(k) are computa-
tionally indistinguishable by probabilistic polynomial-time algorithms.

We say that a bit commitment scheme is nonuniformly secure if the probability distributions
{S(0;K)}K←{0,1}poly(k) and {S(1;K)}K←{0,1}poly(k) are nonuniformly computationally indistinguish-
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able. This means that even nonuniform polynomial-sized circuits cannot distinguish between a
commitment to 0 and a commitment to 1.

There is a well known construction by Blum [Blu82] of a noninteractive bit commitment scheme
based on any one-to-one one-way function (using the function’s hard-core predicate [Yao82, GL89]).
Naor [Nao91] gave a construction of an interactive bit commitment scheme based on any one-way
function (using pseudorandom generators [HILL99]).

For completeness, we briefly describe a noninteractive bit commitment protocol based on the
assumption that 1-1 one-way functions exist. This assumption implies that 1-1 one-way functions
with its associated hard-core predicate exist [Yao82, GL89]. Let f be a 1-1 one-way function and
let h be the hard-core predicate for f . A commitment to a bit b ∈ {0, 1} is just 〈f(K), h(K)⊕ b〉,
where K is a randomly chosen key. Note that the injectivity of f seems crucial to guarantee the
binding property of the commitment scheme.

4.1 Our Result

The main result of this section is the following theorem.

Theorem 4.2. Assume that there exists an efficient 1/2-HSG against co-nondeterministic uniform
algorithms and that one-way functions exist. Then there exists a noninteractive bit commitment
scheme.

The first condition is true if E * [i.o.−AMTIME](2Ω(n)), by Theorem 2.9. We stress that the
assumption of an efficient 1/2-HSG against co-nondeterministic uniform algorithms is sufficient,
even if one wants to obtain a commitment scheme that is nonuniformly secure (i.e., commitments
that are indistinguishable by polynomial-sized circuits). However, to get such schemes it will
be necessary to assume that the one-way function is secure against nonuniform polynomial-sized
circuits.

If we assume that the one-way function is only secure against uniform probabilistic polynomial-
time adversaries, then we obtain commitment schemes secure against (uniform) probabilistic polynomial-
time algorithms.

Our result is incomparable to the previous results on bit commitment schemes. Our assump-
tion is stronger than Naor’s [Nao91] (which only requires one-way functions), but we obtain a
noninteractive commitment rather than an interactive one. Our assumption seems incomparable
to assuming the existence of 1-1 one-way functions.

“Raw” Hardness vs. Hardness with Structure. Note that unlike assuming the existence of
1-1 one-way functions, we do not assume in Theorem 4.2 that there exists a hard function with a
particular structure. Rather, we only assume that there exists functions with “raw hardness” (i.e.,
a one-way function and a function in E with high AM-complexity).

Even if one is told that one-to-one one-way functions exist, it is necessary to know a particular
one-to-one one-way function to instantiate Blum’s noninteractive commitment scheme. In contrast,
we can construct a single noninteractive commitment scheme that is secure as long as there exists
a one-way-function and a function f ∈ E \ [i.o.−AMTIME](2Ω(n)). This is because we can
instantiate our scheme with a universal one-way function [Lev87]12 and a function that is E-complete
via linear-time reductions such as the function BH(·) (see discussion in Section 2.6).

12The construction of such a universal one-way function can also be found in [Gol01a][Sec. 2.4.1]. It uses the
observation that if there exists a one-way-function, then there exists a one-way function that is computable in time
n2.
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4.2 Proof of Theorem 4.2

Our construction is based on derandomizing Naor’s [Nao91] interactive bit commitment scheme
using a hitting set generator.

Let G : {0, 1}k → {0, 1}3k be BMY-type pseudorandom generator computable in time kd for
some constant d. Such a generator can be constructed based on any one-way function [HILL99].
Naor [Nao91] gave the following protocol for an interactive bit commitment scheme, based on the
existence of such a generator.

Protocol 4.3 (interactive bit commitment scheme [Nao91]).
Input to receiver R: 1k, where k is the security parameter.
Input to sender S: 1k and a bit b ∈ {0, 1}.

Commitment stage:

R: Select a random r ← {0, 1}3k and send r to S.

S: Select a random s← {0, 1}k. If b = 0, send α = G(s) to R. Else, if b = 1, send α = G(s)⊕r
to R.

Decommitment stage:

S: Reveal s and b.

R: Accept if b = 0 and α = G(s), or b = 1 and α = G(s)⊕ r.

Observe that when the sender commits to 0, the sender’s message α is distributed according
to G(Uk). When the sender commits to 1, α is distributed according to G(Uk)⊕ r. The following
lemma, shows that Protocol 4.3 has the hiding property.

Lemma 4.4 (hiding property). For every r ∈ {0, 1}3k, the distributions G(Uk) and G(Uk)⊕ r are
computationally indistinguishable.13

Proof. For any efficient adversary A, the pseudorandomness of G guarantees that

|Pr[A(G(Uk)) = 1]− Pr[A(U3k) = 1]| < ε,

and for any given r ∈ {0, 1}3k,

|Pr[A(G(Uk)⊕ r) = 1]− Pr[A(U3k) = 1]| < ε′,

where ε and ε′ are negligible. Hence by the triangle inequality,

|Pr[A(G(Uk)⊕ r) = 1]− Pr[A(G(Uk)) = 1]| < ε + ε′ = neg(k).

This shows that no efficient adversary A can distinguish between G(Uk) and G(Uk)⊕ r. �

Define a string r ∈ {0, 1}3k to be good for G if for all s, s′ ∈ {0, 1}k, we have G(s) 6= G(s′)⊕ r.
We have the following lemma.

13To be exact, the condition of the lemma (“for every r”) holds for nonuniform computational indistinguishability
(assuming that G is a pseudorandom generator against nonuniform circuits). For the uniform setting, the lemma
still holds if the string r comes from any polynomial-time samplable distribution. That is, r ← R(1k), where R is a
probabilistic polynomial-time algorithm.
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Lemma 4.5 (binding property). The probability Prr←{0,1}3k [r is good] ≥ 1− 2−k.

Proof. Note that G(s) 6= G(s′) ⊕ r iff G(s) ⊕ G(s′) 6= r. The total number of pairs (s, s′), with
s, s′ ∈ {0, 1}k, is 22k. For each pair, only one r is not good, namely r = G(s) ⊕G(s′). Hence, the
number of r ∈ {0, 1}3k which are not good is at most 22k. This implies that the fraction of good
r ∈ {0, 1}3k is at least 1− 22k/23k = 1− 2−k. �

If the receiver selected a good r in the first step of the commitment stage of Protocol 4.3, then
there do not exist s, s′ ∈ {0, 1}k such that G(s) = G(s′) ⊕ r, so no commitment α can be opened
as both a 0 and 1. The probability of selecting a good r is high, hence Protocol 4.3 is binding.

4.2.1 Our Noninteractive Bit Commitment Scheme.

Observe that the only interaction involved in Protocol 4.3 is in the receiver sending a random
r ∈ {0, 1}3k to the sender. However, one can see that the receiver does not have to send a random
string, and it is enough to send a good string. This is because a good string r will make the
distributions G(Uk) and G(Uk)⊕r disjoint. As we show in the proof of Lemma 4.8, testing whether
r is good can be done by a (uniform) polynomial-time co-nondeterministic algorithm.14 Since the
fraction of good r’s is large, an efficient HSG against co-nondeterministic algorithms H can be used
to select a candidate list of r’s such that at least one element r ∈ H is good. Thus, our protocol
will be obtained by running the sender of Naor’s protocol on each r in the hitting set. The resulting
protocol follows.

Protocol 4.6 (noninteractive bit commitment scheme).
Input to receiver R: 1k, where k is the security parameter.
Input to sender S: 1k and a bit b ∈ {0, 1}.

Commitment stage:

1. Compute
(
r1, . . . , rp(k)

) def= H(13k, 13kd
).

2. Choose s1, . . . , sp(k) at random from {0, 1}k.
3. If b = 0, send α = 〈G(s1), . . . , G(sp(k))〉.

If b = 1, send α = 〈G(s1)⊕ r1, . . . , G(sp(k))⊕ rp(k)〉.

Decommitment stage: S reveals b and 〈s1, . . . , sp(k)〉. R accepts if either of the following holds:

1. The bit b = 0 and α = 〈G(s1), . . . , G(sp(k))〉.
or

2. The bit b = 1 and α = 〈G(s1)⊕ r1, . . . , G(sp(k))⊕ rp(k)〉.

To show that Protocol 4.6 constitutes a bit commitment scheme (and hence to prove Theo-
rem 4.2), we prove the following two lemmas.

Lemma 4.7. Protocol 4.6 has the hiding property.
14The co-nondeterministic algorithm runs in time at most 3kd.
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Proof. By Lemma 4.4, we know that for an r ∈ {0, 1}3k generated by a polynomial-time algo-
rithm, the distributions G(Uk) and G(Uk) ⊕ r are computationally indistinguishable. Further-
more given r, the distributions G(Uk) and G(Uk) ⊕ r are polynomial-time samplable. Hence, by
a hybrid/statistical-walk argument, the distributions 〈G(U1

k ), G(U2
k ), . . . , G(Up(k)

k )〉 and 〈G(U1
k ) ⊕

r1, G(U2
k )⊕ r2, . . . , G(Up(k)

k )⊕ rp(k)〉 are computationally indistinguishable, for
(
r1, r2, . . . , rp(k)

)
=

H(13k, 13kd
). �

Lemma 4.8. Protocol 4.6 has the binding property.

Proof. Define the co-nondeterministic (uniform) algorithm A such that A(r) = 1 if ∀s, s′ G(s) ⊕
G(s′) 6= r. Note that A(r) = 1 if and only if r is good. Therefore Pr[A(U3k) = 1] ≥ 1− 2−k > 1/2.
In addition, the running time of A (on inputs of length k) is bounded by 3kd. Hence, there exists
an ri ∈ H(13k, 13kd

) such that ∀s, s′ G(s) ⊕ G(s′) 6= ri. Therefore, there do not exist s1, . . . , sp(k)

and s′1, . . . , s
′
p(k) such that

〈G(s1), . . . , G(sp(k))〉 = 〈G(s′1)⊕ r1, . . . , G(s′p(k))⊕ rp(k)〉.

In other words, no commitment α can be opened as both a 0 and 1. Thus, Protocol 4.6 is perfectly
binding. �

If one-way functions exists, then pseudorandom generators exist [HILL99] and hence nonin-
teractive bit commitment schemes exists. Conversely, it is easy to show that noninteractive bit
commitment schemes (as in Definition 4.1) imply the existence of one-way functions. These facts,
together with Lemmas 4.7 and 4.8 establish Theorem 4.2.

4.3 Partially One-to-one One-way Functions

Another interpretation of our result is as closing the gap between one-to-one and general one-way
functions under a “non-cryptographic” assumption.

Definition 4.9. A function f : {0, 1}∗×{0, 1}∗ → {0, 1}∗ is a partially one-to-one one-way function
if

1. (easy to evaluate) f can be evaluated in polynomial time.

2. (partially one-to-one) If f(x, y) = f(x′, y′), then x = x′.

3. (hard to invert) For every probabilistic polynomial-time algorithm A, Pr
[
A(1k, f(X, Y )) = X

]
is negligible in k, where the probability is taken over X, Y chosen uniformly from {0, 1}k and
the coin tosses of A.

Lemma 4.10. Partially one-to-one one-way functions exist iff noninteractive bit-commitment
schemes exist.

Proof. If f is a partially one-to-one one-way function, we can obtain a noninteractive bit-commitment
scheme using the Goldreich–Levin hardcore bit [GL89]. Specifically, define Commit(b;x, y, r) =
(f(x, y), r, 〈x, r〉), where 〈·, ·〉 denotes inner product mod 2.

If a noninteractive bit-commitment scheme exists, we can obtain a partially one-to-one one-
way function by first converting the bit-commitment scheme to a string-commitment scheme (by
committing independently to each bit) and then defining f(x, y) = Commit(x; y). (The fact that x
and y may be of different lengths is inconsequential, and can be fixed by padding.) �
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Thus, a restatement of Theorem 4.2 is the following.

Corollary 4.11. Assume that there exists an efficient 1/2-hitting set generator against co-nondeter-
ministic uniform algorithms. Then one-way functions imply partially one-to-one one-way functions.

5 Future Work

Given the two examples we have presented here, it is natural to look for more applications of
NW-type generators (and related notions in complexity theory) to cryptography. In parallel to
this work, Barak, Lindell, and Vadhan [BLV03] have used NW-type generators to obtain negative
results about zero-knowledge proofs.

To facilitate the search for additional applications, we summarize the properties of the protocols
(ZAPs and Naor’s bit commitment) that enabled our derandomizations to work.

1. In order for the protocol to be secure, the random string r need only satisfy some fixed
property that depends on only the algorithms of the “honest parties”. In particular, it
should be possible to verify this property by a nondeterministic algorithm that runs in a
fixed polynomial time. (Algorithms even higher in the polynomial hierarchy can also be
derandomized under stronger complexity assumptions [KvM02].)

2. The protocol must remain secure under parallel repetition (with multiple choices of r, at least
one of which satisfies the property above).

Another intriguing question is whether it can be shown that under a “non-cryptographic”
assumption, one-way functions imply truly one-to-one one-way functions (rather than just partially
one-to-one ones).

Finally, given our plausibility result, it is natural to look for additional constructions of nontriv-
ial one-message witness-indistinguishable proofs. Either constructions for specific problems based
on specific assumptions or general constructions for all of NP based on alternative assumptions
would be interesting. In addition to complexity-theoretic assumptions, it may also be useful to use
assumptions from number theory, such as the Extended Riemann Hypothesis, which has been used
for derandomization in the past.
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