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Abstract

Min-entropy is a statistical measure of the amount of randomness that a particular distri-
bution contains. In this paper we investigate the notion of computational min-entropy which
is the computational analog of statistical min-entropy. We consider three possible definitions
for this notion, and show equivalence and separation results for these definitions in various
computational models.

We also study whether or not certain properties of statistical min-entropy have a computa-
tional analog. In particular, we consider the following questions:

1. Let X be a distribution with high computational min-entropy. Does one get a pseudo-
random distribution when applying a “randomness extractor” on X?

2. Let X and Y be (possibly dependent) random variables. Is the computational min-entropy
of (X,Y ) at least as large as the computational min-entropy of X?

3. Let X be a distribution over {0, 1}n that is “weakly unpredictable” in the sense that it is
hard to predict a constant fraction of the coordinates of X with a constant bias. Does X
have computational min-entropy Ω(n)?

We show that the answers to these questions depend on the computational model considered.
In some natural models the answer is false and in others the answer is true. Our positive results
for the third question exhibit models in which the “hybrid argument bottleneck” in “moving
from a distinguisher to a predictor” can be avoided.

Erratum (October 2011): This paper contains an error in the proof of Theorem 5.2
(equivalence of HILL type and Metric type pseudoentropy). There is a gap in the proof while
passing from a distinguisher outputting values in [0, 1] to a Boolean distinguisher. This gap can
be overcome, as was shown by Reingold, Trevisan, Tulsiani and Vadhan (FOCS 2008). We have
not yet revised our paper to reflect this error and correction, and apart from this note, the rest
of this paper is still in its original form (including the erronous statement).
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1 Introduction

One of the most fundamental notions in theoretical computer science is that of computaional in-
distinuishability [GM84, Yao82]. Two probability distributions are deemed close if no efficient1

test can tell them apart - this comes in stark contrast to the information theoretic view which
allows any test whatsoever. The discovery [BM82, Yao82, HILL99] that simple computational as-
sumptions (namely the existance of one-way functions) make the computational and information
theoretic notions completely different has been one of the most fruitful in CS history, with impact
on cryptography, complexity theory and computational learning theory.

The most striking result of these studies has been the efficient construction of nontrivial pseu-
dorandom distributions, namely ones which are information theoretically very far from the uni-
form distribution, but are nevertheless indistinguishable from it. Two of the founding papers
[Yao82, HILL99] found it natural to extend information theory more generally to the computa-
tional setting, and attempt to define its most fundamental notion of entropy2. The basic question
is the following: when should we say that a distribution has (or is close to having) computational
entropy (or pseudoentropy) k?. Interestingly, these two papers give two very different definitions!
This point may be overlooked, since for the most interesting special case, the case of pseudoran-
domness (i.e., when the distributions are over n-bit strings and k = n), the two definitions coincide.
This paper is concerned with the other cases, namely k < n, attempting to continue the project of
building a computational analog of information theory.

1.1 Definitions of pseudoentropy

To start, let us consider the two original definitions. Let X be a probability distribution over a set
S.

A definition using “compression”. Yao’s definition of pseudoentropy [Yao82] is based on
compression. He cites Shannon’s definition [Sha48], defining H(X) to be the minimum number of
bits needed to describe a typical element of X. More precisely, one imagines the situation of Alice
having to send Bob (a large number of) samples from X, and is trying to save on communication.
Then H(X) is the smallest k for which there are a compression algorithm A (for Alice) from S
into k-bit strings, and a decompression algorithm B (for Bob) from k-bit strings into S, such that
B(A(x)) = x (in the limit, for typical x from X). Yao take this definition verbatim, adding the
crucial computational constraint that both compression and decompression algorithms must be
efficient. This notion of efficient compression is further studied in [GS91].

A definition using indistinguishability. Hastad et al’s definition of pseudoentropy [HILL99]
extends the definition of pseudorandomness syntactically. As a distribution is said to be pseu-
dorandom if it is indistinguishable from a distribution of maximum entropy (which is unique),
they define a distribution to have pseudoentropy k is it is indistinguishable from a distribution of
Sahnnon entropy k (for which there are many possibilities).

It turns out that the two definitions of pseudoentropy above can be very different in natural
computational settings, despite the fact that in the information theoretic setting they are identical

1What is meant by “efficient” can naturally vary by specifying machine models and resource bounds on them
2While we will first mainly talk about Shannon’s entropy, we later switch to min-entropy and stay with it through-

out the paper. However the whole introduction may be read when regarding the term “entropy” with any other of
its many formal variants, or just as well as the informal notion of “information content” or “uncertainty”
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for any k. Which definition, then, is the “natural one” to choose from? This question is actually
more complex, as another natural point of view lead to yet another definition.

A definition using a natural metric space. The computational viewpoint of randomness may
be thought of as endowing the space of all probability distributions with new, interesting metrics.

For every event (=test) T in our probability space we define: dT (X,Y ) = |PrX [T ] − PrY [T ]|.
In words, the distance between X and Y is the difference (in absolute value) of the probabilities
they assign to T .3

Note that given a family of metrics, their maximum is also a metric. An information theoretic
metric on distributions, the statistical distance4 (which is basically 1

2L1-distance) is obtained by
taking the maximum over the T -metrics above for all possible tests T . A natural computational
metric, is given by taking the maximum over any class C of efficient tests. When should we say
that a distribution X is indistinguishable from having Shannon entropy k? Distance to a set is the
distance to the closest point in it, so X has to be close in this metric to some Y with Shannon
entropy k.

A different order of quantifiers. At first sight this may look identical to the “indistinguisha-
bility” definition in [HILL99]. However let us parse them to see the difference. The [HILL99]
definition say that X has pseudoentropy k if there exists a distribution Y of Shannon entropy k,
such that for all tests T in C, T has roughly the same probability under both X and Y . The metric
definition above reverses the quantifiers: X has pseudoentropy k if for every a distribution Y of
Shannon entropy k, there exists a test T in C, which has roughly the same probability under both
X and Y . It is easy to see that the metric definition is more liberal - it allows for at least as many
distributions to have pseudoentropy k. Are they really different?

Relations between the three definitions. As all these definitions are natural and well-
motivated, it makes sense to study their relationship. In the information theoretic world (when
ignoring the “efficiency” constraints) all definitions are equivalent. It is easy to verify that re-
gardless of the choice of a class C of “efficient” tests, they are ordered in permisiveness (allowing
more distributions to have pseudoentropy k). The “indistinguishability” definition of [HILL99] is
the most stringent, then the “metric definition”, and then the “compression” definition of [Yao82].
What is more interesting is that we can prove collapses and separations for different computa-
tional settings and assumptions. For example, we show that the first two definitions drastically
differ for logspace observers, but coincide for polynomial time observers (both in the uniform and
nonuniform settings). The proof of the latter statement uses the “min-max” Theorem of [vN28] to
“switch” the order of quantifiers. We can show some weak form of equivalence between all three
definitions for circuits. We show that the “metric” coincides with the “compression” definition if
NP ⊆ BPP. More precisely, we give a non-deterministic reduction showing the equivalence of the
two definitions. This reduction guarantees high min-entropy according to the ”metric” definition if
the distribution has high min-entropy according to the “compression” distribution with respect to
an NP oracle. A clean way to state this is that all three definitions are equivalent for PH/poly.
We refer to this class as the class of poly-size PH-circuits. Such circuits are poly-size circuits
which are allowed to compute an arbitrary function in the polynomial-hierarchy (PH). We remark

3This isn’t precisely a metric as there may be different X and Y such that dT (X,Y ) = 0. However it is symmetric
and satisfies the triangle inequality.

4Another basic distance measure is the so called KL-divergence, but for our purposes, which concern very close
distributions, is not much different than statistical distance
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that similar circuits (for various levels of the PH hierarchy) arise in related contexts in the study
of “computational randomness”: They come up in conditional “derandomization” results of AM
[KvM02, MV99, SU01] and “extractors for samplable distributions” [TV00].

1.2 Pseudoentropy versus information theoretic entropy

We now move to another important part of our project. As these definitions are supposed to help
establish a computational version of information theory, we attempt to see which of them respect
some natural properties of information-theoretic entropy.

Using randomness extractors. In the information theoretic setting, there are randomness
extractors which convert a high entropy5 distribution into one which is statistically close to uniform.
The theory of extracting the randomness from such distributions is by now quite developed (see
surveys [Nis96, NT99, Sha02]). It is natural to expect that applying these randomness extractors
on high pseudoentropy distributions produces a pseudorandom distribution. In fact, this is the
motivation for pseudoentropy in some previous works [ILL89, HILL99, STV99].

It is easy to see that the the “indistinguishability” definition of [HILL99] has this property.
This also holds for the “metric” definition by the equivalence above. Interestingly, we do not know
whether this holds for the “compression” definition. Nevertheless, we show that some extractor
constructions in the literature (the ones based on Trevisan’s technique [Tre99, RRV99, ISW00,
TSZS01, SU01]) do produce a pseudorandom distribution when working with the “compression”
definition.

The information in two dependent distributions. One basic principle in information the-
ory is that two (possibly dependent) random variables have at least as much entropy as any one
individually, e.g. H(X,Y ) ≥ H(X). A natural question is whether this holds when we replace
information-theoretic entropy with pseudoentropy. We show that the answer depends on the model
of computation. If there exist one-way functions, then the answer is no for the standard model of
polynomial-time distinguishers. On the other hand, if NP ⊆ BPP, then the answer is yes. Very
roughly speaking, the negative part follows from the existence of pseudorandom generators, while
the positive part follows from giving a nondeterministic reduction which relies on nondeterminism
to perform approximate counting. Once again, this result can be also stated as saying that the an-
swer is positive for poly-size PH-circuits. We remark that the positive result holds for (nonuniform)
online space-bounded computation as well.

Entropy and unpredictability. A deeper and interesting connection is the one between entropy
and unpredictability. In the information theoretic world, a distribution which is unpredictable has
high entropy.6 Does this relation between entropy and unpredictability holds in the computational
world?

Let us restrict ourselves here for a while to the metric definition of pseudoentropy. Two main
results we prove is that this connection indeed holds in two natural computational notions of
efficient observers. One is for logspace observers. The second is for PH-circuits. Both results

5It turns out that a different variant of entropy called “min-entropy” is the correct measure for this application.
The min-entropy of a distribution X is log2(minx 1/Pr[X = x]). This should be compared with Shannon’s entropy
in which the minimum is replaced by averaging.

6We consider two different forms of prediction tests: The first called “next bit predictor” attempts to predict a bit
from previous bits, whereas the second called “complement predictor” has access to all the other bits, both previous
and latter.
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use one mechanism - a different characterization of the metric definition, in which distinuguishers
accept very few inputs (less than 2k when the pseudoentropy is k). We show that predictors for the
accepted set are also good for any distribution “caught” by such a distinguisher. This direction is
promising as it suggests a way to “bypass” the weakness of the “hybrid argument”.

The weakness of the hybrid argument. Almost all pseudorandom generators (whether con-
ditional such as the ones for small circuits or unconditional such as the ones for logspace) use the
hybrid argument in their proof of correctness. The idea is that if the output distribution can be effi-
ciently distinguished from random, some bit can be efficiently predicted with nontrivial advantage.
Thus, pseudorandomness is established by showing unpredictability.

However, in standard form, if the distinughishability advantage is ε, the prediction advantage
is only ε/n. In the results above, we manage (for these two computational models) to avoid this
loss and make the prediction advantage Ω(ε) (just as information theory suggests).

While we have no concrete applications, this seem to have potential to improve various con-
structions of pseudorandom generators. To see this, it suffices to observe the consequences of the
hybrid argument loss. It requires every output bit of the generator to be very unpredictable, for
which a direct cost is paid in the seed length (and complexity) of the generator. For generators
against circuits, a long sequence of works [Yao82, BFNW91, IW97, STV99] resolved it optimally
using efficient hardness amplification. These results allow constructing distributions which are un-
predictable even with advantage 1/poly(n). The above suggests that sometimes this amplification
may not be needed. One may hope to construct a pseudorandom distribution by constructing an
unpredictable distribution which is only unpredictable with constant advantage, and then use a
randomness extractor to obtain a pseudorandom distribution.7

This problem is even more significant when constructing generators against logspace machines
[Nis90, INW94]. The high unpredictability required seems to be the bottleneck for reducing the seed
length in Nisan’s generator [Nis90] and its refinements from O((log n)2) bits to the optimal O(log n)
bits (that will result in BPL = L). The argument above gives some hope that for fooling logspace
machines (or even just constant-width oblivious branching programs) the suggested approach may
yield substantial improvements. However, in this setup there is another hurdle: In [BYRST02] it
was shown that randomness extraction cannot be done by one pass log-space machines. Thus, in
this setup it is not clear how to move from pseudoentropy to pseudorandomness.

1.3 Organization of the paper

In Section 2 we give some basic notation. Section 3 formally defines our three basic notions of
pseudoentropy, and proves a useful characterization of the metric definition. In Sections 5 and 6 we
prove equivalence and separations results between the various definitions in several natural com-
putational models. Section 7 is devoted to our results about computational analogs of information
theory for concatenation and unpredictability of random variables.

2 Preliminaries

Let X be a random variable over some set S. We say that X has (statistical) min-entropy at least
k, denoted H∞(X) ≥ k, if for every x ∈ S, Pr[X = x] ≤ 2−k. We use Un to denote the uniform

7This approach was used in [STV99]. They show that even “weak” hardness amplification suffices to construct a
high pseudoentropy distribution using the pseudo-random generator construction of [NW94]. However, their technique
relies on the properties of the specific generator and cannot be applied in general.
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distribution on {0, 1}n.
Let X,Y be two random variables over a set S. Let f : S → {0, 1} be some function. The bias

of X and Y with respect to f , denoted biasf (X,Y ), is defined by
∣∣E[f(X)]− E[f(Y )]

∣∣. Since it is
sometimes convenient to omit the absolute value, we denote bias∗f (X,Y ) = E[f(X)]− E[f(Y )].

The statistical distance of X and Y , denoted dist(X,Y ), is defined to be the maximum of
biasf (X,Y ) over all functions f . Let C be a class of functions from S to {0, 1} (e.g., the class of
functions computed by circuits of size m for some integer m). The computational distance of X
and Y w.r.t. C, denoted comp-distC(X,Y ), is defined to be the maximum of biasf (X,Y ) over all
f ∈ C. We will sometimes drop the subscript C when it can be inferred from the context.

Computational models. In addition to the standard model of uniform and non-uniform polynomial-
time algorithms, we consider two additional computational models. The first is the model of PH-
circuits. A PH-circuit is a boolean circuit that allows queries to a language in the polynomial
hierarchy as a basic gate.8 The second model is the model of bounded-width read-once oblivious
branching programs. A width-S read once oblivious branching program P is a directed graph with
Sn vertices, where the graph is divided into n layers, with S vertices in each layer. The edges of the
graph are only between from one layer to the next one, and each edge is labelled by a bit b ∈ {0, 1}
which is thought of as a variable. Each vertex has two outgoing edges, one labelled 0 and the other
labelled 1. One of the vertices in the first layer is called the source vertex, and some of the vertices
in the last layer are called the accepting vertices. A computation of the program P on input
x ∈ {0, 1}n consists of walking the graph for n steps, starting from the source vertex, and in step i
taking the edge labelled by xi. The output of P (x) is 1 iff the end vertex is accepting. Note that
variables are read in the natural order and thus width-S read once oblivious branching programs
are the non-uniform analog of one-pass (or online) space-logS algorithms.

3 Defining computational min-entropy

In this section we give three definitions for the notion of computational (or “pseudo”) min-entropy.
In all these definitions, we fix C to be a class of functions which we consider to be efficiently
computable. Our standard choice for this class will be the class of functions computed by a
boolean circuit of size p(n), where n is the circuit’s input length and p(·) is some fixed polynomial.
However, we will also be interested in instantiations of these definitions with respect to different
classes C. We will also sometimes treat C as a class of sets rather then functions, where we say
that a set D is in C iff its characteristic function is in C. We will assume that the class C is closed
under complement.

3.1 HILL-type pseudoentropy: using indistinguishability

We start with the standard definition of computational (or “pseudo”) min-entropy, as given by
[HILL99]. We call this definition HILL-type pseudoentropy.

Definition 3.1. Let X be a random variable over a set S. Let ε ≥ 0. We say that X has ε-HILL-
type pseudoentropy at least k, denoted HHILL

ε (X) ≥ k, if there exists a random variable Y with
(statistical) min-entropy at least k such that the computational distance (w.r.t. C) of X and Y is
at most ε.

8Equivalently, the class languages accepted by poly-size PH-circuits is PH/poly.
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We will usually be interested in ε-pseudoentroy for ε that is a small constant. In these cases we
will sometimes drop ε and simply say that X has (HILL-type) pseudoentropy at least k (denoted
HHILL(X) ≥ k).

3.2 Metric-type pseudoentropy: using a metric space

In Definition 3.1 the distribution X has high pseudoentropy if there exists a high min-entropy Y
such that X and Y are indistinguishable. As explained in the introduction, it is also natural to
reverse the order of quantifiers: Here we allow Y to be a function of the “distinguishing test” f .

Definition 3.2. Let X be a random variable over a set S. Let ε ≥ 0. We say that X has ε-metric-
type pseudoentropy at least k, denoted HMetric

ε (X) ≥ k, if for every test f on S there exists a
Y which has (statistical) min-entropy at least k and biasf (X,Y ) < ε.

It turns out that metric-pseudoentropy is equivalent to a different formulation. (Note that the
condition below is only meaningful for D such that |D| < 2k).

Lemma 3.3. For every class C which is closed under complement and for every k ≤ log |S| − 1

and ε, HMetric
ε (X) ≥ k if and only if for every set D ∈ C, Pr[X ∈ D] ≤ |D|

2k
+ ε

Proof. An equivalent way to state the condition above is that there exists a distinguisher D ∈ C
such that biasD(X,Y ) > ε for every Y with H∞(Y ) ≥ k. Indeed, suppose that there exists a

distinguisher D ∈ C such that Pr[X ∈ D] > |D|
2k

+ ε. Yet, for every Y with H∞(Y ) ≥ k it holds

that Pr[Y ∈ D] ≤ |D|
2k

. Thus, it holds that for any such Y , biasD(X,Y ) > ε. For the other
direction, suppose that there exists a D such that biasD(X,Y ) > ε for every Y with H∞(Y ) ≥ k.
We assume without loss of generality that |D| < |S|/2 (otherwise we take D’s complement). We

need to prove that Pr[X ∈ D] > |D|
2k

+ ε. Indeed, suppose otherwise that Pr[X ∈ D] ≤ |D|
2k

+ ε.
We construct a distribution Y = YD in the following way: Y will be uniform on the set D with
probability Pr[X ∈ D] − ε, and otherwise it is uniform on the set S \ D. By the construction it
is clear that biasD(X,Y ) = ε, and so we can get a contradiction if we show that H∞(Y ) ≥ k.
Indeed, let y ∈ S. If y ∈ D then Pr[Y = y] = (Pr[X ∈ D] − ε)/|D| ≤ 2−k. If y 6∈ D then
Pr[Y = y] ≤ 1/(|S| − |D|) ≤ 2

|S| = 2−(log |S|−1) ≤ 2−k.

3.3 Yao-type pseudoentropy: using compression

Let C be a class of functions which we consider to efficiently computable. Recall that we said that
a set D is a member of C if its characteristic function was in C. That is, a set D is in C if it is
efficiently decidable. We now define a family Ccompress of sets that are efficiently compressible.
That is, we say that a set D ⊆ S is in Ccompress(`) if there exist functions c, d ∈ C (c : S → {0, 1}`
stands for compress and d : {0, 1}` → S for decompress) such that D = {x|d(c(x)) = x}. Note
that every efficiently compressible set is also efficiently decidable (assuming the class C is closed
under composition). Yao-type pseudoentropy is defined by replacing the quantification over D ∈ C
in the alternative characterization of metric-type pseudoentropy (Lemma 3.3) by a quantification
over D ∈ Ccompress(`) for all ` < k. The resulting definition is the following:

Definition 3.4. Let X be a random variable over a set S. X has ε-Yao-type pseudoentropy at
least k, denoted HYao

ε (X) ≥ k, if for every ` < k and every set D ∈ Ccompress(`) ,

Pr[X ∈ D] ≤ 2l−k + ε
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4 Using randomness extractors

An extractor uses a short seed of truly random bits to extract many bits which are (close to)
uniform.

Definition 4.1 ([NZ93]). A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor if for
every distribution X on {0, 1}n with H∞(x) ≥ k, the distribution E(X,Ud) has statistical distance
at most ε from Um.

We remark that there are explicit (polynomial time computable) extractors with seed length
polylog(n/ε) and m = k. The reader is referred to survey papers on extractors [Nis96, NT99,
Sha02]. It is easy to see that if a distribution X has HILL-type pseudoentropy at least k, then for
every (k, ε)-randomness extractor the distribution E(X,Ud) is ε-computationally indistinguishable
pseudorandom.

Lemma 4.2. Let C be the class of polynomial size circuits. Let X be a distribution with HHILL
ε (X) ≥

k and let E be a (k, ε)-extractor computable in time poly(n) then comp-distC(E(X,Ud), Um) < 2ε.

Proof. Let Y be a distribution with H∞(Y ) ≥ k and comp-distC(X,Y ) < ε. If the claim does not
hold then there is an f ∈ C such that biasf (E(X,UD), Um) ≥ 2ε. However, biasf (E(Y,Ud), Um) <
ε and thus, biasf (E(X,Ud), E(Y,Ud)) ≥ ε. It follows that there exists s ∈ {0, 1}d such that
biasf(E(·,s))(X,Y ) > ε. This is a contradiction as f(E(·, s)) ∈ C.

In Theorem 5.2 we show equivalence between HILL-type pseudoentropy and metric-type pseu-
doentropy and thus we get that E(X,Ud) is also pseudorandom when X has metric-type pseu-
doentropy. Interestingly, we do not know whether this holds for Yao-type pseudoentropy. We can
however show that this holds for some extractors, namely ones with a “reconstruction procedure”.

Definition 4.3 (reconstruction procedure). An (`, ε)-reconstruction for a function E : {0, 1}n ×
{0, 1}d → {0, 1}m is a pair of machines C and R where C : {0, 1}n → {0, 1}` is a randomized
Turing machine, and R : {0, 1}` → {0, 1}n is a randomized oracle Turing machine which runs in
time polynomial in n. Furthermore, for every x and f with biasf (E(x, Ud), Um) ≥ ε, Pr[Rf (C(x)) =
x] > 1/2 (the probability is over the random choices of C and R).

It was shown by Trevisan [Tre99] that every function E which has a reconstruction is an ex-
tractor.9

Theorem 4.4 (implicit in [Tre99]). If E has an (`, ε)-reconstruction then E is a (`+ log(1/ε), 3ε)-
extractor.

We include the proof for completeness.

Proof. Assume for the purpose of contradiction that there is a distribution Y with H∞(Y ) ≥ k and
a test f such that biasf (E(Y,Ud), Um) ≥ 3ε. It follows that there is a subset B ⊆ S with PrY [B] ≥ 2ε
such that for every y ∈ B, biasf (E(y, Ud), Um) ≥ ε. For every y ∈ B, Pr[Rf (C(y)) = y] > 1/2. This
probability is over the random choices of R and C. Thus, there exist fixings to the random coins of
the machines R and C such that PrY [Rf (C(y)) = y] > ε. We use c to denote the machine C with
such fixing. We use d to denote the machine Rf with the such fixing. The set D = {y|d(c(y)) = y}
is of size at most 2`, as Y has min-entropy at least k, this means that Pr[Y ∈ D] ≤ 2`−k = ε.
However we just showed that Pr[Y ∈ D] > ε.

9Reconstruction procedures (with stronger efficiency requirements) were previously designed to construct pseudo-
random generators from hard functions [NW94, BFNW91, IW97]. In [Tre99], Trevisan observed that these construc-
tions also yield extractors.
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The reader is referred to a survey [Sha02] for a detailed coverage of the “reconstruction proof
procedure”. Interestingly, such extractors can be used with Yao-type pseudoentropy.10 Loosely
speaking, this is because the failure of such an extractor implies an efficient compression of a
noticeable fraction of the high min-entropy distribution.

Lemma 4.5. Let C be the class of polynomial size circuits. Let X be a distribution with HYao
ε (X) ≥

k and let E be an extractor with a (k − log(1/ε), ε)-reconstruction which is computable in time
poly(n) then comp-distC(E(X,Ud), Um) < 5ε.

Proof. Assume for the purpose of contradiction that there is an f ∈ C such that biasf (E(X,Ud), Um) ≥
5ε. It follows that there is a subset B ⊆ S with PrX [B] ≥ 4ε such that for every x ∈ B,
biasf (E(x, Ud), Um) ≥ ε. For every x ∈ B, Pr[Rf (C(x)) = x] > 1/2. This probability is over
the random choices of R and C. Thus, there exist fixings to the random coins of the machines
R and C such that PrX [Rf (C(x)) = x] > 2ε. We use c to denote the machine C with such
fixing. We use d to denote the machine Rf with such fixing. Note that c, d ∈ C and that set
D = {x|d(c(x)) = x} has Pr[X ∈ D] > 2ε ≥ |D|

2k
+ ε = 2`−k + ε.

5 Relationships between definitions

In this section we study relationships between the various definitions. It is important to note that if
computational issues are removed (if the class C is the class of all functions) the three definitions are
essentially equivalent to having statistical distance ε from a distribution Y with H∞(Y ) ≥ k. We
also note that all definitions result in a pseudo-random distribution for k = n. For k < n, we show
that the HILL-type and metric-type definitions are essentially equivalent for polynomial circuits
and Turing machines. However, things are somewhat different with the Yao-type definition: We
are only able to show equivalence to the other types for the much stronger model of PH-circuits.

5.1 Equivalence in the case of pseudo-randomness (k = n)

The case of k = n is the one usually studied in the theory of pseudo-randomness. In this case the
HILL-type definition coincides with the standard definition of pseudo-randomness. This is because
there’s only one distribution Y over {0, 1}n with H∞(Y ) ≥ n, that is the uniform distribution.
It also follows that the HILL-type and metric-type definition coincide for every class C. The
equivalence of Yao-type pseudoentropy to pseudo-randomness follows from the hybrid argument of
[Yao82, GM84].

Lemma 5.1. If HYao

ε/n (X) = n then HHILL
ε (X) = n.

Proof. By the hybrid argument of [Yao82, GM84], if HHILL
ε (X) < n (with respect to circuits of size

s) then there is an 1 ≤ i < n and a “predictor circuit” P of size s+O(n) such that

Pr
X

[P (X1, · · · , Xi−1 = Xi] > 1/2 + ε/n

Let ` = n − 1, we define c : {0, 1}n → {0, 1}` by c(x1, · · · , xn) = x1, · · · , xi−1, xi+1, · · · , xn.
The “decompressor” function d : {0, 1}` → {0, 1}n only needs to evaluate xi. This is done by
running P (x1, · · · , xi−1). We conclude that PrX [d(c(x)) = x] > 1/2 + ε/n = 2`−k + ε/n and thus,
HYao

ε/n (X) < n.

10For completeness we mention that Trevisan’s extractor [Tre99] can achieve d = O(logn), m =
√
k for k = nΩ(1)

and ε = 1/k. The correctness of Trevisan’s extractor follows from an (`, ε)-reconstruction for ` = mnc for a constant
c. (This constant depends on the constant hidden in the O,Ω-notation above.)
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5.2 Equivalence between HILL-type and metric-type

The difference between HILL-type and metric-type pseudoentropy is in the order of quantifiers.
HILL-type requires that there exist a unique “reference distribution” Y with H∞(Y ) ≥ k such that
for every D, biasD(X,Y ) < ε, whereas metric-type allows Y to depend on D, and only requires
that for every D there exists such a Y . It immediately follows that for every class C and every X,
HMetric(X) ≥ HHILL(X). In this section we show that the other direction also applies (with small
losses in ε and time/size) for small circuits.

Theorem 5.2 (Equivalence of HILL-type and metric-type for circuits). Let X be a distribution
over {0, 1}n. For every ε, δ > 0 and k, if HMetric

ε−δ (X) ≥ k (with respect to circuits of size O(ns/δ2)
then HHILL

ε (X) ≥ k (with respect to circuits of size s)

The proof of Theorem 5.2 relies on the “min-max” theorem of [vN28], which is used to “switch”
the order of the quantifiers. We explain this technique in Section 5.3, and prove the Theorem in
Section 5.4.

5.3 Switching quantifiers using the “min-max” theorem

We want to show that if X has HMetric(X) ≥ k then HHILL(X) ≥ k. Our strategy will be to show
that if HHILL(X) < k then then HMetric(X) < k. Thus, our assumption gives that for every Y with
H∞(Y ) ≥ k there is a D ∈ C such that biasD(X,Y ) ≥ ε. The following lemma allows us to switch
the order of quantifiers, the cost is that we get a “distribution” over D’s instead of a single D.

Lemma 5.3. Let X be a distribution over S. Let C be a class that is closed under complement.
If for every Y with H∞(Y ) ≥ k there exists a D ∈ C such that biasD(X,Y ) ≥ ε then there is a
distribution D̂ over C such that for every Y with H∞(Y ) ≥ k

ED←D̂[bias∗D(X,Y )] ≥ ε

The proof of Lemma 5.3 use von-Neuman’s “min-max” theorem for finite 2-player zero-sum
games.

Definition 5.4 (zero-sum games). Let A and B be finite sets. A game is a function g : A×B → R.
Let Â and B̂ denote the set of distributions over A and B: We define ĝ : Â× B̂ → R.

ĝ(â, b̂) = Ea←â,b←b̂g(a, b)

We use a ∈ A to also denote the distribution â ∈ Â which gives probability one to a.

Theorem 5.5 ([vN28]). For every game g there is a value v such that

maxâ∈Âminb∈B ĝ(â, b) = v = minb̂∈B̂maxa∈Aĝ(a, b̂)

Proof. (of Lemma 5.3) We define the following game. Let A = C and B be the set of all “flat”
distributions Y with H∞(Y ) ≥ k. That is all distributions Y which are uniform over a subset T
of size 2k. We define g(D,Y ) = bias∗D(X,Y ). Let v be the value of the game g. A nice feature
of this game is that every b̂ ∈ B̂ is a distribution over S which has H∞(b̂) ≥ k. It is standard
that all distributions Y with H∞(Y ) ≥ k are convex combinations of “flat” distributions. In other
words, B̂ is the set of all distributions Y with H∞(Y ) ≥ k. By our assumption for every Y ∈ B̂
there exists a D in A such that biasD(X,Y ) ≥ ε. The same holds for bias∗D(X,Y ) because if

10



biasD(X,Y ) ≤ (−ε) then bias¬D(X,Y ) ≥ ε for ¬D(x) = 1−D(x). As B = B̂ this means that v =
minb̂∈B̂maxa∈Ag(a, b̂) ≥ ε. By the min-max theorem, it follows that maxâ∈Âminb∈B ĝ(â, b) ≥ ε. In

other words, there exists a distribution D̂ over D ∈ C such that for all R ∈ B, ED←D̂[bias∗D(X,R)] ≥
ε. As every distribution Y with H∞(Y ) ≥ k is a convex combination of distributions R from B,
we get that for every such Y , ED←D̂[bias∗D(X,Y )] ≥ ε.

5.4 Proof of Theorem 5.2

The proof of Theorem 5.2 relies on the Definitions and Lemmas from Section 5.3.

Proof. (of Theorem 5.2) Let X be a distribution on {0, 1}n with HHILL
ε (X) < k (with respect to

circuits of size s) we will show that HHILL
ε (X) < k (with respect to circuits of size s). Let C be

the class of circuits of size s. By our assumption for every Y with H∞(Y ) ≥ k there is a D ∈ C
such that biasD(X,Y ) ≥ ε. By Lemma 5.3 there is a distribution D̂ over C such that for every Y ,
ED←D̂[bias∗D(X,Y )] ≥ ε. We define D̄(x) = ED∈D̂[D(x)] it follows that

biasD̄(X,Y ) ≥ bias∗D̄(X,Y ) = ED←D̂[bias∗D(X,Y )] ≥ ε

To conclude, we approximate D̄ by a small circuit. We choose t = 8n/δ2 samples D1, · · · , Dt

from D̂ and define

D′D1,··· ,Dt(x) =
1

t

∑
1≤i≤t

Di(x)

By Chernoff’s inequality, for every x ∈ {0, 1}n, PrD1,··· ,Dt←D̂[|D′D1,··· ,Dt(x)− D̄(x)| ≥ δ/2] ≤ 2−2n.

Thus, there exists D1, · · · , Dt such that for all x, |D′D1,cdots,Dt
(x)− D̄(x)| ≤ δ/2. It follows that for

every Y , biasD′D1,··· ,Dt
(X,Y ) ≥ ε− δ. Note that D′D1,...,Dt

is of size O(ts) = O(ns/δ2).

5.5 Equivalence of metric and Hill for uniform polynomial-time Turing ma-
chines.

It is somewhat surprising that we can use the argument of Section 5.4 for uniform Turing machines.
This is because the argument seem to exploit the non-uniformity of circuits: The “min-max theo-
rem” works only for finite games and is non-constructive - it only shows existence of a distribution
D̂ and gives no clue to its complexity. The key idea is to consider Turing machines with bounded
description size.

We now adapt definitions given in Section 3 to uniform machines. Let M be some class of
Turing Machines (e.g., poly-time machines, probabilistic poly-time machines).

Definition 5.6 (pseudo-entropy for uniform machines). Let X = {Xn} be a collection of distribu-
tions where Xn is on {0, 1}n. Let k = k(n) and ε = ε(n) be some functions. Let ∆k denote the set
of collection {Yn} such that for every n, H∞(Yn) ≥ k(n).

• HHILL
ε (X) ≥ k if ∃{Yn} ∈ ∆k,∀M ∈M, biasM (Xn, Yn) < ε, a.e.

• HMetric
ε (X) ≥ k if ∀M ∈M,∃{Yn} ∈ ∆k, biasM (Xn, Yn) < ε, a.e.

Definition 5.7 (Description size). We use M to denote some class of Turing machines. (e.g.,
polynomial time machines). Fix some encoding of Turing machines.11 We identify a Turing machine

11For technical reasons we assume that if M ∈ M then 1 −M ∈ M an that both machines have descriptions of
the same length.
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M with its description. We use |M | to denote the length of the description of M . We useM(s) to
denote all machines M ∈M with |M | < s.

Consider for example HILL-type pseudoentropy. For every M there is a input length from
which point on the bias of M is small. We define h(n) to be the largest number s such that for
all machines M ∈ M with |M | ≤ s, biasM (Xn, Yn) < ε. The definition says that h(n) → ∞. We
can rewrite the definitions with this view in mind. We use ω(1) to denote all functions which go
to infinity.

Lemma 5.8 (pseudoentropy with description size). The following holds:

• HHILL
ε (X) ≥ k iff ∃h ∈ ω(1),∀n,∃Yn, H∞(Yn) ≥ k, ∀M ∈M(h(n)), biasM (Xn, Yn) < ε.

• HMetric
ε (X) ≥ k iff ∃h ∈ ω(1),∀n, ∀M ∈M(h(n)),∃Yn, H∞(Yn) ≥ k, biasM (Xn, Yn) < ε.

The proof of Lemma 5.8 uses the following trivial lemma.

Lemma 5.9. Let {fm} be a family of boolean functions over the integers. The following conditions
are equivalent:

• For every m, fm outputs 1 a.e.

• There exists a function h ∈ ω(1) such that for every n and every m < h(n) we have fm(n) = 1.

Proof. (of Lemma 5.8) We enumerate the machines M ∈ M by their descriptions m as an inte-
ger. For HILL-type pseudoentropy, both formulations fix some distribution {Yn} as a function of
{Xn}. We define fM (n) = 1 iff biasM (Xn, Yn) < ε. The lemma follows from Lemma 5.9. For
metric-type pseudoentropy, {Yn} depends on M we denote it by {YM

n } and define fM (n) = 1 iff
biasM (Xn, Y

M
n ) < ε. Again the lemma follows from Lemma 5.9.

The following Theorem shows that for every constant ε if HMetric
ε (X) ≥ k with respect to Turing

machines with then HHILL
2ε (X) ≥ k with small losses in running time.

Theorem 5.10. [Equivalence of HILL-type and metric-type for uniform machines] For every
constant ε and w ∈ ω(1). If HMetric

ε/2 (X) ≥ k (with respect to machines M which run in time

T (n) log T (n)w(n)) then HHILL
ε (X) ≥ k (with respect to machines M which run in time T (n)).

Proof. We will show that if HHILL
ε (X) < k (with respect to machines M which run in time T (n))

then HMetric

ε/2 (X) < k (with respect to machines M which run in time T (n) log T (n)w(n)). Let M′

be the set of Turing machines which run in time T (n) log T (n)w(n). By Lemma 5.8 it is sufficient
to show that:

∀h′ ∈ ω(1), ∃n,∃M ∈M′(h′(n)),∀Yn, H∞(Yn) ≥ k, biasM (Xn, Yn) ≥ ε

Let h′ be some function in ω(1). LetM be the set of Turing machines which run in time T (n).
By Lemma 5.8 our starting assumption is that:

∀h ∈ ω(1), ∃n, ∀Yn, H∞(Yn) ≥ k,∃M ∈M(h(n)), biasM (Xn, Yn) < ε

The key observation is that these statements involves the behavior of the machine on a fixed n.
On this fixed n the quantification is over finitely many machines (those inM(h(n))). We can think
ofM(h(n)) as a new non-uniform circuit class and use Lemma 5.3 as in the proof of Theorem 5.2.
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Let h(n) be the largest function that 2h(n)2+2 log(1/ε) ≤ h′(n). Note that h ∈ ω(1). We can
assume wlog that 2h(n)2+2 log(1/ε) < w(n) by restricting ourselves to small enough h′. Let n be a
number which existence is guaranteed above. We define C =M(h(n)).

By our assumption for every Yn with H∞(Yn) ≥ k there is a D ∈ C such that biasD(Xn, Yn) ≥ ε.
By Lemma 5.3 there is a distribution D̂ over C such that for every Yn, ED←D̂[bias∗D(Xn, Yn)] ≥ ε.
We define D̄(x) = ED∈D̂[D(x)] it follows that

biasD̄(Xn, Yn) ≥ bias∗D̄(Xn, Yn) = ED←D̂[bias∗D(Xn, Yn)] ≥ ε

As in the proof of Theorem 5.2 we now approximate D̄ by a “small machine”.12 Note that D̂
is a distribution over only 2h(n) elements. Let t = log(1/ε) + 1. We round the distribution D̂ to a
distribution P̂ such that every element D in the range of P̂ has probability i

2h(n)+t for some 0 ≤ i ≤
2h(n)+t. We define P̄ (x) = ED∈P̂ [D(x)]. It follows that biasP̄ (Xn, Yn) ≥ biasD̄(Xn, Yn)− 2−t ≥ ε/2.

To describe P̄ we need to describe P̂ (this takes 2h(n)(h(n)+t) bits) and all the machines inM(h(n))
(this takes 2h(n)h(n) bits. Thus, P̄ has description size 2O(h(n))+log(1/ε) ≤ h′(n). Simulating a (multi-
tape) Turing machine which runs in time T (n) can be done in time O(T (n) log T (n) on a (2-tape)
Turing machine, and thus P̄ runs in time O(T (n) log T (n))poly(2h(n)+log(1/ε)) ≤ T (n) log T (n)w(n).
We have indeed shown that:

∀h′ ∈ ω(1),∃n,∃M ∈M′(h′(n)),∀Yn, H∞(Yn) ≥ k, biasM (Xn, Yn) ≥ ε

5.6 Equivalence between all types for PH-circuits.

We do not know whether the assumption thatHYao
ε (X) ≥ k for circuits implies thatHMetric

ε (X) ≥ k′
for slightly smaller k′ and circuit size (and in fact, we conjecture that it’s false). However, we can
prove it assuming the circuits for the Yao-type definition have access to an NP-oracle.

Theorem 5.11. Let k′ = k + 1 There is a constant c so that if HYao
ε (X) ≥ k′ (with respect to

circuits of size max(s, nc) that use an NP-oracle) then HMetric
ε (X) ≥ k (with respect to circuits of

size s).

Proof. We start with a proof for a weaker result with k′ = 2k. We then sketch how to get k′ =
k + 1. Let X be a distribution with HMetric

ε (X) < k (for circuits of size s). We will show that
HYao
ε (X) < 2k with respect to circuits with NP-oracle. By Lemma 3.3 there exists a circuit C of

size s with PrX [C(X) = 1] > |D|
2k

+ ε where D = {x|C(x) = 1}. We define t = log |D|. Let H
be a 2-universal family of hash functions h : {0, 1}n → {0, 1}2t.13 There are such families such
that each h can be computed by an nc size circuit for some constant c [CW79]. The expected
number of collisions (pairs x1 6= x2 s.t. x1, x2 ∈ D and h(x1) = h(x2)) is bounded from above

by
(

2t

2

)
2−2t ≤ 1/2 and therefore there exists an h ∈ H such that h is one to one on D. We set

` = 2t and define the “compressor circuit” c(x) = h(x). We now define the “de-compressor circuit”
d which will use an NP -oracle. When given z ∈ {0, 1}2t, d uses its NP-oracle to find the unique

12There is however a major difference. In the non-uniform case we sampled t > n elements from D̂ and took their
average to get one circuit. Intuitively, sampling was necessary because D̂ could be over a lot of circuits. In our setup
D̂ is over only 2h(n) elements. We can assume that h grows so slowly that, 2h(n) << n. Thus, computing D̄ is just
as economic as sampling. However, we need to be careful that the description size of computing D̄ depends only on
h(n) and not on n or the choice of h.

13By that we mean that for every x1 6= x2 Prh∈RH [h(x1) = h(x2)] = 1/22t.
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x ∈ D such that h(x) = z. The circuit d then outputs x. We set k′ = k + t ≤ 2k. It follows that
PrX [d(c(x)) ≥ 2t−k + ε ≥ 22t−k′ + ε = 2`−k

′
+ ε. We conclude that HYao

ε (X) < k′ ≤ 2k with respect
to circuits of size max(s, nc) which use an NP-oracle.

Remark 5.12. In the proof above we chose ` = 2t which could be as large as 2k. As a result we
only got that HYao

ε (X) ≤ 2k instead of k + 1. One simple way to decrease ` is to allow the circuit
c to also use an NP-oracle. Here’s a rough sketch: We will choose h from a n2-wise independent
family of hash functions from n bits to t− log n bits. We expect that n elements of D are mapped
to each output string of h. We can use k-wise independent tail inequalities [BR94] to do a union
bound over all “bins” and argue that there exists an h such that for each output z ∈ {0, 1}t−logn

the number of “pre-images” in D is at most 2n. The circuit c on input x will use an NP-oracle to
find these 2n pre-images of h(x) and will output h(x) and the index of x amongst the pre-images.
This is a one to one mapping into t + 1 bits (instead of 2t bits) and the argument can continue
with k′ = k + 1 instead of k′ = 2k.

The reduction in the proof of Theorem 5.11 uses an NP-oracle. The class of polynomial size PH-
circuits are closed under the use of NP-oracles (PHNP /poly = PH/poly). Applying the argument
of Theorem 5.11 give the following corollary.

Corollary 5.13. Let C be the class of polynomial size PH-circuits. If HYao
ε (X) ≥ 2k then

HMetric
ε (X) ≥ k.

6 Separation between types

Given the results of the previous section it is natural to ask if HILL-type and metric-type pseu-
doentropy are equivalent in all natural computational models? We give a negative answer and
prove that there’s large gap between HILL-type and metric-type pseudoentropy in the model of
bounded-width read-once oblivious branching programs.

Theorem 6.1. For every constant ε > 0 and sufficiently large n ∈ N, and , there exists a random
X variable over {0, 1}n such that HMetric

ε X ≥ (1− ε)n with respect to width-S read once oblivious
branching programs, but HHILL

1−ε (X) ≤ polylog(n, S) with respect to width-4 oblivious branching
programs.

Theorem 6.1 follows from the following two lemmas:

Lemma 6.2 (Based on [Sak96]). Let ε > 0 be some constant and S ∈ N such that S > 1
ε . Let

l = 10
ε logS and consider the distribution X = (Ul, Ul, . . . , Ul) over {0, 1}n for some n < S which is

a multiple of l. Then, HMetric
ε (X) ≥ (1− ε)n with respect to width-S oblivious branching programs.

Proof. The proof is based on an extension of a theorem by Saks [Sak96]. Suppose, for the sake
of contradiction, that HMetric

ε (X) < (1 − ε)n. Then, there exists a width-S oblivious branching
program D such that Pr[D(X) = 1] ≥ ε but |D−1(1)| ≤ 2(1−ε)n. The program D is a graph with n
layers, where at each layer there are S vertices. The edges of the graph are only between consecutive
layers and each edge is labelled with a bit b ∈ {0, 1}. We consider a “contracted” graph that has n/l
layers, where again the edges of the graph are only between consecutive layers. However, this time
each edge (u, v) is labelled with a subset of {0, 1}l that corresponds to all possible labels of paths
between (u, v) in the original graph. Clearly the contracted graph computes the same language as
the original graph (when again a string is accepted if the corresponding walk on the graph edges
ends in an accepting vertex).
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We say that an edge is “bad” if its corresponding set of labels is of size at most S−42l. Note
that, if r ←R {0, 1}l, then the probability that when performing the walk (r, r, . . . , r) on the graph
we traverse a “bad” edge is at most n

l S
2S−4 < S−1 < ε (by a union bound over the at most n

l S
2

edges). Because Prr←R{0,1}l [D(r, r, . . . , r) = 1] > ε, there must exist an accepting path on the

graph that consists only of good edges. Let Si, where 1 ≤ i ≤ n
l denote the set of labels of the ith

edge on this path. Then, D accepts the set S1 × S2 × · · · × Sn/l. But this set is of size at least

(S−42l)n/l = (2l−4 logS)n/l ≥ 2(1−ε)n (since l = 10
ε logS), and so we’ve reached a contradiction.

Lemma 6.3. Let ε > 0 be some constant, and X be the random variable (Ul, Ul, . . . , Ul) over
{0, 1}n (where l > log n). Then, HHILL

(1−ε)(X) ≤ 100
log(1/ε) l

3 with respect to width-4 oblivious branching
programs.

Proof. Let I be a family of subsets of [n] such that I ∈ I iff
∣∣∣I ∩ [jl, jl+ l

)∣∣∣ = 1 for all 1 ≤ j ≤ n/l
(where

[
jl, jl + l

)
= {jl, jl + 1, . . . , jl + l − 1}). For every I ∈ I, we define DI(x) = 1 iff for every

i ∈ I, xi = xi−l. Note that DI(·) can be computed by a width-4 oblivious branching program.
Note that Pr[DI(X) = 1] = 1 for every I ∈ I. We suppose, for the sake of contradiction, that
HHILL

(1−ε)(X) > 100
log(1/ε) l

3. This means in particular that there exists a distribution Y such that

H∞(Y ) ≥ 100
log(1/ε) l

3 but Pr[DI(Y ) = 1] > ε for every I ∈ I.

For a string x ∈ {0, 1}n, we define S(x) ⊆ [l+1, n] to be the set of all indices i such that xi 6= xi−l.
The number of strings x such that |S(x)| ≤ 10

log(1/ε) l
2 is at most 2l

(
n

(10/ log(1/ε))l2

)
2l

2 ≤ 2(15/ log(1/ε))l3

(since l > log n). Therefore, Pr[|S(Y )| ≤ 10
log(1/ε) l

2] � ε
2 (since H∞(Y ) > 100

log(1/ε) l
3). We let Y ′ be

the distribution Y conditioned on |S(Y )| > 10
log(1/ε) l

2. We note that Pr[DI(Y
′) = 1] > ε

2 for every
I ∈ I.

We will now show that
ExI←RI,y←RY ′ [DI(y)] < ε

2

This will provide us with the desired contradiction, because it implies that in particular there exists
I ∈ I such that Pr[DI(Y

′) = 1] < ε
2 . We remark that choosing I ←R I can be thought as choosing

independently a random index from each block
[
jl, jl + l

)
.

Indeed, let y ←R Y ′. We need to prove that PrI←RI [DI(y) = 1] < ε
2 . Indeed, DI(y) = 1

iff I ∩ S(y) = ∅. Yet, let S′(y) be the a subset of S(y) chosen such that S′(y) contains a single
element in each block [jl, (j + 1)l) (e.g., S′(y) can be chosen to contain the first element of S(y)

in each block). Then, |S′(y)| ≥ |S(y)|
l ≥ 10

log(1/ε) l. Since S′(y) ⊆ S(y), it is enough to prove that

PrI←RI [S
′(y) ∩ I 6= ∅] > 1− ε

2 .
Yet, for each i ∈ S′(y), the probability that i ∈ I (when I is chosen at random from I) is 1

l
and this probability is independent of the probability that j ∈ I for every other j ∈ S′(y) (since
S′(y) contains at most a single element in each block). Thus, there is a probability of at least
(1− 1

l )
(10/ log(1/ε))l > 1− ε

2 that S′(y) ∩ I 6= ∅.

7 Analogs of information-theoretic inequalities

7.1 Concatenation lemma

A basic fact in information theory is that for every (possibly correlated) random variables X and
Y , the entropy of (X,Y ) is at least as large as the entropy of X. We show that if one-way-functions
exist then this does not hold for all types of pseudoentropy with respect to polynomial time circuits.
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On the other hand, we show that the fact above does hold for polynomial-sized PH-circuits and
for bounded-width oblivious branching programs.14

Negative result for standard model. Our negative result is the following easy lemma:

Lemma 7.1. Let G : {0, 1}l → {0, 1}n be a (poly-time computable) pseudorandom generator.15

Let (X,Y ) be the random variables (G(Ul), Ul). Then HHILL
ε (X) = n (for a negligible ε) but

HYao

1/2 (X,Y ) ≤ l + 1.

Proof Sketch: HHILL
ε (X) = n from the definition of pseudorandomness. On the other hand, it is

possible to reconstruct (X,Y ) from Y alone with probability 1, where |Y | = l.

Positive result for PH-circuits. Our positive result for PH-circuits is stated in the following
lemma:

Lemma 7.2. Let X be a random variable over {0, 1}n and Y be a random variable over {0, 1}m.
Suppose that HYao

ε (X) ≥ k with respect to s-sized PH-circuits. Then HYao
ε (X,Y ) ≥ k with respect

to O(s)-sized PH-circuits.

Proof. Suppose that HYao
ε (X,Y ) < k. This means that there exist l ∈ [k] and s-sized PH-circuits

C,D, where C : {0, 1}n+m → {0, 1}`, D : {0, 1}` → {0, 1}n+m such that

Pr
(x,y)←R(X,Y )

[D(C(x, y)) = (x, y)] > 2l

2k
+ ε

We define D′ : {0, 1}` → {0, 1}n to be the following PH-circuit: on input a ∈ {0, 1}`, compute
(x, y) to be D(a) and output x. We define C ′ : {0, 1}n → {0, 1}` to be the following PH-circuit:
on input x ∈ {0, 1}n, non-deterministically guess y ∈ {0, 1}m such that D′(C(x, y)) = x. If such y
is found then output C(x, y). Otherwise, output 0`. Clearly,

Pr
x←RX

[D′(C ′(x)) = x] ≥ Pr
(x,y)←R(X,Y )

[D(C(x, y)) = (x, y)] > 2l

2k
+ ε

and thus HYao
ε (X) < k.

Applying the results of Section 5.6, we obtain that with respect to PH-circuit, the concatenation
property is satisfied also for HILL-type and Metric-type pseudoentropy.

Positive result for bounded-width oblivious branching programs. We also show that the
concatenation property holds also for metric-type pseudoentropy with respect to bounded-width
read-once oblivious branching programs. This is stated in Lemma 7.3. Note that the quality of this
statement depends on the order of the concatenation (i.e., whether we consider (X,Y ) or (Y,X)).

Lemma 7.3. Let X be a random variable over {0, 1}n and Y be a random variable over {0, 1}m.
Suppose that HMetric

ε (X) ≥ k with respect to width-S read-once oblivious branching programs. Then,
HMetric
ε (X,Y ) ≥ k and HMetric

2εS (Y,X) ≥ k − log(1/ε) with respect to such algorithms.

14With respect to the latter, we only prove that concatenation holds for metric-type pseudoentropy.
15We mean here a pseudorandom generator in the “cryptographic” sense of Blum, Micali and Yao [BM82, Yao82].

That is, we require that G is polynomial time computable.
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Proof Sketch: Suppose that HMetric
ε (X,Y ) < k. This means that there exists an width-S branching

program D such that Pr[D(X,Y ) = 1] ≥ |D
−1(1)|
2k

+ε. We consider the following branching program
D′: On input x, run D(x) and then accept if there exists a possible continuation y such that
D(x, y) = 1. It is not hard to see that |D′−1(1)| ≤ |D−1(1)| and Pr[D′(X) = 1] ≥ Pr[D(X,Y ) = 1].

Suppose now that HMetric
2εS (Y,X) < k − log(1/ε). Then there exists an width-S branching

program D such that Pr[D(Y,X) = 1] ≥ |D−1(1)|
2kε

+ 2εS. In particular, it holds that |D
−1(1)|
2k

≤ ε.
Let α be state of D after seeing y ←R Y that maximizes the probability that D(y,X|Y = y) = 1.
We let D′ denote the following branching program: on input x, run D on x starting from state

α. Again, it is not hard to see that |D′−1(1)| ≤ |D−1(1)| and so |D
′−1(1)|
2k

≤ ε. On the other hand

Pr[D′(X) = 1] ≥ 1
S Pr[D(X,Y ) = 1] ≥ 2ε. Thus Pr[D′(X) = 1] ≥ |D

′−1(1)|
2k

+ ε.

7.2 Unpredictability and entropy

Loosely speaking, a random variable X over {0, 1}n is δ-unpredictable is for every index i, it is
hard to predict Xi from X[1,i−1] (which denotes X1, . . . , Xi−1) with probability better than 1

2 + δ.

Definition 7.4. Let X be a random variable over {0, 1}n. We say that X is δ-unpredictable in
index i with respect to a class of algorithms C if for every P ∈ C, Pr[P (X[1,i−1]) = Xi] <

1
2 + δ. X

is δ-unpredictable if for every P ∈ C Pr[P (i,X[1,i−1]) = Xi] <
1
2 + δ where this probability is over

the choice of X and over the choice of i ←R [n]. We also define complement unpredictability by
changing X[1,i−1] to X[n]\{i} in the definition above.

Yao’s Theorem [Yao82] says that if X is δ-unpredictable in all indices by polynomial-time
(uniform or non-uniform) algorithms, then it is nδ-indistinguishable from the uniform distribution.
Note that this theorem can’t be used for a constant δ > 0. This loss of a factor of n comes from
the use of the “hybrid argument” [GM84, Yao82]. In contrast, in the context of information theory
it is known that if a random variable X is δ-unpredictable (w.r.t. to all possible algorithms) for
a small constant δ and for a constant fraction of the indices, then H∞(X) ≥ Ω(n). Thus, in this
context it is possible to extract Ω(n) bits of randomness even from δ-unpredictable distributions
where δ is a constant [TSZS01].

In this section we consider the question of whether or not there exists a computational analog
to this information-theoretic statement.

Negative result in standard model. We observe that if one-way functions exist, then the
distribution (G(Ul), Ul) where |G(Ul)| = ω(l)) used in Lemma 7.1 is also a counterexample (when
considering polynomial-time distinguishers). That is, this is a distribution that is δ-unpredictable
for a negligible δ in almost all the indices, but has low pseudoentropy. We do not know whether or
not there exists a distribution that is δ-unpredictable for a constant δ for all the indices, and has
sublinear pseudoentropy.

Positive results. We also show some computational settings in which the information theoretic
intuition does holds. We show this for PH-circuits, and for bounded-width oblivious branching
programs using the metric definition of pseudoentropy. We start by considering a special case in
which the distinguisher has distinguishing probability 1 (or very close to 1).16

16Intuitively, this corresponds to applications that use the high entoropy distribution for hitting a set (like a
disperser) rather than for approximation of a set (like an extractor).
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Theorem 7.5. Let X be a random variable over {0, 1}n. Suppose there exists a size-s PH-circuit
(width-S oblivious branching program) D such that |D−1(1)| ≤ 2k and Pr[D(X) = 1] = 1. Then
there exists a size-O(s) PH-circuit (width-S oblivious branching program) P such that

Pr
i∈[n],x←RX

[P (x[1,i]) = xi] ≥ 1−O( kn)

The main step in the proof of Theorem 7.5 is the following lemma:

Lemma 7.6. Let D ⊆ {0, 1}n be a set such that |D| < 2k. Let x = x1 . . . xi−1 ∈ {0, 1}i−1, we
define Nx to be the number of continuations of x in D (i.e., Nx = |{x′ ∈ {0, 1}n−i | xx′ ∈ D}|).
We define P (x) as follows:

P (x) =


1 Nx1

Nx
> 2

3

0 Nx1
Nx

< 1
3

, where P (x) is undefined otherwise. Then, for every random variable X such that X ⊆ D,

Pr
i∈[n],x←RX

[
P (x[1,i−1]) is defined and equal to xi

]
≥ 1−O

(
k
n

)
Proof. For x ∈ {0, 1}n, we let bad(x) ⊆ [n] denote the set of indices i ∈ [n] such that P (x[1,i−1]) is
either undefined or different from xi. We will prove the lemma by showing that |bad(x)| ≤ O(k)
for every string x ∈ D. Note that an equivalent condition is that |D| ≥ 2−Ω(|bad(x)|). Indeed, we
will prove that |D| ≥ (1 + 1

2)|bad(x)|. Let Ni denote the number of continuations of x[1,i] in D (i.e.,

Ni = Nx[1,i]
). We define Nn = 1. We claim that for every i ∈ bad(x), Ni−1 ≥ (1 + 1

2)Ni. (Note
that this is sufficient to prove the lemma). Indeed, Ni−1 = Nx[1,i−1]0 +Nx[1,i−1]1, or in other words,

Ni−1 = Ni+Nx[1,i−1]xi (where xi
def
= 1−xi). Yet, if i ∈ bad(x) then Nx[1,i−1]xi ≥

1
3(Ni+Nx[1,i−1]xi) ≥

1
2Ni.

We obtain Theorem 7.5 from Lemma 7.6 for the case of PH-circuits by observing that deciding
whether P (x) is equal to 1 or 0 (in the cases that it is defined) can be done in the polynomial-
hierarchy (using approximate counting [JVV86]). The case of bounded-width oblivious branching
programs is obtained by observing that the state of the width-S oblivious branching program D
after seeing x1, . . . , xi−1 completely determines the value P (x1, . . . , xi−1) and so P (x1, . . . , xi−1)
can be computed (non-uniformly) from this state.17

We now consider the case that Prx←RX [x ∈ D] = ε for an arbitrary constant ε (that may be
smaller than 1

2). In this case we are not able to use standard unpredictability and use complement
unpredictability.

Theorem 7.7. Suppose that X is δ-complement-unpredictable for a random index with respect
to s-sized PH-circuits, where 1

2 > δ > 0 is some constant. Let ε > δ be some constant, then
HMetric
ε (X) ≥ Ω(n) with respect to O(s)-sized PH-circuits.

Proof. We prove the theorem by the contrapositive. Let ε > δ and suppose that HMetric
ε (X) < k

where k = ε′n (for a constant ε′ > 0 that will be chosen later). This means that there exists a setD ∈
C such that Prx←RX [x ∈ D] ≥ |D|

2k
+ε. In particular, this means that |D| < 2k and Prx←RX [x ∈ D] ≥

17Lemma 7.6 only gives a predictor given a distinguisher D such that Prx←RX
[x ∈ D] = 1. However, the proof of

Lemma 7.6 will still yield a predictor with constant bias even if 1 is replaced by 9
10

(or any constant greater than 1
2
).
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ε. We consider the following predictor P ′: On input i ∈ [n] and x = x1, . . . , xi−1, xi+1, . . . , xn ∈
{0, 1}n−1, P ′ considers the strings x0, x1 where xb = x1, . . . , xi−1, b, xi+1, . . . , xn. If both x0 and x1

are not in D, then P ′ outputs a random bit. If xb ∈ D and xb 6∈ D then P ′ outputs b. Otherwise
(if x0, x1 ∈ D), P ′ outputs P (x1, . . . , xi−1), where P is the predictor constructed from D in the
proof of Lemma 7.6. Let Γ(D) denote the set of all strings x such that x 6∈ D but x is of Hamming
distance 1 from D (i.e., there is i ∈ [n] such that x1, . . . , xi−1, xi, xi+1, . . . , xn ∈ D). If S ⊆ {0, 1}n,
then let X�S denote the random variable X|X ∈ S. By Lemma 7.6 Pri∈[i],x←RX�D

[P ′(x[n]\{i}) =

xi] ≥ 1 − O( kn) while it is clear that Pri∈[i],x←RX�{0,1}n\(D∪Γ(D))
[P ′(x[n]\{i}) = xi] = 1

2 . Thus if it

holds that Pr[X ∈ Γ(D)] < ε′ and k < ε′n, where ε′ is some small constant (depending on ε and δ)
then Pri∈[i],x←RX [P ′(x[n]\{i}) = xi] ≥ 1

2 + δ and the proof is finished.
However, it may be the case that Pr[X ∈ Γ(D)] ≥ ε′. In this case, we will consider the

distinguisher D(1) = D ∪ Γ(D), and use D(1) to obtain a predictor P (1)′ in the same way we
obtained P ′ from D. Note that |D(1)| ≤ n|D| and that, using non-determinism, the circuit size
of D(1) is larger than the circuit size of D by at most a O(log n) additive factor.18 We will need
to repeat this process for at most 1

ε′ steps,19 to obtain a distinguisher D(c) (where c ≤ 1
ε′ ) such

that |D(c)| ≤ nO(1/ε′)|D| ≤ 2k+O(logn(1/ε′)), Pr[X ∈ D(c)] ≥ ε and Pr[X ∈ Γ(D(c))] < ε′. The
corresponding predictor P (c)′ will satisfy that Pri∈[i],x←RX [P (c)′(x[n]\{i}) = xi] ≥ 1

2 +δ thus proving
the theorem.
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