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Abstract

We provide the first construction of a concurrent and non-malleable zero knowledge argument for every language
in NP. We stress that our construction is in the plain model without allowing a common random string, trusted
parties, or super-polynomial simulation. That is, we construct a zero knowledge prbtaaugth that for every
polynomial-time adversary that can adaptively and concurrently schedule polynomially many execuliQrsdf
corrupt some of the verifiers and some of the provers in these sessions, there is a polynomial-time simulator that can
simulate a transcript of the entire execution, along with the witnesses for all statements proven by a corrupt prover
to an honest verifier.

Our security model is the traditional model for concurrent zero knowledge, where the statements to be proven
by the honest provers are fixed in advance and do not depend on the previous history (but can be correlated with
each other); corrupted provers, of course, can chose the statements adaptively. We also prove that there exists
some functionality” (a combination of zero knowledge and oblivious transfer) such that it is impossible to obtain
a concurrent non-malleable protocol f8rin this model. Previous impossibility results for composable protocols
ruled out existence of protocols for a wider class of functionalities (including zero knowledge!) but only if these
protocols were required to remain secure when executed concurrently with arbitrarily chosen different protocols
(Lindell, FOCS 2003) or if these protocols were required to remain secure when the honest parties’ inputs in each
execution are chosen adaptively based on the results of previous executions (Lindell, TCC 2004).

We obtain anO(n)-round protocol under the assumption that one-to-one one-way functions exist. This can
be improved taO(klogn) rounds under the assumption that there ekisbund statistically hiding commitment
schemes. Our protocol is a black-box zero knowledge protocol.

Keywords: Non-malleable protocols, concurrent composition, concurrent zero knowledge, non-malleable zero knowl-
edge
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1 Introduction

In the two decades since their introducti@miss], zero-knowledge proofs have played a central role in the study of
cryptographic protocols. Intuitively speaking, a zero-knowledge proof is an interactive protocol that allows one party
(a “prover”) to convince another party (a “verifier”) that some statement is true, without revealing anything else to the
verifier. The zero knowledge property was formalizeddmiss] by requiring that the verifier can efficientsimulate

its view of an interaction with the prover, when given only the statement as input — i.e., without any knowledge of why
the statement is true.

In many settings, however, the above security guarantee is not sufficient. Consider a situation in which Alice is
giving a zero-knowledge proof of the statement X to Bob, and at the same time Bob is trying to give a zero-knowledge
proof of some other statement X' to Charlie. Our intuitive definition of zero-knowledge tells us that Bob should not
get any “help” in proving X’ to Charlie by means of the zero-knowledge proof that Bob is getting from Alice — i.e.
Bob should only be able to prove X' to Charlie if he could have done it on its own, without any help from Alice.
This property is calleshon-malleability[ppnei] for zero-knowledge proofs. It turns out that the standard simulation
definition of zero knowledge does not imply non-malleability, and in fact, many known zero-knowledge proofs are
susceptible to this kind of attack. We note that we can describe non-malleability as security in the following scenario:
there are two executions of zero-knowledge proofs, with the adversary corrupting the verifier in one execution and the
prover in the other.

Another setting considered in the literature is the following: Suppose there are many verifiers, all of which are
receiving zero-knowledge proofs from various provers at the same time. We would like to guarantee that even if many
of these verifiers collude, they still can’t learn anything nontrivial from the provers —i.e., that it is possible to efficiently
simulate the view of all the colluding verifiers interacting with the provers, given only the statements being proven by
the provers. This property is calledncurrent zero knowleddenssg rk99], and here too, the standard definition of
zero knowledge does not imply concurrent zero knowledge.

1.1 Our Results

In this work, we present the first protocol that is provasimultaneousiynon-malleable and concurrent zero knowl-

edge in the “plain” cryptographic model without any setup assumptions. Our protocol allows provers to prove any
NP statement and is based on standard cryptographic assumptions — namely, the existence of collision-resistant has
functions. The assumptions that we use is the existence of statistically hiding commitment schemes. Such schemes ca
be constructed witlY (n) rounds under one-way permutation®{y92] and and even regular (and in particular one-to-

one) one-way functionsipk+o0s] and in constant rounds under claw-free permutati@ngp4 or collision-resistent

hash functionsgrproz Hm96]. Simultaneous non-malleability and concurrency means that in the setting where there
are many verifiers and provers all interacting concurrently, with scheduling decided by the adversary as well, security
is preserved even if the adversary corrupts an arbitrary subgettiothe provers and the verifiers. The definition of
security is that for any such adversary there exists a polynomial-time simulator that, given only the statements proven
by the honest parties (and not the witnesses), simulates the entire execution, and outputs along with the simulatec
transcript a list of witnesses corresponding to all statements successfully proven in this transcript by corrupted provers
to honest verifiers. This definition is the natural combination of non-malleable zero knowtsgiga][and concurrent

zero knowledgernsos, Rk99], and is also similar to the analogous definitions for non-malleable and concurrent com-
mitments poNo1, PrRos:]. We note that the best previous results on zero knowledge either (1) achieved only concurrent
zero knowledge without non-malleabilitgg9s, kPo1, PRs03, (2) achieved non-malleability but only with a bounded
number of parties preserpng1, Bar02, PRO5], (3) made use of global setup assumptions like a common reference
strings cLosod or time-delayed messagesLpos], or (4) used different security frameworks like super-polynomial
simulation pso4 Bs05 MMY06].

As in previous works on concurrent zero knowledge and non-malleable zero knowledge, our model assumes that
the vector of inputs (statements and witnesses) to all parties is fixed according to some pre-determined distribution
(although corrupted parties of course do not have to use their given inputs and can choose their inputs and message
adaptively). However, our security proof dosst extend to the case of adaptively chosen honest inputs; this is with



good reason, as it was shown by Lindell that thenedsoncurrent non-malleable zero knowledge protocol for honest
adaptive inputsiino4]. Indeed, Lindell’s argument also ruled out many other functionalities, including oblivious
transfer (OT), in the setting where the inputs for honest parties can be chosen adaptively based on outputs of previou:
protocols.

This leads to a natural question: Can we generalize our positive result on concurrent non-malleable zero knowledge
to obtain a result foany polynomial-time functionality — as long as the inputs to honest parties are fixed in advance?
We answer this questiamegativelyby exhibiting a simple and natural functionality that is impossible to realize, even
in the setting where all honest inputs are fixed in advance. Our negative result is also somewhat surprising since in
many other settings (i.e., UC security in the common reference string modeddd, bounded-concurrent security
[LinO3a, PRO3 Pas04], super-polynomial simulationPgo4 Bsos MMyos], and composition in timing modek[ros])
obtaining composable zero-knowledge protocols was the key step to obtaining protocols for all functibnalities

Our techniques. Perhaps surprisingly, our protocol does not use non-black-box techniques, but rather only uses
black-box concurrent zero knowledge and non-malleable commitments; both tools that have been around for several
years by now k99, bbno1] (although we do require some tweaking of these protocols, see below and Section 2). We
see our main novelty in our proof of security.

Essentially all known techniques for achieving concurrent zero knowledge simulation and non-malleability in the
plain model have relied crucially on proof techniques based on complex “rewinding” arggmewtitical component
to many results (e.g.bpN91, PRS02 PRO%, Bs0g) has been the development of new proof techniques to tame the
complexity introduced by rewinding, often through new kinds of hybrid arguments. At a technical level, we continue
in this line and develop new techniques for dealing with complex rewinding in security proofs.

Our protocol uses the Prabhakaran-Rosen-Sahai (RRRS)] concurrent zero knowledge protocol and simulation
strategy. We also want to make use of non-malleable commitment construction®fewg, [Proz]) to obtain non-
malleability. This gives rise to two main obstacles: (1) We need to guarantee that the non-malleability properties of
these commitment schemes remain even in the presence of our rewinding. Note that in general, this should not be true
— an adversary for a plain-model non-malleable commitment scheme suobnag,[Pros] that can rewind honest
parties would always be able to cheat. We develop a new hybrid argument that shows that we can guarantee non:
malleability by making specific use of the properties of the PRS rewinding strategy and a statistical zero knowledge
variant of the PRS protocol. (2) The other major obstacle is that the techniques for non-malleability necessarily involve
rewinding of their own (for extraction). We develop a new proof technique to show that the extraction methods we
need can work “on top of” the PRS rewinding strategy.

For our impossibility result ruling out concurrent non-malleable realizations of more general functions, even when
honest party input distributions are fixed, we work as follows: we start by taking one of the counterexamples showing
that very strongly composable protocols (e.g., UC secucitydi] or security against “chosen-protocol attacks{vez,

Linoss]) for, say, zero knowledge, do not exist in the plain model (where there are no trusted parties or common
reference strings). This basically implies that for every supposedly composable zero-knowledge atgutherd

exists a protocoll’, depending oI, such that their concurrent execution is not secure. The main novelty in our
work is that in order to get the kind of result we want, we use a variant of Yao’s garbled circuit techvigge {o
“compile” the protocolll’ into a protocol using the oblivious transfer functionality. Thus, we create a scenario where
for every protocoll implementing the combined zero knowledge and oblivious transfer functionality (or equivalently,
for every pair of protocol$l ; x andIlor each implementing these two functionalities), there’s an adversary launching

a concurrent attack that manages to learn a secret with probability clase tbe real world, but no adversary would

only be able to learn the secret with non-negligible probability in the ideal model. Note that, unlike its typical use,
we're using Yao’s technique here to gategativeresult. (This is somewhat similar in spirit tedgi+o1].)

We do believe that the pattern will still hold true here — that our concurrent non-malleable zero-knowledge protocol will lead to protocols
for all or large classes of functionalities, but just not according to the same definition of security. In the conclusions section, we mention some
possible directions.

2\We note that all known non-black-box techniquBsi01, BARO2, PAs03, PRO3 PROS, PRO%, BS04 for achieving concurrent simulation
or non-malleability can also be seen as introducing complexities similar to those that arise with rewinding. This is one of the reasons that natural
generalizations of§ar01] has not led to a constant-round concurrent zero-knowledge protocol.




1.2 Previous works.

Concurrent zero knowledge. Concurrent zero knowledge (where the adversary corrupts either only provers or only
verifiers) was defined by Dwork, Naor and Sahai$og and the first construction was given by Richardson and
Kilian [Rk99]. The number of rounds was improved (fb(log n) by [kpo1, PRs0d which is optimal forblack-box
simulation[ckpProd. (A constant round protocol satisfying a weaker form of concurrent zero knowledge was given in
[Bar01] using non-black-box simulationNon-malleable zero knowledge Non-malleable zero knowledge was first
defined and constructed by Dolev, Dwork and NamrN91]. Constant round protocols were given Brgo2, PROS].

These latter works also introduced some more convenient definitions (which we follow) thasptiea] [definition
(inspired by definitions of non-malleabien-interactivezero knowledgedan99]). Non-malleable and concurrent
commitments. By a simple hybrid argument, every commitment scheme remains secure under concurrent composition
if the adversary can corrupt either only senders or only receivers. As in the case of zero knowledge, stand-alone
non-malleable commitments were defined bpfoi1] and constant-round protocols were given #ado2, PRoz:]. In

a recent and exciting work, Pass and Rosempf] showed that the commitment scheme froprdz] is actually
concurrently non-malleablthus giving anO(1) round concurrent non-malleable commitment schelae: In many
previous works, progress in commitment schemes and zero-knowledge went hand in hand, where one could obtain a ZK
protocol satisfying security notiol by plugging a commitment scheme satisfyikigo a standard standalone protocol
[DDNo1, cFog, cLOSO02 Lino3a]. Thus, one might hope that one could obtain in this way a concurrent non-malleable ZK
protocol from the proz] scheme. However, an important limitation @Rps] is that security is guaranteed only under

the condition that only theommitprotocol and not theevealprotocol is executed concurrently. For this reason, such
commitment schemes do not automatically imply concurrent non-malleable zero knowledge proofs. In particular, we
do not know that if we plug indros:]'s commitments in one of the well known constant-round ZK or honest-verifier

ZK protocols we will get a concurrent non-malleable ZK protocol. In fact, that would be quite surprising since in
particular it will yield the first constant rouncbncurrent zero knowledgerotocol. We note that our work here does

not work in this way, and indeed, we can make usenafri-concurreritnon-malleable commitment protocols like the
original protocol of ppone1], thus avoiding non-black-box techniques altogether, and reducing our assumptions to just
regular one-way functions. We also don’t know whether it's possible make the proof simpler by using concurrently
non-malleable commitments.

Universally composable (UC) security, general and self composition.In [cano1], Canetti introduced the notion

of universally composabler UC security for cryptographic protocols. This is a very strong notion of security and in
particular a UC secure zero-knowledge protocol will be concurrently non-malleable and in fact will compose with an
environment that contains executions of arbitrary other protocols as well (see atge]]. However, this notion, that
essentially implies black-box straightline simulation, is in some sense “too strong”, and it was shown that in the “plain”
model, without trusted parties, honest majority or setup, ithigossibleto achieve UC-secure zero knowledge and in

fact a very wide range of functionalities including commitment scheroe®{, croi, ckLo3]. (See Bocwssg Ccanol,

cLos02 BcNPo4 for constructions in other models3elf-composition. As mentioned above, Lindell{vno4] showed

that for the case ofmessage passing functionalitifenctionalities allowing to transmit a bit, in particular including

zero knowledge), security for concurrent composition ofdghmeprotocolunder adaptive input selectiassentially
implies UC security and hence it is impossible to obtain a zero knowledge protocol satisfying this notion of self-
composition in the plain model. Adaptive input selection is defined by having the inputs supplied by an environment as
in the UC model, but unlike the UC definition, this environment is not allowed to look at the actmmhunicatiorof

the executions but only at treutputsof these executions. In contrast, in our security model the inputs may be chosen
from some distribution but are supplied in advance to all parties, and so, while we can'’t control the corrupted parties’
behavior, the honest parties do not choose their inputs adaptively based on previous executions.

Super-polynomial-time simulation. Another sequence of works considered a setting where the ideal model simula-
tor is allowed to run irsuper-polynomiatime [Pso4 Bsos, Mmmyoe]. This allows to bypass the UC impossibility results

and yield protocols for any functionality that seem to supply adequate security for many applications. However, the
definition is not as intuitive and mathematically clean as polynomial-time simulation, and the current constructions do
suffer from drawbacks such as requiring stronger complexity assumptions, and a tradeoff between the time of simula-
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tion and the standalone soundness of the protd8eturity for independent inputs. Garay and MacKenziesjmoo]

show a protocol for oblivious transfer that is concurrently secure if the inputs to the parties in each execution is chosen
independently and at random from a known distribution such as the uniform distribution. We note that in this paper we
consider the more standard setting where the inputs are arbitrarily chosen and in particular may be correlated.

1.3 Preliminaries.

We consider only two party protocols in this paper. Our model isugfartiesP, ..., P, (not necessarily aware of

one another) that interact in pairs via some two party protlicolThere’s some distributio® on inputszy, ...,z

and each party’; uses inputz; in its interaction (by adding more parties if necessary, we can assume that each party
participates in at most one interactionIdf. We assume an adversatylv that chooses initially to corrupt a set of
parties{ P; : : € C'}, and receives the inputs for that set, and completely controls these parties. The adversary can also
schedule concurrently and adaptively all the messages in the network. We assume that all parties in the network have
unique identities and authenticated communication (followmnp1] this can be relaxed somewhat for the positive
result). We say thalll securely implementsn ideal functionalityF with two inputs and two outputs if for any such

Adv corrupting a set” there’s a simulato6im that receives the inputs; for i € C, and for every pai(i, j) that
interacts viall with i € C'andj ¢ C, Sim gets one access to the first output of the function: F(z, ;) (we have

an analogous definition if the corrupted party is the second in the pair). The outpbits ahd the second output
should be computationally indistinguishable from the output&af and the outputs of the honest parties in the real
execution. It can be shown thHtis concurrent non-malleable zero knowledge fo™R-relation R if and only if it

secure implements the ZKPOK functionalify defined as followsF (z o w) = z iff (z,w) € RandF(xow) = L
otherwise (this functionality only uses one of its inputs).

2 A concurrent non-malleable zero knowledge protocol

We have included a self-contained Appendix A with details and full proofs for the material in this section.

Definition. The formal definition of a Concurrent Non-Malleable Zero Knowledge (CNMZK) argument of knowl-
edge for membership in aNP language appears in the appendix as Definition A.1. Informally, the concurrent non-
malleability property states that for every (non-uniform PPT) adverdanteracting with honest provef3,, ..., P,

in mp, “left sessions” and with honest verifieVs, . . ., V;,,, in mp “right sessions” of the protocol (witld controlling

the scheduling of all the sessions), there exists a simuiagarch that for every set of “left inputsjy, . .., ¥, , we
haveS(y1,...,ym,) = (V, 21, ..., 2my), Wherev is a simulated view o4, andz,, . . ., z,,, are valid witnesses to the
statements proven byt to V1, ..., V;,,,, according to the view. (We letz; = L if V; does not accept according#d.

Result from [PrRs0d. We heavily rely on techniques fromgso3. First we sketch the “protocol preamble” used there.

1. PRS Commitment: The verifier picks a (sufficiently long) random strieg commits tooc and many secret
sharings ob, using a statistically binding commitment sche@wenpgs.

2. PRS Challenge-ResponseThis is followed by (super-logarithmically) many rounds of random challenges by
the prover. In response, the verifier must open some of the PRS commitments (without reyvialing

3. The prover considers the preamble to have “concluded.”

4. PRS Opening: The verifier opens all the commitments made in the PRS Commitment step, and the prover
verifies consistency.

5. The prover “accepts” the preamble.

There can be other messages in the protocol between the prover concluding the preamble and the verifier opening th
commitments.

ThePRS simulato(for our purposes) is the following program which “simulates” multiple (polynomially many in
the security parameter) concurrent sessions of the protocol between honest provers and a combined adversarial verifie
Aprs The simulator gets inputs of all the parties in all the sessions, and it runs the honest provers and the adversarial



verifier internally? In the end it produces an ordered list of “threads of execution.” A thread of execution consists of
views' of all the parties, such that the following hold.

e Each thread of execution is a perfect simulation of a prefix of an actual execution.
e The last thread, called thmain thread is a perfect simulation of a complete execution (i.e., until all the parties
terminate); all other threads are calledk-ahead threads

e Each thread shares a (possibly empty) prefix with the previous thread, and is derived by running the honest
parties with fresh randomness after that point.

The aim of the PRS simulator is, for each PRS commitment that it comes across in any session in any thread, to
extract the committed value (referred to as the “PRS secret”) before the preambt®igludedn that thread. The
extraction is achieved by observing the adversary’s messages in multiple previous threads. If it fails to extract the PRS
secret in any session in a threaahd the execution goes on axceptthe preamble of that session in that thread, then
the simulation is said to “get stuck.”prso] guarantees that the probability of the PRS simulation getting stuck is
negligible.

Lemma 2.1. (Adapted from prsod) Consider proversPy, ..., P, and an adversarial verifiefdprsrunning m ses-

sions of a protocol with the PRS preamble as described above, wh&eny polynomial in the security parameter

k. Then except with negligible probability, in every thread of execution output by the PRS simulator, if the simulation
reaches a point where the provér accepts the PRS preamble withas the secret in the preamble, then at the point
when the preamble was concluded, the simulator would have already recorded the value

In fact [PrRs03 prove a refinement of this lemma (that we too will need): instead of the simulator running each
thread exactly as in the original execution, if each thread (individually) is executed in an indistinguishable way, the
lemma still holds. It is important that here we require the indistinguishability requirement onlpentareadbasis.

In particular the joint distribution of the threads in the latter simulation is allowed to be distinguishable from the joint
distribution of the threads in the original simulation.

We shall adapt the PRS simulator to our setting in which an adver$asyengaged in concurrent left hand side
sessions as the verifier, while concurrently playing the prover in multiple right hand sessions. In (unshared parts of) the
different threads, the simulator uses fresh randomness for all the honest parties, but uses the same randat tape for
in all the threads. This is important for us because in our simulation we will need to use fresh randomness for the right
hand side verifiers in different threads (except during the shared prefixes).

Non-Malleable Commitment. Another ingredient we need is a perfect (or statistically) binding, non-malleable (not
necessarily concurrent non-malleable) commitment with a “stand-alone extractability” property. The non-malleability
property is similar to that defined imRo=], but needs to hold when there is one left and right executions each. The
construction in poNo1] also satisfies this property. The “extractability” property is that there is an efficient extractor
which, given a randomly generated view of a stand-alone committer committing a value to an honest receiver, can
extract the committed value except with negligible probability. We also impose a technical condition that the receiver
should be public coin up to a “knowledge determining message” in the protocol. Protocotsv]and [Proz] can

be easily modified to have these properties. See Appendix A.3 for details.

Other ingredients. The other ingredients we use are a statistically (or perfectly) hiding commitment s€lueingg
and a statistical (or perfect) ZK argument of knowledg&AOK, for proving knowledge of witness for membership
in anyNP language.
We note that all our ingredients are realizable under the assumption that regular one-way functiongexdist |
HHK*05].
3Note that the “simulator” as described here is given all the inputs to all the parties. Later, after introducing this simulator into the sequence
of hybrids in our proof, we shall show how to get rid of these inputs.

“Here, and elsewhere, by the view of a party we mean the sequence of its internal states during the execution, including the messages receive
and sent by it.




2.1 Our Protocol

Consider arlNP-complete languagé with a witness relationshif. The prover and verifier receive a common input
y and the prover receives a witnessuch thatR(y, w) = 1. The protocolCNMZK is described below.

Phase I: PRS preamble (see Section A.2) up to the point where the pcoveludeghe preamble.

Phase II: Prover commits to the all-zero string usiG@msy. Then it usesZKAOK to prove the knowledge of the
randomness and inputs to this executiorCofgy.

Phase Ill: Continue the PRS preamble until the prover accepts the preamble. Let the secret in the preamble (as
revealed by the verifier) be.

Phase IV: Prover commits to the witness usingCompp.

Phase V: Prover proves the following statement usetKAOK: either the value committed to in Phase I\uissuch
that R(y, w) = 1, or the value committed to in Phase llds It uses the witness corresponding to the first part of
the statement.

Theorem 2.2. Protocol CNMZK is a black-box concurrent non-malleable zero knowledge argument for membership
in the NP languageL (Defintion A.1).

Proof Sketch:lt is easy to see that the protocol satisifies the completeness condition. Below we sketch how to build a
simulator-extractor, as required by the definition (i.e., the second condition in Defintion A.1).
We build the simulatos in stages, via intermediate simulatdis, fori = 1,...,4. H; outputs a simulated view
). (S will in addition output a list of witnesses.) We defifie: random vanable?tb( ), (i )}e -, whereb( Disa

bit denotlng whether according 18", V;, accepted the proof from the adversary or not, aﬁals the value contained
in the Phase IV commitmeriiomy received by, (as determined by the determining message; if there is no unique
value, then it is defined to he).

Stage 1:'H; gets all the inputs td”, ..., P,,, as well as the inputs tal. It internally runs the (honest) programs of
P, ..., Py, , as well the honest program for the verifiéfs ..., V;,,, to generated’s view v, The simulation is
perfect.

Also one can show that due to the knowledge soundness aZtRAOK scheme used in Phase Il and Phase V,
if V; accepts the proof in théth right hand session in the simulated viewthen, except with negligible probability,
the Phase IV commitment in that session indeed contains a valid witnésshe statement,. That is, except with
negligible probability,

v (0 =1) = (Rl =1). (1)

Stage 2: ‘H, works just like;, but it also does the PRS look-aheads and records the PRS secrets. It aborts is
the PRS simulation gets stuck. Otherwise it outputs the view of the adversary in the main thread of this simulation
asv®. By Lemma 2.1 we know that the probability of aborting is negligible. Hence, we héve=s »(?) and

ve (0", o ye) =< (0 o) o).

Stage 3: H3 works like Ho, except that in all the simulated left hand side sessions, the prover commits tteethe
PRS secreti the Phase IComsy, and follows up with an honest executions@KAOK for this commitment. Since
Comsy is a statistically hiding commitment scheme, aZikAOK is statistical zero knowledge we get?) =¢ v(®)
andvt (", o) ) = (0", o), o).

Stage 4: The heart of the proof is in buildin@g{,, which does not need the left provers’ inputs any more. It

works like Hs, except that in all the simulated left hand side sessions, the prover commits to the all zeros string in
the the Phase I\Compyum, and uses th€omgy commitment as the witness in the the Phase/ MAOK instead of the
witnessesw;. We delay the main part of the proof, which requires the non-malleability property of the commitment
schemeCompyp, and instead state the following claim first.

Claim 2.3. v®) =¢ v andve (b, 0P ye) =c B, ol y0).



Stage 5:Finally we describe the simulator-extract®r First it runsH, to produce a view of the adversary®). Then
it extracts the values[f), for¢ = 1,...,mp. For extracting thus, for each S will consider, as a standalone
adversary4; making a single commitment to an external receiver, and then invokes the extractor with (appropriately
reformatted) view () and A} as the committer which produced this view.

Unfortunately this is complicated by the fact that in the PRS simulafitbnneeds to run look-ahead threads and
rewind before it can run the main thread. Thus a straight-forward constructidjwill require it to be able to rewind
the external receiver. Nevertheless, using the condition that the receiver@orhg, protocol uses no private coins
till the knowledge determining message, we show how the PRS simulation can be continued without having to rewind
the external receiver.

The final output ofS is (v, 81, . .., Bm, ) Whereg, are the values extracted as described above. By the extraction
guarantee, if according ta V; accepted the proof, and in particular accepted the Phase IV commitmery‘BﬁheaE,”
except with negligible probability.

From the above, we get¥) =. v(1), where the former is the view generated $yand the latter is identical to
that of the adversaryl in an actual execution. Further, we haxe b§4) = 1) = (R(xg,a§4)) = 1) except with

negligible probability. This follows from Equation 1, the fact tmbf), agl)) =c (bgl), a?)) as implied by the above,

and the fact that the conditio(rbg) = 1) — (R(.%’g, ag)) = 1) can be efficiently checked.
This completes the proof except for the proof of Claim 2.3. O

2.1.1 Proofof Claim 2.3

This is the most delicate part of the proof, which reduces the concurrent non-malleability of our zero-knowledge
protocol to (non-concurrent) non-malleability of the commitment sch€amey . The goal is to show that in moving

from the hybridH3, which uses the real left hand side witnesses in the simulatidr, iwhich uses the alternate PRS
withesses and commits to all-zeros strings instead of the witnesses, the values committed to by the adversary do no
change adversely. Conceptually the difficulty is in separating the effect of the modifications in the left sessions from
those in the right sessions. The technical difficulties stem from the somewhat intricate nature of PRS simulation which
causes change at some point in the simulation to propagate in subtle ways.

Before proceeding we point out, intuitively, why wle notrequireconcurrentnon-malleability forComyy: all we
require is that, iy, for each right hand session, the commitment made uSingyn continues to be a witness, if it
used to be a witness iH3; we do notrequire that the entire set of committed values remain indistinguishable jointly.

We move fromHs to H4 using a carefully designed series of hybrid simulaﬂ&ga andﬂm. To describe these
hybrids, first we introduce some notation. In the PRS simulation consider numbering (in order) all the occurrences of
the first message (FM) in the Phase ©dmy in the left hand side sessions. Note that in a full PRS execution, due
to the look-aheads, we may have multiple FMs being sent by the same left hand side prover (though only one in each
thread). Further, in the simulation, for anythe left hand prover sending FN& a random variable with support on
all my, provers: this is because in each thread, the advedsargmically schedulege protocol sessions based on the
history of messages in the thread (and its random tape, which we have fixed). We shall denote the index of the left hand
prover sending FMby p(i). We will refer to the instances aZKAOK provided byP,; in threads passing through
FM;, as “belonging” to FM.

We defineHy.» to beHs and letH, be Hy.o, where N is an upperbound on the number of FMs in the PRS
schedule. Fof = 1,..., N, the simulator${;.; andH,., are as follows:

Hin: Exactly like H; 1.2, except that for all theZKAOK belonging to FM, the prover will use the corresponding
PRS secret as the witness (instead of usifg)). If the PRS secret is not available, then the simulator¥ails

ﬁmz Exactly Iikeﬂm, except that in FMthe prover commits to the all-zeros string (insteadup(fi)) and continues
the execution accordingly.

®as it would have already failed



Fori = 1,..., N we define random variableg’V) and {5\"", a{""}"% and (2 and {5{"*, & 1"% anal-
ogous tor™ and {5{", a{} 2 Note that we need to show that®? =. #(V2 andve (5"?, 6", y) =
(Bgsz), &gsz), y¢). We do this via the following sequence:

ﬁ(isl) = ﬁ(i:2) (3)
e 0 a T ) =e (5 ) 4)
-, (521:1)’ &ézzl), yé) = (BEZ:Q)7 dgzﬁ)’yg) (5)

It is not hard to argue that going froM,_1.o to H,.1, the main thread remains statistically indistinguishable. One
subtlety here is that though the PhaseAKAOK remains statistically indistinguishable when the alternate witness is
used, indistinguishability does not hold when multiple threads are considered together. But the only way a thread can
affect subsequent threads is through the availability of the PRS secrets at the right points in the simulation. Then, by the
refinement mentioned after Lemma 2.1, it will hold that the PRS secrets will continue to be available as required except
with negligible probability. Thus each individual thread, and in particular the main thread, continues to be statistically
indistinguishable between the simulationsMy. .. andH,;.;. This in turn implies both equations (2) and (4).

Equation (3) follows from the hiding property &ompn. However to prove equation (5), this is not enough,
because only the right hand side commitments appear in the simulated view and not the committed values themselve:
(which can be distinguishable even when the commitments themselves are indistinguishable). So now we build a
machineM, which will “expose” the incoming left hand side commitment frdfy;) and the outgoing right hand side
commitment tol;. Then we shall use the non-malleability propertyCofnyy to argue that the values committed to
by M, in two experiments — one in whicR,; commits tow,; and another in which to the all-zeros string — are
indistinguishable, and hence so will be the values committéd tlyﬂm andH,..

But the precise argument is more involved, because we need to take into account whether the right hand commit-
ment toV;, occurs before, after or overlapping with FNhich is the first message d@,;)). The most interesting
case is when FiMoccurs in the main thread, before the first message (or more precisely the determining messge) of
the commitment td/; is sent. The key step in buildin®/, is being able to run the main thread of the PRS simulation
in M, andH,.o without having to rewind the external receiver or the committer. We show that given the way we
have defined the ordering on the FMs and the hyb]:'(gl,§ andH;.o, M, can run the part of the main thread after FM
without running any further look-ahead threads.

Once we buildM, it is routine to show that the non-malleability condition Gomyy implies equation (5). [

3 Impossibility result for concurrent non-malleable general functionalities.

In this section we sketch our negative result, showing thatiihgossibleto extend our result for zero knowledge to

every functionality. We’ll only sketch the proofs in this section, and refer the reader to Appendix B for the full details.
We need to show that there is some polynomial-time func#Qrsuch that for every protocol implementicf,

there’s a concurrent attack that can be carried in the real model and cannot be carried in the ideal mode, even in the

case where all honest parties’ inputs are chosen according to some (correlated) distribution and fixed in advance. Oul

functionF will take two inputs and have one output. We call the party supplying the first inpsetiderand the party

supplying the second input tlieceiver By our convention only the receiver gets the output of the combination. We’'ll

defineF to be a combination of the zero knowledge and the oblivious transfer (OT) functionalities (an equivalent way

to state our results is that there are no pairs of protocols for zero knowledge and OT that compose with another). More

formally, let f : {0,1}* — {0,1}* be a one-way function (whereis some security parameter) anrg be theNP-

relation{(z,w) : w = f(z)}. WeletFzx (zow,z) = 1if (x,w) € Rand zero otherwise. We |§or(z10x2,b) = x3

wherex, 2o € {0,1}* (that is, we use the variant of OT known @s) string OT). The functionalitys will simply be

a combination ofF zx and For. That is, we'll have an forF additional input bit specified by each party, and if both



parties use zero for this bff will apply Fzx on the rest of the inputs, if both use afewill apply For, and otherwise
(if they don’t agree on this bitF will output L.
Our main theorem of this section is the following

Theorem 3.1. Assume thaf is a one-way function and Ie&f be defined as above.LBtbe any polynomial-time two
party protocol that compute$ if both parties are honest. Then, there’s a polynomia) such that for any there
exists distributionD on 2t = ¢(k) inputs forII, a concurrent scheduling of ¢ executions ofI, a polynomial-time
adversaryA, and a polynomial functioBECRETthat maps the inputs intf0, 1}*.

¢ In a concurrent execution a@fcopies oflT according to the schedulg with the honest parties and the corrupted
parties receiving inputs chosen from the distributibn the adversaryA outputs the value acfECRETON the
inputs with probabilityl.

e In an ideal model, for any polynomial-time adversatyhat gets access to theopies of the ideal OT function-
ality, with the honest parties’ inputs in these copies coming ffanand A receiving the inputs corresponding
to the corrupted parties) the probability that outputs the value c§ECRETON the inputs is negligible, where
this probability is taken oveb and the coins ofi.

We note that since standalone OT implies the existence of one-way functions (and by Levin’s universal one-way
function, even existence of a particular functifysee Eoco1]), andF subsumes OT, this theorem implies uncondition-
ally that no protocol can realize the functionalityand be self-composable, even when honest-party inputs are from a
fixed distribution.

This is the first result ruling out composable protocols in the plain model for general (possibly non-black-box)
simulation, honest inputs fixed in advance, and without requiring composability also with other arbitrary protocols.
It's somewhat surprising since in many previous settings, (UC-securityspd, bounded composition.[no3a, Paso4],
timing [kLPos], super-polynomial simulationpso4 Bsog) obtaining a composable zero knowledge protocol implied
obtaining a composable protocol for general functionalities.

In fact, there is a natural candidate for such a protocol in the case of oblivious transfer: to transform the Naor-
Pinkas OT protocol§rag to handle malicious adversaries we only need one application of zero-knowledge proofs,
and in that application the receiver proves a statement that is independent of any messages sent to it by the prover (an
hence can be thought of as secret input that is fixed in advance). Thus, one may hope that by combining this protocol
with the zero knowledge argument of Section 2 would yield an implementatign ¢h fact, one can hope that if we
combine Naor-Pinkas OT with our zero knowledge and Yao’s garbled circuit protoesk], we might get a protocol
for computinganydeterministic function assuming that the inputs are fixed in advance, this is because in the execution
of the zero-knowledge proofs required by the compiler for security against malicious adversaries, no party ever needs to
use zero knowledge to prove statements that depend on the messages sent by the other party, and so there’s no adapt
input selection of inputs to the zero knowledge protocol.

However, it turns out this is not the case. The problem in proving the security of this particular protocol is that
when performing the simulation and rewinding the zero-knowledge protocol, we may also rewind other executions
of the OT protocol, which is problematic in the case of an honest sender (as the security of the OT requires that the
receiver will only learn one of the sender’s inputs). Indeed, by the results of Lindelt], no black-boxsimulator can
work in this case. Nonetheless, the fact that the straightforward black-box simulation does not work, does not mean
that there’s no other more clever simulation to prove the security of this protocol. The results of this section will rule
out this possibility as well.

3.1 Proof sketch of Theorem 3.1
The proof of Theorem 3.1 proceeds in two stages:

First stage. First, (as warm-up) we prove that for every protofig}y for the zero knowledge functionality (for the
relation Ry above), there exists an ideal two-party deterministic funcfigr(that depends on the protoddl; ) such
that a single instance @f 7 i executed concurrently with several ideal calls to copieBpivill not be secure. (In the



same sense as Theorem B.1, that for inputs chosen from some distribution and fixed in advance, an adversary can leat
a secret that she cannot learilif ;- was replaced with the ideal zero knowledge functionality.)

We note that iff1; were allowed to be eeactivefunctionality or use adaptively chosen inputs, then this would be
the same setting as the results for impossibility of protocols that are secure under general composition or the “choser
protocol attack”. That is, the results afjozs] (and in fact implicitly earlier works such as4no1, crFo1, ckL03, Ksw97])
imply that for every zero knowledge protocHhl;x, we can find gorotocol P (depending ol k) such that the
concurrent execution dil zx and P is insecure in the above sense. In fact, the proof for this is quite simple— think of
the following scenario:

1 Alice and David are honest, Bob and Charlie are malicious and coordinate. Aw&ygublic and Alice and
David sharew such thatr = f(w).

2 Alice proves to Bob usinfl 7 i that she knowsw.

3 Charlie and David interact using the following proto¢talthe protocolP tells David that if Charlie manages to
run protocolll ;- as the prover showing knowledgeof then David should send to Charlie®

4 Clearly, ifII;x and P are executed concurrently in this scenario than the malicious Bob and Charlie can learn
w, even though they would not have been able to leaiif I1; ;- was replaced with an ideal call to tkfe;
functionality.

Our main tool in transforming® into a non-interactive functionalityy; is to use Message Authentication Codes
(MACs) to force the adversary to make callsAg in a certain order, imitating an interactive protocol. Thus, instead of
having one execution of the protocBl we’ll have ¢ executions of a non-reactive functidfy (wherel is the number
of prover messages iz k). The sender ofy; will have as input a secret MAC key, randomness for the protétol
above, and the secret inpuwt If the receiver’s input is a partial transcripbf P (with the last message being David’s)
with a valid tag orp, and an additional messageof Charlie’s, thenFy; will compute David’s next message’ on the
transcriptp o m, and will output the transcrigto m o m’ and a tag on this message. One can see that getting access to
ideal calls forF is not more (and not less) helpful than interacting with

Second stage. The reason we're not finished is not just becafigds a “less natural” functionality thaf, but also
— and more importantly — because the functigncan (and will) depend ol x in its definition, its complexity and
its input size. To get the negative result that we want, we need to go further and exhibit a functingycannot
be implemented by anM.

The second conceptual stage is to take this scenario of the pralggeland functionalityf1; and compile this
into a scenario where the only thing executed in the network is one copy of a zero knowledge protocol and many copies
of an OT protocol, with the honest parties’ inputs for these copies chosen from a set of predefined distributions. We
then argue that the previous real-world attack remains viable in this scenario and (more subtly) that it is still infeasible
to perform this attack if all these copies were replaced by ideal calls to the OT/ZK functionalities. /Siisca
combination of these functionalities, the result follows.

For this stage we’'ll use a variant of Yao’s garbled circuit techniquesg]. Note that unlike its typical usage, we
use here this technique to genegativeresult (this is somewhat similar to what was donesiaif 01]'s hegative results
for software obfuscation).

The overall idea is as follows: We'll set up a situation -boththe ideal and real worlds — which could potentially
allow for the evaluation of any function, using a variant of the garbled circuit technique and ideal calls to an OT
functionality. But, we’ll set up the honest party inputs in such a way that the only functions that can be evaluated
mimic the functionalityF; described above. So here, the only functionalities are the ZK and OT functionalities, but
the predetermined honest party inputs depend on the specific protggolThen, in the real world, the adversary will
always be able to win, whereas in the ideal world (wHégg, is not being executed), the adversary cannot win. The
garbled circuits will not be sent out by any party (as we're not allowed to do anything on the network except run the
protocol forF, and honest parties are not allowed to adaptively choose their inputs) but rather will be supplied to both
parties as a correlated input. See Appendix B for more details on how this step is implemented.

The notations above assume tlfds one-to-one, but this makes no difference in the proof.
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Conclusions

In this paper, we show how to construct the first concurrent non-malleable zero-knowledge protocol, assuming only that
regular one-way functions exist. We also provide a new impossibility result regarding general functionalities, which
together with [in03s, Lin04], gives us a better idea of where the border is between what is and is not possible in the
plain model. An unfortunate consequence of the impossibility results is that we must move to alternative definitions
of security for general functionalities if we want to obtain composable protocols for broader classes of functionality
in the setting where there are no trusted parties or setup. One such definition was propesed, ibyf allowing
super-polynomial time simulation. The main limitation of this definitional framework concerns functionalities whose
definitionsinvolve cryptographic primitives (or otherwise rely on computational complexity assumptions to be mean-
ingful). For such functionalities, building on our techniques, one could hope to define and achieve security in a setting
that a polynomial-time simulator is given extra powers, such as limited rewinding of the ideal model. (Of course, when
relaxing security care must be taken that the definition still provides meaningful security guarantees for applications.)
In fact, one may hope for a general clean definition that would provide the best of all worlds: for functionalities such as
zero-knowledge provide full self composition, for functionalities where this is not possible provide some relaxed no-
tions of security, and perhaps for functionalities that take as extra inputs a common reference string or input for a hard
problem provide UC security or quasi-polynomial security. That is, there is hope for a clean meta-theorem from which
one could derive results such &g $so2 Bsog and our current result by just plugging in the appropriate functionality.
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A Details: A concurrent non-malleable zero knowledge protocol

Definition A.1. A protocol is a Concurrent Non-Malleable Zero Knowledge (CNMZK) argument of knowledge for
membership in alNP languagel with witness relationR? (that is,y € L iff there existsw such thatR(y, w) = 1), if
it is an interactive proof system between a prover and a verifier such that

Completeness:if both the prover and the verifier are honest, then for eyery) such thatR(y, w) = 1, the verifier
will accept the proof, and

Soundness, Zero-Knowledge and Non-Malleability:for every (non-uniform PPT) adversa#yinteracting with provers
Py, ..., Py, inmy “left sessions” and verifier¥, ..., V,,, in mpg “right sessions” of the protocol (witt!
controlling the scheduling of all the sessions), there exists a simufasoich that for every set of “left inputs”
Yly- s Ymy We haveS(y1, ..., ym,) = (, 21, ..., Zmy), Such that

1 v is a simulated view of4: i.e., v is distributed indistinguishably from the view of (for any set of
witnesseswy, . .., wy,, ) thatPy, ..., P,,, are provided with).

2 Foralli € {1,...,mpg}, ifin thei-th right hand side session inthe common input is; and the verifiei/;
accepts the proof, then is a valid witness to the membershipxgfin the language, except with negligible
probability (z; = L if V; does not accept.)

Further, we call the protocol a black-box CNMZK if there exists a universal simufigsuch that for any adversary
A, itis the case tha§ = Sg}, satisfies the above requirements.

Note that the second condition reduces to regular (stand-alone) zero knowledge property whehandmpg =
0, and reduces to regular (stand-alone) soundness propertymhen 0 andmpg = 1. Furthermore, this condition
reduces to concurrent zero knowledgei$og rRk99] when m; = poly andmp = 0; it reduces to basic (“non-
concurrent”) non-malleabilitydpnei] whenmyp = mp = 1.

This definition resembles the notion of simulation-extractablity usedrns}] for concurrent non-malleable com-
mitments.

A.1 UC-like definition of CNMZK

We can also write this definition in the language of the UC-framework, to further illustrate the level of security and
composition it gives. We do not get into the details of modeling the Network, but instead keep our description at an
informal level. For more details of modeling se®myos, Pra05).

The functionality in question is%, the natural zero-knowledge functionality for membershig.init accepts a
pair (y, w) from P and sends$y, R(y,w)) to V', which it outputs.

The nature of the security is essentially described by the kind of environments allowed in the security definition.
We call a PPT environment a “CNM environment” if it behaves as follows:

e It interacts arbitrarily with the adversary, and selects many pairs of p&#ids). For each paiZ picks (y, w)
such thatR(y, w) = 1, and handg to both P andV, andw to P.

e Then it initiates each pair to interact with an instancé . After this point the environment does not send any
messages to the adversary.

e Finally Z outputs a bit.

Note that since there will be no automatic compaosition theorem available, the environment already invokes multiple
instances of the functionality. Also note that there are no other protocols or functionalities being invoked, emphasising
the fact as we are dealing only with self-compaosition.

In the “ideal” execution, when initiated with input, the parties interact \#ifh. In the “real” execution the parties
use the protocol in question. All scheduling is controlled adversarially.
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Then the definition of security is that there exists a simul&sy such that for all adversarie4 andany CNM
environmentz, the output ofZ in the real execution is indistinguishable from that in the ideal execution.

A.2 Result from [Prso]
We adapt the main argument fromrjso] for use in our protocol. Consider the following protocol segment:

1 PRS Commitment: The verifier picks a (sufficiently long) random string and prepares - ¢(k) (wheret(k)
is anyw(log k) function) pairs of secret sharé&%,a}j) for1 <i <k, 1< j < t(k)such that for all(, j)
we haveny); © oj; = o. Then it commits tar and(a), aj;); using a statistically binding commitment scheme

150 g
CompRs.

2 PRS Challenge-ResponseThis is followed byt (k) rounds of randonk-bit challenges by the prover. In re-
sponse, for each, j), if the i-th bit in thej-th challenge-;; = b then the verifier opens the commitmenbt@
in that round.

3 The prover considers the preamble to have “concluded.”

4 PRS Opening: The verifier opens all the commitments made in the PRS Commitment step, and the prover
verifies consistency.

5 The prover “accepts” the preamble.

There can be other messages in between, as long as the chatigrayeicked randomly independent of previous
messages. In particular, as in our case, there can be messages in the protocol between the prover concluding th
preamble and the verifier opening the commitments.

The PRS simulator (for our purposes) is the following program which “simulates” multiple (polynomially many in
the security parameter) concurrent sessions of the protocol between honest provers and a combined adversarial verifie
Aprs The simulator gets inputs of all the parties in all the sessions, and it runs the honest provers and the adversarial
verifier internally’ In the end it produces an ordered list of “threads of execution.” A thread of execution consists of
views® of all the parties, such that the following hold.

e Each thread of execution is a perfect simulation of a prefix of an actual execution.

e The last thread, called thmain thread is a perfect simulation of a complete execution (i.e., until all the parties
terminate); all other threads are calledk-ahead threads

e Each thread shares a (possibly empty) prefix with the previous thread, and is derived by running the honest
parties with fresh randomness after that point.

The aim of the PRS simulator is, for each PRS commitment that it comes across in any session in any thread, to
extract the committed value (referred to as the “PRS secret”) before the preambt®igludedn that thread. The
extraction is achieved by observing the adversary’s messages in multiple previous threads. If it fails to extract the PRS
secret in any session in a threaahdthe execution goes on &cceptthe preamble of that session in that thread, then
the simulation is said to “get stuck."PRsoj guarantees that the probability of the PRS simulation getting stuck is
negligible.

"Note that the “simulator” as described here is given all the inputs to all the parties. Later, after introducing this simulator into the sequence
of hybrids in our proof, we shall show how to get rid of these inputs.

8Here, and elsewhere, by the view of a party we mean the sequence of its internal states during the execution, including the messages receive
and sent by it.
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Lemma A.2. (Adapted from prsod) Consider proversPy, ..., P, and an adversarial verifiedprsrunningm ses-

sions of a protocol with the PRS preamble as described above, wh&eny polynomial in the security parameter

k. Then except with negligible probability, in every thread of execution output by the PRS simulator, if the simulation
reaches a point where the prové¥ accepts the PRS preamble withas the secret in the preamble, then at the point
when the preamble was concluded, the simulator would have already recorded the Value

In fact [PrRsog prove a further refinement of this lemma (that we will need): instead of the simulator running each
thread exactly as in the original execution, if each thread (individually) is executed in an indistinguisha®fethveay,
lemma still holds (This is what allow®kso] to show that indistinguishable simulation is possible.). It is important
that here we require the indistinguishability requirement only perathreadbasis. In particular the joint distribution
of the threads in the latter simulation is allowed to be distinguishable from the joint distribution of the threads in the
original simulation.

We shall adapt the PRS simulator to our setting in which an adver$asyengaged in concurrent left hand side
sessions as the verifier, while concurrently playing the prover in multiple right hand sessions. We could build a pre-
liminary simulator (which is provided with inputs of all the parties) for this situation by considering all the right hand
verifiers also as part of an adversafyrs before invoking the PRS simulator. However there is a minor technicality
that needs to be taken into account. #r$od, since the adversary is arbitrary, it may very well be assumed to read
its entire random tape up front. Thus in all the threads (all of which may share a common non-empty prefix) the PRS
simulator in prsog uses the same random tape for the adversary. But it is easy to see that the analmssin [
works even with probabilistic adversaries which do not read their entire random tapes initially, and in that case the
PRS simulator can use fresh randomness for the unread parts of the random tape when simulating a new thread. Thi
is important for us because in our simulation we will need to use fresh randomness for the right hand side verifiers in
different threads (except during the shared prefixes). So in our use of the PRS simulator only the random tape of the
original (arbitrary) adversary is fixed across all the threads while the resipirs(i.€., the right hand side verifiers)
is given fresh randomness in different threads.

Another equivalent (and in some sense a more natural) way to formulate this is to consider the right hand side
verifiers as part of the honest party and, as in the original PRS simulator, to fix the random tape of the adversary across
all threads. Later in our proof, we will have chance to refer to this formulation.

A.3 Non-Malleable Commitment

The other ingredient we need is a statistically binding non-malleable commitment (not necessarily concurrent non-
malleable) with an “extractability” property. More precisely, we require an interactive commitment prQiaeqhy,
between a “sender” (whose input it wants to commit to) and a “receiver” (with no input) satisfying the following
properties.

1 Statistical Binding: The protocol has a determining message from the sender to the receiver (typically the first
message from the sender) which is the first message containing information about the value to be committed. If
either the sender or the receiver is honest, the determining message is information theoretically binding except
with negligible probability.

For clarity in presentation we shall require that the first message in the protocol is itself the determining message.
(However see Section A.5.2.)

2 (Non-concurrent) Non-Malleability: Consider the following two experiments in which an adverserpartic-
ipates in one “left session” of the protocol as the receiver, and in one “right session” as the d¢ngieks a

®Unlike in [PRS03, in our preamble, the PRS commitment is statistically binding. So, except with negligible probabiftyadfcepts the
preamble, there is a well-defined valwén the PRS commitment, and it is this value that the prover accepted as the secret in the preamble. We
point out that our case is slightly simpler than the original analysie 502 in that we are interested in arguments (not proofs), and hence the
commitment by the verifier can be statistically binding.

991 our applications, it is enough if this holds when the indistinguishability is statistical; but in fact this refinement holds even if the indistin-
guishability is only computational. Indeed iRRS02 the argument is used for computationally indistinguishable executions.
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valuew and gives it to the left sendét. In the first experimenP commits tow while in the second experiment
it commits to the all-zeroes string. We define the value of the experiment a$, wherer is the output ofA/
andq is the value in the determining message of the right-hand-side commitment. (\le=say if there was
no determining message or if it did not uniguely determine the committed value).

The non-malleability property is that the values of the two experiments are distributed computationally indistin-
guishably.

For the sake of convenience we state the hiding property explicitly, though it is implied by the non-malleability
property. The two experiments are defined as before, exceptthites not participate in a right hand execution.
Instead, after receiving the commitment frdfg M produces an output, which is the value of the experiment.
Then the hiding property requires that the values of the two experiments are computationally indistinguishably
distributed.

3 (Stand-alone) Extractability: The extractability requirement is that there is an efficient extractor such that given
an adversary and its view from a random execution of the protocol with an honest receiver, then, except with
negligible probability — the probability being over the coins of the adversary and the verifier in the view, as well
as that of the extractor, if it is randomized — the extractor outputs the value in the commitment, if according to
the view the receiver accepts the commitment.

In fact, we require a slight extension to this by requiring that the extraction can work on a prefix of the protocol
where the verifier is public-coin. More formally, there is a message from the sender in the protocol called the
“knowledge-determining message” (KDM), such that given an adversary and its view during a random execution
of the protocol till (and including) the KDM, the extractor will output the committed value, if according to the
view the verifier was still accepting (i.e., it did not abort). We require that prior to receiving the KDM the receiver
does not have any private coins.

A.3.1 Available Non-Malleable Commitment Protocols

For simplicity, first we consider a model in which all parties have distinct identitiemd all communication is over
authenticated channels.

Pass-Rosen Commitment: The commitment protocol irPRoz] is as follows: first the sender commits to its input
usingany statistically binding commitment scheme; then it gives a proof of knowledge of the input and randomness
used in this commitment using a non-malleable ZK proteeoZK;p, wherel D is the identity of the prover.

Though proz] states their definition without an extraction requirement, in their proof they show how to do ex-
traction as well. But in fact we observe that another simple extractor (so that the protocol is clearly public coin until
the knowledge-determining message) can be derived by replacing the first message in their protocol — namely the the
statistically binding commitment — by anteractivestatistically binding commitment, which consists of a regular non-
interactive statistically binding commitment (which can be based on any 1-1 one-way function) followed by a ZK proof
of knowledge that it knows the contents of the commitment. Using a ZKPOK of super-constant rounds we can obtain
a deterministic polynomial time extractor. This can be done, for instance, by havifiggt)-round sequential copies
of the basic Hamiltonicity protocobBLusg7]. (see e.g. ¢oLo1]).

DDN Commitment:  Surprisingly, though we are in a concurrent setting, our requirement of non-malleability on the
commitment schem€omyyy is in the plain non-malleability setting (i.e., one execution each on the left hand and
right hand sides). We show that the original non-malleable commitment scheme by Dolev, Dwork andoivaay [

1This assumption can be removed (as originally donedinN91]) by letting the honest parties pick a (signing key, verfication key)-pair
for a signature scheme, and having the transcript of the entire protocol signed using this key (only the provers need to sign). Then the one
case excepted from the definition of non-malleability is whnopies an entire left execution as a right execution, by playing a router for the
messages.
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satisfies our requirements, when the initial (statistically binding, non-interactive) commitment phase of their protocol
is augmented to have a ZKPOK, as above. As we mentioned above this modification takes care of the extraction
requirement, while retaining the non-malleability property proven there.

Next we claim that the non-malleability property of the DDN protocol implies the non-malleability property that
we require. First wadaptthe definition from ponoz] as follows:

Definition A.3. (DDN Non-Malleable Commitment. Adapted from [ppno1].) A statistically binding commitment
protocol is said to be DDN-non-malleable if for every (non-uniform PPT) adverdapy, there exists a simulator
Sppn such that for all (non-uniform) PPT machinBsthat take three inputs and outputs a single bit, the outputs of the
following two experiments are indistinguishable from each other.

Experiment 1: Appy first outputs a stringv. Thena is set to bew or the all-zeros string, chosen unifromly at
random. An honest sendét commits toa to . A. Meanwhile Appn commits to some string: to an honest receiver
V. (« is well-defined, possibly a$, because the commitment is statistically binding). Also at the gralitputs a
plain-textr. The output of the experiment®(a, a, 7).

Experiment 2:  Sppy outputs a stringv anda is set to baw or the all-zeros string, chosen unifromly at random. Then
Sppn commits to some string to an honest receivéf and outputs a plain-texppn. The output of the experiment is
R(a, o, ToDN)-

Here we have simplified the DDN definition by replacing a general distribution by a uniform distribution over a
string w and the all-zeros string. Without loss of generality we assumeuthiatchosen deterministically (but non-
uniformly). Also, we have slightly strengthened the definition to include a plain-text ouymaiduced by the adversary
as input toR. To see that the protocol impn91] does satisfy this strengthened requirement, note that the proof there
first uses a “knowledge extractor” to extragtwhich could be modified to outpdt, «) instead.

Now suppose a commitment protocol did not satisfy the non-malleability we require. Then, there is an adversary
A who gives a valuev, accepts a commitment on the left to eitheor the all-zero string, and makes a commitment
on the right to computationally distinguishable values on the right, and outputs a-stiirgg the value committed to
on the right bev,, anday. We have a PPT distinguish&rwhich outputs a single bit such thBt(r, cw,) Zc D(7, ap).

In other words,|m,, — | is not negligible, wherer,, and r stand forPr[D(7, aw,) = 1] andPr[D(1, ) = 1]
respectively. Note that this can be true onlyiis not the all-zeros string. Now defingppn to be the same a4, but
with ppn = (7, w). Define

D(a,T) ifa=w

1—D(a,7) otherwise.

R(a,a, (t,w)) = {

Then the probability of the output of the first experiment being 4 (8., + (1 — m)) = 3 + (7w — 7o), Where as
the probability of the second experiment being %i&incea = w Wwith probability%; here we use the fact that is
not the all-zeros string). Sinde,, — | is not negligible, the outputs of the two experiments are not indistinguishable.
Hence we conclude that if the protocol is not non-malleabile in the form we require, then it is not DDN-non-malleable
either.
A.4 Other Ingredients
The other ingredients we use are
1 A statistically (or perfectly) hiding commitment sche@emsy.

2 A statistical (or perfect) ZK argument of knowledg&KAOK, for proving knowledge of witness for membership
in any NP language.
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The statistically hiding commitment scheiemsy can be achieved in a constant-round protocol using collision-
resistant hash functions or claw-free permutations or, at the expense of liangounds, using one-way permuta-
tions [Novy92] (see also Section 4.8 ofLo1]), and even using only regular one-way functions by the recent result of
Haitneret al[HHK*05]. Given such a commitment scheme, we g@KAOK as required with a factav(log k) blow
up in the number of rounds, in same manner as our construction of a ZKPOK aboveyUsigg) sequential copies
of the Hamiltonicity protocol, but where the prover’s commitments in the Hamiltonicity protocol are made using the
statistically hiding commitment scheni®msy. ThissZKAOK enjoys a strict polynomial-time extraction procedure
with negligible probability of failure.

We note that all our ingredients are realizable under the assumption that regular one-way functions exist (and in
particular under the assumptions that one-to-one one-way functions exist).

A.5 Our Protocol

Consider arNP-complete languagé with a witness relationshif. The prover and verifier receive a common input
y and the prover receives a witnessuch thatR(y, w) = 1. The protocolCNMZK is described below.

Phase I: PRS preamble from Section A.2 up to the point where the promecludeshe preamble.

Phase II: Prover commits to the all-zero string usiG@msy. Then it usesZKAOK to prove the knowledge of the
randomness and inputs to this executiorCofngy.

Phase lll: Continue the PRS preamble until the prover accepts the preamble. Let the secret in the preamble (as
revealed by the verifier) be.

Phase IV: Prover commits to the witness usingCompp.
Phase V: Prover proves the following statement use@dk AOK: either

e the value committed to in Phase IVissuch thatR(y, w) = 1, or
e the value committed to in Phase llds

It uses the witness corresponding to the first part of the statement.

Theorem A.4. Protocol CNMZK is a black-box concurrent non-malleable zero knowledge argument for membership
in the NP languageL (Defintion A.1).

Proof. It is easy to see that the protocol satisifies the completeness condition. Below we shall build a simulator-
extractor, which outputs a simulated view of the adversary’s view along with witnesses for all the successful right hand
side proofs in the simulated view, as required by the second condition in Defintion A.1.

We build the simulatos in stages, via intermediate simulat@is, fori = 1,...,4. H,; outputs a simulated view
V(. (S will in addition output a list of witnesses.) We defide:; random variablegb!”, aﬁ,i) e, wherebg) is a
bit denoting whether according 16", V;, accepted the proof from the adversary or not, aﬁais the value contained
in the Phase IV commitmeriiomy received by, (as determined by the determining message,; if there is no unique
value, then it is defined to he).

Stage 1:'H; gets all the inputs td”, ..., P,,, as well as the inputs tal. It internally runs the (honest) programs of
Py, ..., P,,, as well the honest program for the verifiéfs . .., V;, ., to generated’s view v, The simulation is
perfect.

Also one can show that due to the knowledge soundness eZHKBOK scheme used in Phase Il and Phase V, if
Vy accepts the proof in théth right hand session in the simulated viewthen, except with negligible probability, the
Phase IV commitment (which is statistically binding) in that session indeed contains a valid witt@#se statement
xy. (This follows from a hybrid argument for the  right hand side sessions.) This is stated in the claim below; a
detailed proof follows.
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Claim A.5.
v (1) =1) = (R@na)=1) (6)
except with negligible probability.

Proof. Fix ¢ € {1,...,mg}. First, from’H;, construct a standalone provE# which interacts withl; alone. This
is done by including everything simulated B#; exceptV;, as part ofP*, so that an interaction a?* with an honest
verifier V, is identical to the execution df/;. We need to argue that if, accepts the proof by*, then except with
negligible probability, the Phase IV commitment madefbyis a valid withess, to the statement,. Now we consider
the following experiment. Engage* in an execution with an honest verifigf which uses a random PRS secret
Then, if V;, accepts the proof fron®?* build two standalone prover8; and P; as follows. P;" is a copy ofP* at the
point where it began the/ KAOK in Phase II.P; is a copy ofP* at the point where it began ts8KAOK in Phase V.
Now run the extractor fasZKAOK on P;" andP;. First we observe that from the hiding property@impgs it follows
that the probability of the extractor oy returning (an opening or explanation ©msy as a commitment toy is
negligible. Secondly we observe that the computational bindir@pefsy implies that the probability of extractor on
Py returning an opening to something other tlwaandthe extractor orP; returning an opening to is negligible: this
is because, otherwise we obtain two different ways to dpsnsy. Finally by the knowledge extractability propert of
sZKAOK we observe that the probability df{ accepting andp;" not returning some opening @bmsy is negligible;
also that ofP; returning neither an opening Qomsy to o nor an opening of the Phase Bbmyy commitment to a
valid witness forz, is negligible. Together these imply that the probabilitpfaccepting the proof and the Phase IV
Compm being not to a valid witness far, is negligible. O

Stage 2:H, works just likeH1, but it also does the PRS look-aheads and records the PRS secrets. If the simulation
reaches a point where a provéraccepts the PRS preamble wittas the secret in the preamble, and at the point when
the preamble was concluded, the simulator had not recorded the evathe simulator aborts. Otherwise it outputs

the view of the adversary in the main thread of this simulation®s If the simulator did not check for the aborting
condition, the view generated is identically distributed as in the simulatioi pyBy Lemma A.2 we know that the
probability of aborting is negligible. Hence, we have

s =,
ve 00,0l ye) = 07, ol ).

Stage 3: H3 works like Hs, except that in all the simulated left hand side sessions, the prover commits tteethe
PRS secrets the Phase IComsy, and follows up with an honest executions@@KAOK for this commitment. Since
Comgy is a statistically hiding commitment scheme, a@¢KAOK is statistical zero knowledge we get

v = 1,6
ve 0, alP g = 08V, ol y).
Stage 4:H4 works like Hs, except that in all the simulated left hand side sessions, the prover
e commits to the all zeros string in the the Phasebimym, and

e uses th&Comsy commitment as the witness in the the Phas&Z MAOK instead of the witnessesy.

Claim A.6.

3) 4)

v = 1l

ve (bég)» O‘é3)ayﬁ) =c (b§4), 04§4)’y£)-
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Herev(®) and{bf), ay‘) 1 are defined analogously to the casé-f. We shall prove this claim shortly, using a
carefully designed series of hybrids. It is in this part of the proof that we shall require the non-malleability property of
the commitment schem@mpp.

Stage 5:Finally we describe the simulator-extract®r First it runsH, to produce a view of the adversanf®). Then
it extracts the value&f), fore=1,...,mpg.

For this we take the view that in the PRS simulator all the honest parties incliidiage considered part of the
prover. Then, for each S will consider’H, as a standalone adversa#y making a single commitment to a receiver.
The adversaryd; will contain the adversary and all of the honest parties simulated hyexcept the part of; in the
main thread which receives the Phase IV commitntemin . Aj terminates execution after sending the knowledge-
determining message (KDM) to the external verifier.

Note that some of the PRS look-ahead threads simulatéd,byill share a prefix with the main thread. Thus the
interaction ofA; with the external receiver (which forms part of the main thread) may define parts of these look-ahead
threads as well. If the KDM td/ in the main thread does not occur in the shared prefix with a look-ahead thread,
then 4 would have created this thread before reaching the KDM. Hetjcalso needs to create this thread before
terminating. For simulating such a look-ahead thread which shares some prefix with the interaction with the external
receiver,A; should be able to internallgontinuea prefix of the interaction with an external receiver where the prefix
does not extend to the KDM. This is possible because of our requirement that prior to the KDM the recévref i
does not use any private coins. So at the pgipheeds to continue this prefix as a look-ahead, there is no secret state
of the receiver that it needs to know. It simply continues the look-ahead thread using fresh coins for the verifier. Thus
Aj is indeed well-defined.

S constructs the view ofd; (by having kept track of the internals in the run7gf;) and invokes the extractor for
Comnwm, With A7 and this view. The final output & is (v, 31, ..., By ) Where, are the extracted values. By the
extraction guarantee, if according #9 V; accepted the proof, and in particular accepted the Phase IV commitment,
theng, = a§4) except with negligible probability.

Note that from above displayed relation$?) =. (1), where the former is the view generated$ywnd the latter
is identical to that of the adversai/in an actual execution. Further, we have

Ve (b§4):1> — (R(xg,ag‘*)):l)

except with negligible probability. This follows from Equation 6, the fact lﬂ‘b&),af‘)) =c (bgl),aél)) as implied
by the above displayed relations, and the fact that the conc@@h: 1> = (R(l‘g, aé')) = 1) can be efficiently

checked.
This completes the proof except for the proof of Claim A.6. O

A.5.1 Proof of Claim A.6

This is the most delicate part of the proof, which reduces the concurrent non-malleability of our zero-knowledge
protocol to (hon-concurrent) non-malleability of the commitment sch€amey . The goal is to show that in moving
from the hybridH3, which uses the real left hand side witnesses in the simulatid, twhich uses the alternate PRS
witnesses and commits to all-zeros strings instead of the witnesses, the values committed to by the adversary do no
change adversely. Conceptually the difficulty is in separating the effect of the modifications in the left sessions from
those in the right sessions. The technical difficulties stem from the somewhat intricate nature of PRS simulation which
causes change at some point in the simulation to propagate in subtle ways.

Before proceeding we point out that why we notrequireconcurrentnon-malleability forComyyy is, intuitively,
because all we require is that, Hy,, for each right hand session, the commitment made uSamgy, continues to
be a witness, if it used to be to a witness#fi; we do notrequire that the entire set of committed values remain
indistinguishable jointly.

We move fromH;3 to H4 using a carefully designed series of hybrid simulators. To describe these hybrids, first
we introduce some notation. In the PRS simulation consider numbering (in order) all the occurrences of first message
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(FM) in the Phase IMCompyy in the left hand side sessions. Note that in a full PRS execution, due to the look-aheads,
we may have multiple FMs being sent by the same left hand side prover (though only one in each thread). Further, in
the simulation, for any, the left hand prover sending FN6 a random variable with support on all;, provers: this is
because in each thread, the advershinmyamically schedulgbe protocol sessions based on the history of messages in
the thread (and its random tape, which we have fixed). We shall denote the index of the left hand prover sepding FM
by p(i).

Consider a FM and all threads passing throughiit (i.e., all threads which share a prefix containing this FM). Suppose
this FM belongs to a left hand session with proyer In each of the threads, the session withmay go on to reach
Phase V. We will refer to these instancesBKAOK as “belonging” to this particular FM.

A Look-Ahead Thread

Main Thread

Figure 1: A schematic representation of the threads in a PRS simulation. Here the segment AB represents the first
thread and AZ the last or main thread (highlighted with dotted lines). AB, AC, AD, AE are all look-ahead threads.
Also marked are points where the FMs (first messages of PhaSer{\ from A to the right hand side verifiers)
occurred during this simulation. Note the order in which FMs are numbered.

Now we can describe our intermediate hybrids, andH;... We defineH,.» to beH; and letH, be H y.2, where
N is an upperbound on the number of FMs in the PRS schedile O((mrt(k))?) suffices). Foi = 1,..., N, the
simulatorsH;.; andH;.» are as follows:

ﬁizl: Exactly like 7:(7;_1;2, except that for all theZKAOK belonging to FM, the prover will use the corresponding
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PRS secret as the witness (instead of usipg,). If the PRS secret is not available, then the simulator'fails

Hi.o: Exactly like H;.1, except that in FMthe prover commits to the all-zeros string (insteadvgff;y) and continues
the execution accordingly.

Fori = 1,..., N we define random variablegi) and {5, a\"V}7% and (@2 and{5{"?, a{"*}% analo-
gous tov® and{b{", a{}7"% . Note that we need to show that

1;(02) EC ﬁ(NQ)
ve (00,8 ) = BV, @V ).

We do this via the following sequence:

pi=1:2) = (1) @

(@) = (12) @)

¢ (Z)gi—lﬂ)’ dgi—l 2), yé) = (Egizl)’ déZI) : yg) (9)
veo (0, ye) =c (08, & y) (10)

Proving Equations (2) and (4): These follow from the fact that the Phases¥KAOK remains statistically indis-
tinguishable when the alternate witness is used. However note that in the PRS simulation, indistinguishability does
not hold when multiple threads are considered together. But the only way a thread can affect subsequent threads is
through the availability of the PRS secrets at the right points in the simulation. Recall the refinement mentioned after
Lemma A.2: as the change introduced in each thread is undetectable, it will still hold that the PRS secrets will be
available as required except with negligible probability. Other than the availability of the PRS secret, each thread is in-
dependent of other threads. Thus each individual thread, and in particular the main thread, continues to be statistically
indistinguishable in the simulation B, _1., andH;.;. This in turn implies both equations (2) and (4).

Proving Equations (3) and (5): Equation (3) follows from the hiding property @omyy. To see this we create
a standalone machin® which is identical toH,.1, except that on reaching FNt starts interacting with an external
senderP. First it sendsw,(; to P, and then receives a commitment fradfwhich it uses to interact witt4, instead

of an honest commitment (i) as’H;.; does. However if> makes an honest commitmentitg) ;) then the(M, P)
system is identical td4;.;. However, if P makes a commitment to the all-zeros string, then(the P) system is
identical toH;.». By the hiding property offomyy the output of M must be indistinguishable in the two cases,
establishing equation (3).

However to prove equation (5), this is not enough, because only the right hand side commitments appear in the
simulated view and not the committed values themselves (which can be distinguishable even when the commitments
themselves are indistinguishable). So now we build a machiperhich not only receives the left hand side commit-
ment fromP as before, but also exposes the right hand side commitment in the main thiéadrteen we shall use
the non-malleability property dfomp to argue that the values committed to b are indistinguishable in the two
experiments and hence so will be the values committdd toy?flm andH,..

The precise argument is slightly more involved. Consider generating the pair of random va(ri»élf)llési,g“)

and(b( ) &t 2)) as follows: note thatt;.; and™,., are described identically until FMLet us call this machin@;,
which we run until reaching FM At this point there are three possibilities:

1 Both (b(l 2 aé’ 2 and(l;g’ ), &k 2)) are defined — i.e. théth right-hand-side interaction already terminated
before we reached FMIn th|s case they have identical values.

1235 it would have already failed i
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2 Botha!"" anda" are defined and they have the same vaif8, b\"" andb{" are not yet defined.
3 Allof (5, al"™) and(B"?, a{"*) are undefined.

In the latter two cases we continue the executiorgf and H,.o separately to fully define the random variables.
It is sufficient to argue that the pairs of random variables obtained in these two sub-processes are indistinguishably
distributed.

In the second case this follows from the indistinguishabilitfofmyn. To see this consider a machin initial-
ized to’H;, at the point of FM. It starts off by sendingu,(;) to an external sendef and receives a commitment to
eitherw, ;) or to the all zeros string, and uses this commitment instead of the honest commitment; then it outputs a bit

indicating whethel; accepted the simulated proof or not, along with the committed \Ea,gﬂewhich is provided to

M, non-uniformily (as it was already fixed). Depending on the choice made, lblye output is eithe(rl;g:l), dém)) or

(52“2), dﬁm)). SinceM is a (non-uniform) PPT machine, the hiding propertyfofnyy implies that these two outputs
must be indistinguishable.

In the third case we consider two sub-cases, depending on whetheas Fihe main thread or not. If FMs notin
the main thread, then the statistical difference in the main thread is negligible. This is because, as described in the proo
of equations (2) and (4), the only way previous threads affect the main thread is on account of whether all the requisite
PRS secrets are available on time during the simulation; but, again as pointed out above, the refinement of Lemma A.2
guarantees that the probability of the simulation getting stuck for want of a PRS secret will remain negligible in both
7:(1';1 and'):[i;g.

Dealing with the remaining sub-case, when fapears in the main thread, requires the non-malleability property
of Comynm. Note that at FMthe first message of the right haftidmyy phase withl; has not yet started. Then, like
before, we construct a machiié;, again initialized taH, at the point of FM, which starts off by sending,; to an
external sendeP and receives a commitment to eithel;(i) or to the all zeros string, and uses this commitment instead
of the honest commitment. Howevaf; differs from M, in the following ways:

e It does not run any look-ahead threads. (For instance, in Figure 1,=foit, M, will not run any look-ahead
threads; fori = 6, le will run all the look-ahead threads except AE.) Note that at the poing, kM have that
H; would have recorded the PRS secret for all the left hand side preambles which were already concluded and
could go on to be accepted. As for the preambles which are concluded after the pegjnt thir sessions go
on to reach Phase IZompy, then they will be numbered FMor j > 7. So for those sessiortg;.; and’H,;.o do
not require the PRS secret to execute the thread. So there is no need to run any further look-ahead threads.

e The Comypn commitment tol is “exposed.” That is, the part 8f, which receives th€omyy commitment is
not internalized; insteadl/; expects this to be an outside party.

e For convenience, we will havi/; output a bit indicating whether in the internal simulatigraccepted the proof
or not.

When P chooses to commit to the string sent by, the entire execution, with an honest external receiver for the
exposed commitment is a statistical simulation of the main thread executign;ofand whenP chooses to commit

to the all-zeros string it is a statistical simulation of the main thread executiéty.ef (The only reason for the the
simulations are not perfect is becausé\if}, the negligible probability that the PRS simulation may fail beyond FM

is no longer present, whereas it is preserﬁN{m andﬂizg.) Further, in the first case the output by is Bg“) and in
the Iatteng“Q). Now, the non-malleability condition oGomyy, implies equation (5). O

A.5.2 Relaxing the requirement onComy

We remark that the (natural) requirement we used, that the first message i, be the determining message, can in
fact be removed. This will provide the flexibility of using a protocol based on alternate statistical binding commitment
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schemes (like Naor’'s schemmespsg] in which the first message in the protocol is a random string from the receiver to
the sender, and it is the second message which is the determining message).

Not having the first message as the determining messageg affects our proof at exactly ohegidin:very last
case analysis in the proof of Claim A.6, in constructing the adverdgrywe assumed that it can be initialized to the
point at which FM occurs in the main thread 6;, and only subsequently does it start interacting with the external
receiver, in the exposed session (i@mym session withl;). However, if the first message @omyy, is not the
determining message, the case analyzed should include the possibility that the commitment to be exposed has alread
started before FMoccurs, but has not reached its determining message yet. Then we méfdifybe initialized to
the point where either th€omyn session withl/, starts or where FMoccurs in the main thread, whichever occurs
first. If the former occurs first)/; needs to carry out the execution of the look-ahead threatikit reaches FM.
However since it cannot rewind the external receiver, in the look-ahead threads it must internally simulate the receiver.
This is similar to the situation faced in creating the standalone adversary for extraction in the final stage of building
S. Indeed, the condition we used there, namely that the receiver has no private coin until the knowledge-determining
message, implies that the receiver has no private coins until the point where the simulation reacliescBise it
occurs before the determining message, which in turn occurs before the KDM). Mg carry out the simulation
of the look-ahead threads internally until it reaches;FM

B Details: Impossibility result for concurrent non-malleable general functionalities.

In this section we show that it impossibleo extend the result we achieved for zero knowledge for general functionali-
ties. Specifically, we’ll show that there is some polynomial-time funcgisuch that for every protocol implementing

F, there’s a concurrent attack that can be carried in the real model and cannot be carried in the ideal mode, even in the
case where all honest parties’ inputs are chosen according to some (correlated) distribution and fixed in advance.

The function 7. We repeat here more formally the definition of the functionThe functionF will be a combination
of (f) string oblivious transfer and zero knowledge for a particular language. This is a two-party functionality where
only one party (which we call theeceive) gets any output. Formally, it is defined as follows:

The functionality will be parameterized with a security parameteiLet f : {0,1}" — {0,1}" be a one-way
function, define
1 2= f(uw)

Frzx(wozx,x) = )
7k ) {0 otherwise

Forz,w € {0,1}", and where> denotes concatenation. ThatiAg  is the ideal zero knowledge functionality for the
NP-relationRy = {(z,w) : v = f(w)}.

We defineFor as follows

For(xzooxy,b) = x4

Forzg,z; € {0,1}™ andb € {0, 1}. Thatis,For is the functionality for(f) string oblivious transfer, where the sender
has two strings as inputs), z; € {0,1}", the receiver one bl € {0, 1}, the receiver learns, but notz;_; and the
sender learns nothing abadut

We defineF to be the function that allows to compute bt and For. Formally, it is defined as follows:

Frzr(xow,x) i=i=0
Flioxowozgouxy,i oxob) = For(rgomr,b) i=14 =1
1 otherwiséi # i)

(where_L is a value denoting failure).

BThere is also a notational difference: we defipéd) to be the index of the provesendingFM;. Now, depending on whether RNk from
the committing party or from the receivei(:) will be the index of the prover sendirgg receiving FM, respectively.
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Let IT be a two-party protocol, where we call one party the sender and the other the receiver. We $hy that
computesF if when both parties follow the protocol’s instructions with inpstndr respectively, the receiver outputs
F(s,r). (To simplify notations, we assume that the values used as the security parameter of both the prottcol
and the functionality.) We prove the following theorem:

Theorem B.1. [Theorem 3.1, restated]Assume thais a one-way functiorf and letF be defined as above. LHtbe
any polynomial-time two party protocol computiig Then, there’s a polynomia(-) such that for any: there exists
distribution D on 2t = t(n) inputs forll, a concurrent scheduling of ¢ executions ofl, a polynomial-time adversary
A, and a polynomial functiosecreTthat maps the inputs intf0, 1}".

¢ In a concurrent execution @fcopies ofl according to the schedulg with the honest parties and the corrupted
parties receiving inputs chosen from the distributibn the adversaryd outputs the value cdECRETON the
inputs with probabilityl.

e In an ideal model, for any polynomial-time adversatyhat gets access tocopies of the ideal OT functionality,
with the honest parties’ inputs in these copies coming fldm(and A receiving the inputs corresponding to
the corrupted parties) the probability that outputs the value aECRETON the inputs is negligible, where this
probability is taken oveD and the coins ofi.

As mentioned in Section 3, the proof proceeds in two steps:

1 First prove that for every protocélx for the zero knowledge functionality (for the relatidty above), there
exists an ideal two-party deterministic functidf (that depends on the protodd); i) such that a single instance
of I1;x executed concurrently with several ideal calls to copieBpfvill not be secure. (In the same sense as

Theorem B.1, that for inputs chosen from some distribution and fixed in advance, an adversary can learn a secret

that she cannot learnif z i was replaced with the ideal zero knowledge functionality.)

2 Secondly, take this scenario of the protodgl; and functionalityF; and compile this into a scenario where

the only thing executed in the network is one copy of a zero knowledge protocol and many copies of an OT
protocol, with the honest parties’ inputs for these copies chosen from a set of predefined distributions. We then
argue that the previous real-world attack remains viable in this scenario and (more subtly) that it is still infeasible

to perform this attack if all these copies were replaced by ideal calls to the OT/ZK functionalities./Siaee
combination of these functionalities, the result follows.

B.1 Proof of Theorem B.1: First stage.

We now prove the following lemma (this is the formalization of Iltem 1 from above):

Lemma B.2. Suppose thaf is a one-way function and lgt; be theNP-relation {(z,w) : « = f(w)}. LetIl be a
stand-alone zero-knowledge proof of knowledge for the relaipnvith £ = k(n) prover messages (wheredenotes
both the security parameter and the lengti of the statement being proven). Then, there exists a polynomial-time
functionF = Fi7 : {0,1}*x{0,1}* — {0, 1}*, adistributionD on ({0, 1}*)*+1, a functionsECRET: ({0, 1}*)*+1 —
{0,1}"™ and a polynomial-time adversary such that:

¢ In a concurrent execution scheduled Hyof one copy ofl, with A as verifier, andk ideals calls toF’ with A
providing the second input and receiving the output, if the inputs to the honest partidshosen fromD, then
A learnssecRET(d) with probability one.

e In any execution ok copies of the ideal calls t¢" and a copy of the ideal ZKPOK functionality, with honest
inputsd chosen fromD, a polynomial time adversarg will only outputsSECRETd) with negligible probability.
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Proof. (Sketch) Before proving the lemma, let us recall why there do not exist (in the plain model) protocols for zero-
knowledgell that are secure againsthosen protocol attack_et IT be a standalone zero knowledge protocol. Think

of the following scenario involving four parties Alice,Bob,Charlie, and David: there’s a public vadunel both Alice

and David share a secret valuesuch thatr = f(w). We consider two simultaneous executions: in one execution
Alice will prove to Bob that she knows such a valwausing the ZKPOK protocdll. In the second execution Charlie

and David will run the protocdll’ defined as follows: At first Charlie will prove to David that he knows such a value

w using the protocall.** Then, if this succeeds, David will sendto Charlie.

It's clear that if Bob and Charlie are coordinating a malicious attack, then they can learn thevvahosvever, if
the execution ofl was replaced with an ideal call to the ZKPOK functionality, then the adversary would not be able
to use that call to run a successful internal executiol,aind so will not learn the value. This is basically the proof
that there’s no zero knowledge protoddthat is secure under general composition/chosen protocol attack.

We now want to conveifil’ from a protocol intd: ideal calls to a functionality” which uses inputs that are chosen
from some distribution and fixed in advance. The natural thing is to simply usg tbe next message functiasf
David’s strategy in the protocdl’. That is, the inputs will bev, a stringr that is chosen at random, and on input a
transcriptt = (dy, ¢1,da, co, . . ., d;, ¢;) of Charlie and David’s messages in the firsbunds ofll’, the functionF" will
output David'si + 1** message in this protocol given that his inputishis random coins are and the transcript until
that point wag. If we use thist’ then certainly in a coordinated attack, Bob and Charlie can emulate the attack above
and learn the value. However, it's not at all clear that this is not possible in the ideal world as well— indeldd if
is a black-box zero knowledge proof, given the ability to query the next-message function of David one can certainly
obtain an accepting transcript where David is the verifier.

To make the attack infeasible in the ideal model as well, we add to the inputssaféees message authentication
(MAC) scheme. Now, given such a transcript= (dy, ¢1,ds, ca, . .., d;, ¢;), the functionF will request also a valid
tag/signature (with respect to the keyon the prefix(di, ¢1,da, co, . .., d;), and will output not onlyd;; but also
atag on{(dy,ci,ds, co,...,d;, ci,di+1). It's not hard to see that now, given ontyqueries toF, it's infeasible for a
polynomial-time adversary to obtainwithout essentially interacting witH’ in a straightline manner (i.e., submitting
k queries of increasing and consistent transcripts). Thus, in this ideal world, the soundness/proof of knowledge property
of IT implies that the probability that an adversary outputs negligible. O]

B.2 Proof of Theorem B.1: Second stage.

We'll now finish the the proof of Theorem B.1. As mentioned above, the idea would be to “compile” the scenario of
the first stage into a scenario where the only protocol executed is the oblivious transfer protocol. We do this using a
modification of Yao’s “garbled circuit” method following the intuition given above. We note that we’ll not be using
Lemma B.2 as a black-box but rather will follow the proof of this lemma to prove the theorem.

Yao’s garbled circuit technique. We now sketch Yao’s method. As this method is well known we focus on our
notations and particular conventions. Seeof] (whose notations we follow) for a full description of the method and

its analysis. We'll have two parties,senderand areceiver Letn be a security parameter (we'll ué%) string OT

for strings of lengtten). The sender holds a circuit (where|C| is of some polynomial size, and this size and the
topological structure of the circuit are not secret), and the receiver holds ancinphé goal is for the receiver to learn

C(z) but nothing else about the circuit. For every wirew in the circuit and bitv € {0, 1} we define a valuég,

which is chosen uniformly at random frof0, 1}". The garbled circuit consists of tables that allow you for any gate
(whereg : {0,1} x {0,1} — {0, 1}) that takes input wires;, w, and has one output wires, to computekl 772

from k71 andkg?2. The table is obtained by taking a private-key CPA-secure encryption scheme, and having for each

gateg a table with four rows: for every,, oo € {0, 1} we place the encryption dﬂg"l"”) o 0™ with the keykg! and

141t the protocolll refers to the identities of the parties, we define that when executing this internal cbhyGbfarlie will use the identity
“Alice” and David will use the identity “Bob”. Note that we're free to defifié to depend onl in an arbitrary way.
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then with the key(2 (whereo denotes concatenatiot.

Typically, for every output wirev of the circuit, one also supplies a way to compatéom £J. That is, for the
tables corresponding to output gates, the val(appropriately padded) is encrypted instead of the vafueHowever,
we’ll do something slightly different: we’ll XOR the output with some secret steing {0, 1}™ (wherem denotes
the number of outputs). That is, we’ll encrypt in these tables the valgez,,, wherew is the label of that output
wire. We'll choose the string to beG(s) whereG : {0,1}" — {0,1}" is a pseudorandom generator and chosen
uniformly at random fron{0, 1}".

The Yao protocol. The protocol is typically as follows: the sender sends the garbled circuit over to the receiver, but
keeps to itself the keys corresponding to each of the input wires. Then, by perfarthigxgecutions of stringﬁ) oT
(wherem’ is the number of input wires), for each input witethe receiver chooses to get eitiidr or k., according

to the value in thevt” position of its inputz. We will make the following changes:

1 Instead of sending the garbled circuit to the receiver, we will assume that the garbled circuit is an input that is
given to the receiver. We note that we will always have the receiver as a corrupted party. Thus, we think of the
scenario where there inputs are chosen from a distribution (that is not a product distribution), and these inputs are
given to both the honest parties and corrupted parties. This distribution will provide the honest parties with the
keys for the input wires, and the corrupted parties with the corresponding garbled circuit. Note that this means
that there’s no issue of trust that the circuit is indeed garbled correctly.

2 We'll selectsy, . . ., s, uniformly at random fron{0, 1}" subject to the conditiog; ©se @ - - - D s,y = s (recall
that the “mask” to the outputs is = G(s)). In the OT, for every input wirev, the sender will use as the two
input stringsk? o s,, andkl o s,. The idea is that before concludiad) the copies of the OT corresponding to
this circuit, the receiver will not get any information about the output. On the other hand, we note thatdsy/ |
(see [ro4] for details), once a corrupted party finishes all OT’'s needed to obtain input strings corresponding to
its chosen input, it will learn only the output of”'(z), and nothing more.

Note that this means that the only interaction between the sender and receiver is performiigaoipées of the
OT.

Our compiler. Let IT be a protocol that implements. We can derive fromiI protocolsIl;x andlor for zero-
knowledge (for the relatiori? ¢) and oblivious transfer, respectively, by simply having the sender and receiver choose
the appropriate value af FromIlzg, let F = Fy,, be the function obtained from the proof of Lemma B.2kIf

is the number of prover messages fog -, andm is the length of the input td", we now compile the&: copies of

F from the proof of Lemma B.2 following the procedure above ikta copies of the OT functionality (which is a
subfunctionality ofF) with inputs as above. Consider an execution of one copyf gt (with inputsxz = f(w) for

w chosen at random) concurrently with thése copies ofllp (or equivalently, execution dém + 1 copies oflI)

where the adversary corrupts the receiver in all cases (i.e., the verifier in the zero-knowledge, and the receiver in the
OT). We make the following claims:

¢ In the real world, the adversary can learrwith probability one.

This follows by combining the adversary strategy given in the proof of Lemma B.2 — in which the adversary
needs access toevaluations of the” functionality to learnw — with the Yao protocol — which exactly allows

the adversary to evaluate tl&functionality. Thus, this scenario allows the adversary to obtain the valuigh
probability one.

15The reason for padding with zeros is to make sure that when trying to decrypt with the two keys all rows in the table, the receiver will know
when it found the right row.
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¢ In the ideal world, the adversary can leasronly with negligible probability.

In the ideal world the adversary basically gets one call to the ZK functiond&lity and km calls to the OT
functionality For (with honest parties’ inputs chosen as described above) — note that since both parties must
agree on how to usg, if the adversary tries to usgé; x more than once, afFpor km + 1 times, then this will

result in the adversary getting the output The adversary gains no information (in an information-theoretic
sense) aboub from its one interaction wittf . However, it's more tricky to show that it won't learn anything

from the OT calls.

The adversary has accessita copies of 7o, and we divide these copies to séts.. . ., Sk, where|S;| = m

for all 4, and contains all copies ofor corresponding to a single garbled circuit. From the proof of security

of Yao’s protocol (seeulpo4] for details), we can show that the adversary gets no information (in a complexity-
theoretic sense) about the circuit except for its value on the outputs corresponding to the adversaries choice as «
receiver in the OT executions. Furthermore, because of the secret-shared “mask” we use, before the adversary
queriesall the copies of; she gets no information about the output of itfecircuit. Assume the set$;, ..., S

are ordered according to the timing of the query to the last copy of the OT in eash & can simulate the
adversary by an adversary in the model where all the invocations in tt# aet replaced with one invocation

to the functionalityF’ (the simulator will provide random answers until the last query). However, this is exactly

the model of Lemma B.2 and so, as in that case, the adversary will only:eaith negligible probability.
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