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The divide between frequentists and Bayesians in statistics is one of those
interesting cases where questions of philosophical outlook have actual practical
implications. At the heart of the debate is Bayes’ theorem:

Pr[A|B] = Pr[A ∩B]/Pr[B] .

Both sides agree that it is correct, but they disagree on what the symbols mean.
For frequentists, probabilities refer to the fraction that an event happens over
repeated samples. They think of probability as counting, or an extension of
combinatorics. For Bayesians, probabilities refer to degrees of belief, or, if you
want, the odds that you would place on a bet. They see probability as an
extension of logic.1

A Bayesian is like Sherlock Holmes, trying to use all available evidence to guess
who committed the crime. A frequentist is like the lawmaker who comes up
with the rules how to assign guilt or innocence in future cases, fully accepting
that in some small fraction of the cases the answer will be wrong (e.g., that
a published result will be false despite having statistical significance). The
canonical question for a Bayesian is “what can I infer from the data about the
given question?” while for a frequentist it is “what experiment can I set up to
answer the question?”. Indeed, for a Bayesian probability is about the degrees
of belief in various answers, while for a frequentist probability comes from the
random choices in the experiment design.

If we think of algorithmic analogies, then given the task of finding a large
clique in graphs, a frequentist would want to design a general procedure that
has some assurances of performance on all graphs. A Bayesian would be only
interested in the particular graph he’s given. Indeed, Bayesian procedures
are often exponential in the worst case, since they want to use all available
information, which more often than not will turn out to be computationally
costly. Frequentists on the other hand, have more “creative freedom” in the
choice of which procedure to use, and often would go for simple efficient ones
that still have decent guarantees (think of a general procedure that’s meant to
adjudicate many cases as opposed to deploying Sherlock Holmes for each one).

Given all that discussion, it seems fair to place theoretical computer scientists
squarely in the frequentist camp of statistics. But today I want to discuss what

1As discussed in my previous post, this is somewhat of a caricature of the two camps, and
most practicing statisticians are pragmatic about this and happy to take ideas from either side
as it applies to their particular situation.
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a Bayesian theory of computation could look like. As an example, I will use my
recent paper with Hopkins, Kelner, Kothari, Moitra and Potechin, though my
co authors are in no way responsible to my ramblings here.

Peering into the minds of algorithms.

What is wrong with our current theory of algorithms? One issue that bothers
me as a cryptographer is that we don’t have many ways to give evidence that an
average-case problem is hard beyond saying that “we tried to solve it and we
couldn’t”. We don’t have a web of reductions from one central assumption to
(almost) everything else as we do in worst-case complexity. But this is just a
symptom of a broader lack of understanding.

My hope is to obtain general heuristic methods that, like random models for
the primes in number theory or the replica method in statistical physics, would
allow us to predict the right answer to many questions in complexity, even if
we can’t rigorously prove it. To me such a theory would need to not just focus
on questions such as “compute f(x) from x” but tackle head-on the question of
computational knowledge: how can we model the inferences that computationally
bounded observers can make about the world, even if their beliefs are incorrect
(or at least incomplete). Once you start talking about observers and beliefs, you
find yourself deep in Bayesian territory.

What do I mean by “computational knowledge”? Well, while generally if you
stop an arbitrary C program before it finishes its execution then you get (to
use a technical term) bubkas, there are some algorithms, such as Monte Carlo
Markov Chain, belief propagation, gradient descent, cutting plane, as well as
linear and semidefinite programming hierarchies, that have a certain “knob” to
tune their running time. The more they run, the higher quality their solution
is, but one could try to interpret their intermediate state as saying something
about the knowledge that they accumulated about the solution up to this point.
Even more ambitiously, one could hope that in some cases one of those algorithms
is the best, and hence its intermediate state can be interpreted as saying something
about the knowledge of every computationally bounded observer that has access
to the same information and roughly similar computational resources.

Modeling our knowledge of an unknown clique

To be more concrete, suppose that we are given a graph G on n vertices, and
are told that it has a unique maximum clique of size k = n0.49. Let w ∈ {0, 1}n
denote the characteristic vector of the (unknown to us) clique. We now ask what
is the probability that w17 = 1. This question seems to make no sense. After
all, I did not specify any distribution on the graphs, and even if I did, once G is
given, it completely fixes the vector x and so either w17 = 0 or w17 = 1.
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But if you consider probabilities as encoding beliefs, then it’s quite likely that a
computationally bounded observer is not certain whether 17 is in the clique or
not. After all, finding a maximum clique is a hard computational problem. So if
T is much smaller than the time it takes to solve the k-clique problem (which
is nconst·k as far as we know), then it might make sense for time T observers
to assign a probability between 0 and 1 to this event. Can we come up with a
coherent theory of such probabilities?

Here is one approach. Since we are given no information on G other than that it
has an k-sized clique, it makes sense for us to model our prior knowledge using
the maximum entropy prior of the uniform distribution over k-sized sets. But of
course once we observe the graph we learn something about this. If the degree
of 17 is smaller than k then clearly w17 = 0 with probability one. Even if the
degree of 17 is larger than k but significantly smaller than the average degree,
we might want to adjust our probability that w17 = 1 to something smaller than
the a priori value of k/n. Of course by looking not just at the degree but the
number of edges, triangles, or maybe some more global parameters of the graph
such as connected components, we could adjust the probability further. There
is an extra complication as well. Suppose we were lied to, and the graph does
not really contain a clique. A computationaly bounded observer cannot really
tell the difference, and so would need to assign a probability to the event that
w17 = 1 even though w does not exist. (Similarly, when given a SAT formula
close to the satisfiability threshold, a computationally bounded observer cannot
tell whether it is satisfiable or not and so would assign probability to events such
as “the 17th variable gets assigned true in a satisfying assignment” even if the
formula is unsatisfiable.) This is analogous to trying to compute the probability
that a unicorn has blue eyes, but indeed computationally bounded observers
are in the uncomfortable positions of having to talk about their beliefs even in
objects that mathematically cannot exist.

Computational Bayesian probabilities

So, what would a consistent theory of “computational Bayesian probabilities”
would look like? Let’s try to stick as closely as possible to standard Bayesian
inference. We think that there are some (potentially unknown) parameters θ (in
our case consisting of the planted vector w) that yield some observable X (in
our case consisting of the graph G containing the clique encoded by w, say in
adjacency matrix representation). As in the Bayesian world, we might denote
X ∼ p(X|θ) to say that X is sampled from some distribution conditioned on θ,
and θ ∼ p(θ|X) to denote the conditional distribution on θ given x, though more
often than not, the observed data X will completely determine the parameters θ
in the information theoretic sense (as in the planted clique case). Our goal is to
infer a value f(θ) for some “simple” function f mapping θ to a real number (in
our case f(w) is simply w17). We denote by f̃(X) the computational estimate
for f(θ) given X. As above, we assume that the estimate f̃(X) is based on some
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prior distribution p(θ)

A crucial property we require is calibration: if θ is truly sampled from the prior
distribution p(θ) then it should hold that

Eθ∼p(θ)f(θ) = Eθ∼p(θ),X∼p(X|θ)f̃(X) (∗)

Indeed, the most simple minded computationally bounded observer might ignore
X completely and simply let f̃(X) to be the a priori expected value of f(θ). A
computationally unbounded observer will use f̃(X) = Eθ∼p(θ|X)f(θ) which in
particular means that when (as in the clique case) X completely determines θ,
it simply holds that f̃(X) = f(θ).

But of course we want to also talk about the beliefs of observers with intermediate
powers. To do that, we want to say that f̃ should respect certain computationally
efficient rules of inference, which would in particular rule out things like assigning
a positive probability for an isolated vertex to be contained in a clique of size
larger than one. For example, if we can infer using this system from X that
f(θ) must be zero, then we must define f̃(X) = 0. We also want to satisfy
various internal consistency conditions such as linearity between our estimates
for different functions f (i.e., that f̃ + g = f̃ + g̃).
Finally, we would also want to ensure that the map X 7→ f̃(X) is “simple” (i.e.,
computationally efficient) as well.

Different rules of inference or proof systems lead to different ways of assigning
these probabilities. The Sum of Squares algorithm / proof system is one choice I
find particularly attractive. Its main advantages are:

• It encapsulates many algorithmic techniques and for many problems it
captures the best known algorithm. That makes it a better candidate for
capturing (for some restricted subset of all computational problems) the
beliefs of all computationally bounded observers.

• It corresponds to a very natural proof system that contains in it many of
the types of arguments, such as Cauchy Schwarz and its generalizations,
that we use in theoretical computer science. For this reason it has been used
to find constructive versions of important results such as the invariance
principle.

• It is particularly relevant when the functions f we want to estimate are low
degree polynomials. If we think of the data that we observe as inherently
noisy (e.g., the data is a vector of numbers each of which corresponds to
some physical measurement that might have some noise in it), then it is
natural to restrict ourselves to that case since high degree polynomials are
often very sensitive to noise.

• It is a tractable enough model that we can prove lower bounds for it, and
in fact have nice interpretations as to what these “estimates” are, in the
sense that they correspond to a distribution-like object that “logically
approximates” the Bayesian posterior distribution of θ given X.
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SoS lower bounds for the planted clique.

Interestingly, a lower bound showing that SoS fails on some instance amounts to
talking about “unicorns”. That is, we need to take an instance X that did not
arise from a model of the form p(X|θ) (e.g., in the planted clique case, a graph
G that is random and contains no planted clique) and still talk about various
estimate of this fictional θ.

We need to come up with reasonable “pseudo Bayesian” estimates for certain
quantities even though in reality these estimates are either completely determined
(if X came from the model) or simply non-sensical (if X didn’t). That is, for
every “simple” function f(θ), we need to come up with an estimate f̃(X). In
the case of SoS, the notion of “simple” consists of functions that are low degree
polynomials in θ. For every low degree polynomial f(w), we need to give an
estimate f̃(G) that estimates f(w) from the graph G. (Of course if we had
unbounded time and G really was from the planted distribution then we could
simply recover the maximum clique w completely from G.)

For example, if 17 is not connected to 27 in the graph G, then our estimate
for w17w27 should be zero. What might be less clear is what should be our
estimate for w17— i.e., what do we think is the conditional probability that 17
is in the clique given our observation of the graph G and our limited time. The
a priori probability is simply k

n , but if we observe that, for example, the degree
of 17 is a bit bigger than expected, say, n2 +

√
n then how should we update

this probability? The idea is to think like a Bayesian. If 17 does not belong
to the clique then its degree is roughly distributed like a normal with mean n

2
and standard deviation

√
n

2 . On the other hand, if it does belong to the clique
then its degree is roughly distributed like a normal with mean n

2 + k and the
same standard deviation. So, we can see that if the degree of 17 was Z then
we should update our estimate that 17 is in the clique by a factor of roughly
Pr[N(n2 + k, n4 ) = Z]/Pr[N(n2 ,

n
4 ) = Z]. This turns out to be 1 + ck/

√
n in the

case that the degree was n
2 +
√
n.

We can try to use similar ideas to come up with how we should update our
estimate for w17 based on the number of triangles that contain it, and generalize
this to updates of more complicated events based on more general statistics. But
things get very complex very soon, and indeed prior work has only been able to
carry this out for estimates of polynomials up to degree four.

In our new paper we take an alternate route. Rather than trying to work out
the updates for each such term individual, we simply declare by fiat that our
estimates should:

• Be simple functions of the graph itself. That is f̃(G) will be a low degree
function of G.

• Respect the calibration condition (*) for all functions f that can depend
on the graph only in a low degree way.

5

http://arxiv.org/abs/1507.05230
http://arxiv.org/abs/1507.05136
(http://eccc.hpi-web.de/report/2016/058/)


This condition turns out to imply that our estimates automatically respect all
the low degree statistics. The “only” work that is then left is to show that
they satisfy the constraint that the estimate of a f(θ)2 is always non-negative.
This turns out to be quite some work, but it can be thought as following from
a recursive structure versus randomness partition. This might seem to have
nothing to do with other uses of the “structure vs randomness” approach such as
in the setting of the regularity lemma or the prime numbers, but at its core, the
general structure vs. randomness argument is really about Bayesian estimates.
The idea is that given some complicated object O, we separate it to the part
containing the structure that we can infer in some computationally bounded
way, and then the rest of it, since it contains no discernable structure, can be
treated as if it is random even if it is fully deterministic since a Bayesian observer
will have uncertainty about it and hence assign it probabilities strictly between
zero and one. Thus for example, in the regularity lemma, we can think of a
bounded observer that cannot store a matrix M in full, and so only remembers
the average value in each block, and considers the entry as random inside it.
Another example is the case of the set P of primes, where a bounded observer
can infer that all but finitely many members of P do not divide 2, 3, 5, 7, 11, . . .
up to some not too large number w, but beyond that will simply model P as
a random set of integers of the appropriate density. Similarly, in the case of
the regularity lemma, we split a matrix into a low rank component containing
structure that we can infer, with the rest of it treated as random.

I think that a fuller theory of computational Bayesian probabilities, which would
be the dual to our standard “frequentist” theory of pseudorandomness, is still
waiting to be discovered. Such a theory would go far beyond just looking at
sums of squares.
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