
Guest Lecture: Average Case depth hierarchy for ∧,∨,¬-Boolean circuits.
Boaz Barak

Thanks to the authors of RST for answering my questions by email and in particular to Li-Yang
Tan for sharing with me his slides.

Today we are going to cover the following recent result of Rossman, Servedio and Tan:

Theorem 1. For every d there exists a function F computable by a poly-size depth d circuit (with
∧,∨ and ¬ gates) such that for every exp(no(1))-size depth d− 1 circuit C,

Pr
x∈{0,1}n

[C(x) = F (x)] ≤ 1/2 + o(1)

(The quantitative parameters are stronger — see the paper.)
As they show, the result immediately resolves two questions considered by prior researchers:

1. It confirms a 1986 conjecture of H̊astad (also raised by and discussed by many others) that
the polynomial hierarchy is infinite with respect to a random oracle. (We’ve already had
strong reasons to believe H̊astad’s conjecture, since Book showed in 1994 that it’s true unless
the polynomial hierarchy collapses.) The prior best result was by O’Donnell and Wimmer in
2007, who showed that Σ3 6⊆ Σ2 w.r.t. a random oracle. However, they did not state their
result in this language, and it’s unclear if they were aware of this connection. (Aaronson
2010, showed the (incomparable?) result that Π2 6⊆ PNP with respect to a random oracle,
and also realized the connections between these questions and questions on the analysis of
Boolean functions, though not the relation to the work of O’Donnell and Wimmer.)

2. It refutes even very weak variants of a conjecture of Benjamini, Kalai and Schramm (BKS)
from 1999 that low influence functions can be approximated by circuits of small depth. (This
is in the regime of logarithmic influence; Friedgut’s theorem says that functions of constant
influence are juntas and hence no longer applies in this regime but one still would like to
derive some structural information on the function based on its low influence, given that the
canonical examples all have low depth.) The original conjecture was refuted by O’Donnell
and Wimmer in the 2007 work mentioned above, but O’Donnell, Kalai, and Hatami raised
the question of whether some weaker variants still hold, which are now refuted by this new
result. (Given that the new example is ultimately a low depth circuit, there may still be
interesting versions of this conjecture that might be true.)

Why do we care about random oracles?

The central results of computability theory all were based on treating Turing machines as a black
box. For example, one shows that there is an uncomputable problem by defining the function that
maps any Turing machine M to the negation of M(M). All the properties of Turing Machines that
those results required are that one can encode a machine as a string, and that there is a universal
Turing machine that given an encoding of a TM M and an encoding of a string x, can simulate M ’s
execution on the input x. For every function (known as an oracle) O, the set of Turing machines
that can make queries to O as a basic step satisfies these properties as well, and hence the results of
computability theory, such as undecidability of the Halting problem etc.., hold for such machines as
well— that is, they relativize for every oracle. This means that most computability results satisfy
a nice 0/1 law— either they hold for all oracles or they hold for none of them.

1



When people started studying complexity theory, my understanding is that they expected that
similar techniques may end up resolving complexity questions such P vs NP , which can be thought
of as quantative analogs of questions such as R vs RE. Thus the result of Baker, Gill and Solovay,
showing that there is a relativized world in which P = NP and one in which P 6= NP , came (as far
as I can tell) as a serious shock. Not too long after it, people realized that if we pick the oracle at
random, then a complexity class relation can hold with either probability 0 or probability 1, but not
with probability, say 2/3. Thus one can define a “random oracle analog” of every complexity class
and study the relations between them in this “random oracle world”. Moreover, this random oracle
world is not completely unrelated to the real world— people have shown random oracle variants
of several statements such as P 6= NP that we believe hold in the “real” (non relativized) world.
Bennet and Gill made the bold conjecture, known as the random oracle hypothesis, that these
two worlds coincide— namely that complexity relations that hold with probability 1 for a random
oracle are also true without an oracle. Arguably, there weren’t strong arguments to support this
conjecture (and indeed, as far as I know, it was never widely believed), and in fact there are several
counterexamples to it, with perhaps the most convincing one coming from the work of Chang at
al showing that relations between classes involving proof systems, such as IP = PSPACE, hold
with probability 0 for a random oracle.

So, why care about random oracle? First of all, the complexity for random oracle is at least
consistent (due to do this 0/1 law) and while it does not correspond to the real world, intuitions
from the real world can be relevant there, and there are some results such as Book’s formally
connecting the two. In particular, it is interesting to note that the new result of Rossman et al
is completely consistent with the intuition arising from thinking about random oracles, while it
apparently was surprising to people thinking about influences of Boolean functions. Arguably, if
Benjamini, Kalai and Schramm were more aware of this connection between their question and the
polynomial hierarchy under random oracles, they could have realized their conjecture is likely to
be false. So, studying complexity relations under random oracles can give intuitions and results
useful in other areas.

Personally, I am interested in random oracles as they are related to my obsession with structured
vs unstructured problems in computational complexity. A random function is the quintessential
unstructured problem, while a problem such as integer factoring has strong algebraic structure.
In particular, I am very interested in the question of whether NP ∩ coNP 6= P under a random
oracle. Like Book’s result, one can show that this is true assuming (as is widely believed) that
NP ∩ coNP 6⊆ BPP in the real (unrelativized) world. However, proving this is a different matter
and seems to require a way of transforming an unstructured hard function to a hard function with
the NP ∩ coNP structure. This can be extremely useful, and is (in my eyes) morally related to
the question of whether one can construct a public key encryption scheme based on any private
key encryption scheme. Indeed, random functions trivially give a private key encryption scheme,
but most (if not all) of the widely studied problems that form the basis for public key encryption
schemes lie in NP ∩ coNP (see my paper with Applebaum and Wigderson for more discussion).
Unfortunately, the techniques of Rossman et al, as well as the other works in this area, seem unlikely
to help resolve this issue, with the basic problem being that all these results prove something about
constant-depth circuits and decision trees, and, alas, it actually does hold that NP ∩ coNP = P
in the world of decision tree complexity (see more below).

2



1 On Oracles and circuits

We now start with expanding the connection between oracle and circuit results— we start with a
proof of the following theorem, that you have already seen in this course:

Theorem 2. There is an oracle O such that PO 6= NPO.

The proof relies on the fact that we can set up some oracle O : {0, 1}n → {0, 1} such that no
algorithm that makes poly(n) queries to O will be able to figure out whether there exists x such
that O(x) = 1. Another way to phrase this statement is the following:

Theorem 3. There is no decision tree of depth polylog(N) (in fact N − 1) that can compute the
OR function X1 ∨ · · · ∨XN .

The general “dictionary” transforming oracle results and circuit lower bounds is as follows:

Relativized world circuit world

Oracle O : {0, 1}n → {0, 1} Input x ∈ {0, 1}N
Random oracle O random input O

poly(n) time algorithm polylog(N)-depth (quasipoly(N) size) decision tree
NP -algorithm polylog(N)-width (quasipoly(N) size) DNF
coNP -algorithm polylog(N)-width (quasipoly(N) size) CNF
PH-algorithm quasipoly(N)-size O(1)-depth circuit

The result that PO 6= NPO for a random oracle follows from the following theorem:

Theorem 4. For every polylog(n)-depth decision tree T ,

Pr
x∈{0,1}n

[T (x) = F (x)] ≤ 1/2 + o(1)

where F (x) is the DNF that is the OR of N `-AND’s, set up so that (1− 2−`)N = 1/2± o(1).

Exercise 1: Conclude from the above theorem that with probability at least 0.99 over the choice
of a random O, it holds that NPO 6= PO. See footnote for hint1

We know that P ⊆ NP and P ⊆ coNP . In the circuit world this is the following theorem:

Theorem 5. If T is a polylog(N)-depth decision tree, then there exists a polylog(N)-width DNF
F , as well as a polylog(N)-width CNF F ′, computing the same function as T .

Interestingly, in this world P = NP ∩ coNP :

Exercise 2: If F is a function that is computable by both a polylog(N)-width DNF and a
polylog(N)-width CNF, then it is also computable by a polylog(N)-depth decision tree.

1You can use the 0/1 law and conclude that otherwise, with probability at least 1 − o(1), for a random oracle O
there would exists a poly-time algorithm P (O) solving SAT with an oracle to O. For n large enough, that algorithm
will be one of the first f(n) Turing machines for some arbitrarily slowly growing to infinity function f . You can use
that to get a decision tree succeeding in computing the OR function with good probability.

3



2 The H̊astad switching lemma approach to lower bounds

The H̊astad switching lemma is a powerful result that says something along the following lines:

Theorem 6 (Switching lemma, informal). If C : {0, 1}N → {0, 1} is a poly-size (or even sub-
exp) O(1)-depth circuit, then for some appropriately chosen parameter µ > 0, if we fix at random
(1 − µ) fraction of the inputs to random values, then the new function C ′ : {0, 1}µN → {0, 1} can
be computed by a polylog(N)-depth decision tree.

Suppose that the original circuit C had d layers alternating between AND and OR and say
the bottom most was an OR. The proof of the theorem is obtained by repeating these random
restrictions for d steps. So, in the first step we change the bottom most layer from a DNF into a
decision tree, which in turn implies it can also be thought of as a CNF and hence merged with the
second layer from the bottom. So, if in each step we keep alive a µ fraction of the variables, after
keeping alive about µd fraction we end up with a decision tree.

It is very easy to prove that a parity on k variables cannot be computed by a decision tree of
depth less than k (for every branch in which the decision tree outputs 0, one would be able to
find an input that agrees with this branch but whose parity is 1) and hence we get the following
corollary:

Corollary 7. Parity has no constant depth circuits of subexponential size.

In fact, its easy to show that a small depth decision tree cannot even approximate parity and
hence we get that neither can a small depth circuits, which (using P#P ⊆ PSPACE) can also be
phrased as follows

Corollary 8. Relative to a random oracle O PSPACEO 6⊆ PHO

The problem with applying this result to separating, say, depth d+1 (or even depth 100d) circuits
from depth d, is that random restrictions act like a “slegehammer” that reduce any constant depth
function into a small depth decision tree. So, if we replace parity with some particular function F
that is computable with constant depth, then random restrictions will make it into a small depth
decision tree as well, and hence not allow us to get a contradiction. What we need is to identify
a specific function F that is computable in depth 100d, and define a restriction that is more more
delicate than a sledgehammer in the sense that it has the following properties:

• For every depth d circuit C, applying the restriction “peels off” at least one layer of C and
hence reduces it to depth d− 1.

• For the particular function F we are considering, the restriction does not “peel off” more
than one layer (or 100 layers, if we’re shooting for a 100d vs d separation) of the particular
function F .

In fact H̊astad managed to design such a restriction by creating very careful correlations between
the restricted variables, and hence in particular showing that there are some functions computable
by depth d circuits but not depth d− 1 (and that the polynomial hierarchy is infinite with respect
to some oracle). However, these correlations meant that the result did not hold for the average
case / for a random oracle.

4



3 The RST approach

[ADD FIGURES HERE]
The specific function RST consider, which they call a “Sipser Function” is (essentially) an

AND/OR tree of arity w. For every p ∈ (0, 1), we denote by the p-biased distribution the distribu-
tion on {0, 1} such that 1 is output with probability p. We let p be such that (1− p)w = p. That
is, an arity-w OR of w independent p-biased inputs yields a 1 − p biased input, and similarly an
arity-w AND maps the 1− p biased distribution into the p biased distribution. Note that since we
have p ∼ e−pw we get that ln(1/p) ∼ wp or p = Θ̃(1/w). If we use depth ` tree on N inputs, then
w ∼ N1/`.

So, if the input to the bottomost layer of the RST function is selected to be p-biased, then
every layer alternates between the p-biased and the 1− p-biased distribution. At the topmost layer
RST add an AND or OR gate with an appropriate arity to map the distribution into the uniform
(i.e., 1/2 biased) distribution. Also in the paper they add an additional bottomost layer with AND
gates of arity log(1/p) to map the uniform distribution into the p-biased one, but this is not so
important, and we can just assume that the input is selected according to the p-biased distribution.

Let F be the RST function of depth 100d and let C be the purported depth d circuit that
approximates it.

Lets assume the bottommost layer of the RST function consists of width w OR gates. The
first step in their restriction is to fix 1 − p fraction of the inputs to 0. (Lets assume that things
are nice and so every OR gates will have exactly pw unfixed inputs; in fact what we’ll have to do
is to condition on no OR gate having the all-zeroes input.) This has the benefit of not “killing
off” any of the OR gates, but presumably will kill every AND gate in the bottomost layer of C
that contains many un-negated variables, or every OR gate that contains many negated variables.
However, this does not guarantee that we can “peel off” a layer of C. Indeed, we cannot rule out
the case that C’s bottom layer also had only OR’s of un-negated variables, that cannot be killed
by setting variables to 0.

Intuitively, as a next step we would like to randomly set some of those p fraction of unfixed
variables to 1. However, if we do so randomly then most likely every OR of the RST function would
contain a variable set to 1 and hence we would simply fix all those OR gates to 1, hence making it
into a constant function, rather than “peeling off” only a single layer.

So instead, following H̊astad, we are going to create significant correlations between the vari-
ables, and specifically ensure that we either fix all unfixed variables in a block to 1 or none of them.
More formally, we will identify all the unfixed variables in the j− th block of the RST bottom layer
with a single variable yj . Since the rest of the variables are zeroes, this means that the output
of the OR gate is exactly yj and hence we have now exactly peeled off the bottom layer of RST
and have a function with depth 100d − 1 on the yj variables. Now note that the yj variables are
supposed to be 1−p biased. So, now we can continue as before and pick 1−p fraction of them and
set them to 1, leaving a p fraction unfixed. (Again, we will condition on no AND gate in the second
layer getting killed by the all 1’s input.) Since we have now fixed a good fraction of the variables to
1 that should take care of those gates that survived our first restriction in C. That is, globally we
have fixed about (1− p)2 fraction of the variables, where in the first stage we fixed 1− p fraction of
them to 0’s and in the second stage we fixed 1− p fraction of them to 1’s. Intuitively, that should
be enough to use the switching lemma arguments and to argue that we can “peel off” a layer of
C. (There are some correlations involved, but as H̊astad showed in his worst-case separation, since
the correlations are designed to maximally help the RST function, and even there they peel off a
layer, they should not hurt us in any other circuit.)

5



At the end of the day, because at each step we are performing the restriction according to the
right distribution (p biased or 1−p biased) the end result respects the underlying input distribution
and so we get an average case hardness. Thus, we would expect to get the following lemma:

Lemma 9. Let F be the RST function (i.e., an AND/OR tree where all but the topmost levels have
arity w and the bottom-most lavel is an OR) and let C be a depth-d quasipoly-size circuit, then in
expectation after two restriction steps

Pr[F (X) = C(X)] = Pr[F̂ (Y ) = Ĉ(Y )]

where X denotes the p-biased distribution on {0, 1}N and Y denotes the p-biased distribution on
{0, 1}N/w2

, F̂ denotes the restricted version of F and Ĉ denotes the restricted version of C. More-
over, with high probability Ĉ can be computed by a depth d− 1 quasipoly-size circuit.

Actually, there are some additional complications and for technical reasons it turns out that
RST are only able to prove that with this approach one can peel off a layer after three consecutive
fixings rather than two, hence getting a 3d vs d separation. Also, the actual restriction they use in
the paper is more complicated and manages to get a one to one ratio and so separate depth d+ 1
from depth d— one of the changes is that they fix only 1− q fraction of the inputs in each iteration
for q =

√
p, and they also have to worry about the cases where the number of unfixed variables in

a block deviates significantly from qw, as well slightly tune the parameters as the depth progresses,
and hence the exact fixing done in advanced stages depends on the results of prior restrictions.

I am of course skipping many details, and in particular the proof of the switching lemma. To
follow that proof, it is best if you first familiarize yourself with Razborov’s proof of the standard
switching lemma (e.g., see our book), as the RST proof is a variant on that proof. The proof is
overall quite technical, and it is a good question of whether it can be simplified further:

Exercise 3: Give a simpler proof that there is a function computable in depth f(d) poly-size
circuit for some polynomial f (or even any function f) that cannot be approximated by a depth
d circuit. Ideally, the proof should use the standard switching lemma (or at least H̊astad’s variant
for showing worst case depth separation) as a black box.

6


	On Oracles and circuits
	The Håstad switching lemma approach to lower bound
	The RST approach

