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Suggested reading This lecture is based on my paper with Kelner and Steurer (”Dictionary
Learning and Tensor Decomposition via the Sum-of-Squares Method”). See also Section 4.2
(pages 19-21) in the survey with Steurer.

Problem description The dictionary learning / sparse coding problem is defined as follows: there
is an unknown n ×m matrix A = (a1| · · · |am) (think of m = 10n). We are given access to
many examples of the form

y = Ax+ e (1)

for some distribution {x} over sparse vectors and distribution {e} over noise vectors with low
magnitude.

Our goal is to learn the matrix A, which is called a dictionary.

Motivation [Warning: the following discussion is based on my very rudimentary understanding
of this problem area... don’t place too much trust in it. Also, while the problem is practical
our solution is most certainly not— we need to run the SOS algorithm on a large number
of variables and degree k that is a large constant or sometimes even logarithmic. However,
one can hope that the ideas behind the algorithm and its analysis could turn out to be useful
in getting more efficient algorithms. ] The intuition behind this problem is that natural
data elemenl;ts are sparse when represented in the ”right” basis, in which every coordinate
corresponds to some meaningful features. For example while natural images are always dense
in the pixel basis, they are sparse in other bases such as wavelet bases, where coordinates
corresponds to edges etc.. and for this reason these bases are actually much better to work
with for image recognition and manipulation. (And the coordinates of such bases are some-
times in a non-linear way to get even more meaningful features that eventually correspond
to things such as being a picture of a cat or a picture of my grandmother etc. or at least
that’s the theory behind deep neural networks.) While we can simply guess some basis such
as the Fourier or Wavelet to work with, it is best to learn the right basis directly from the
data. Moreover, it seems that in many cases it is actually better to learn an overcomplete
basis: a set of m > n vectors a1, . . . , am so that every example from our data is a sparse linear
combination the ak’s. (Sometimes just considering the case that the ak’s are a union of two
bases, such as the standard and Fourier one, already gives rise to many of the representational
advantages and computational challenges.) Notation note: Recall that we have m vectors
a1, . . . , am ∈ Rn. I will try to be consistent and have i, j be indices ranging over [n] and k an
index that ranges over [m].

Olshausen and Field were the first to define this problem - they used a heuristic to learn such
a basis for some natural images, and argued that representing images via such an dictionary
is somewhat similar to what is done in the human visual cortex. Since then this problem
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Figure 1: Using dictionary learning to remove overlaid text from images. The authors (to my under-

standing) learned a dictionary A from many natural images, and then removed the text from an image y by (roughly)

first representing y as
∑

xka
k and then zeroing out all the xi’s that are below some threshold. Photos taken from:

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online Dictionary Learning for Sparse Coding. In ICML 2009 (See

also Mairal, Julien, Michael Elad, and Guillermo Sapiro. ”Sparse representation for color image restoration.” , IEEE

Transactions on Image Processing 17.1 (2008): 53-69 for a clearer description of the method as well as some nice

images of how the dictionary looks like that should be added to the scribe notes... )

has been used in a great many applications in computational neuroscience, machine learning,
computer vision and image processing. Most of the time people use heuristics without rigorous
analysis of running time (and I think— though not sure —not even proof that it converges
to the global optimum, but rather only to a local one). There has been some rigorous work
using a method known as ”Independent Component Analysis”, but that method makes quite
strong assumptions on the distribution {x} (namely independence). Lately, starting with
the Spielman-Wang-Wright paper mentioned earlier, there was a different type of rigorously
analyzed algorithms, but they all required the vector x to be very sparse— less than

√
n

nonzero coordinates. The SOS method allows recovery in the much denser case where x has
up to εn nonzero coordinates for some ε > 0.

Contrast with sparse recovery Once again this problem has a similar flavor to the ”sparse
recovery” problem. In the sparse recovery problem, we know the dictionary A (which is also
often assumed to have some nice properties such as being random or satisfying ”restricted
isometry property”) and from a single value y = Ax we need to recover x. In the dictionary
learning problem we get many examples but, crucially, we know neither A nor x, which makes
it a more challenging problem.

Model and main theorem First, we will ignore the vector e in (1). Our justification is that we
will allow even coefficients x that are not truly sparse (i.e., do not have any coordinates that
are zero) but rather sparse in a looser sense, that some small fraction of coordinates has much
bigger magnitude than the rest.

To allow recovery of A, even in the statistical sense, we need to make some assumptions
on the distribution {x}. These assumptions should capture ”sparsity”. Most rigorous work
assumed a hard sparsity constraint, but we will assume a much softer one (as mentioned
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above). We also make some additional assumptions that are still strictly weaker than those
used by most other works (and incomparable to the others). Nevertheless, trying to find the
minimal assumptions needed is a great open problem.

Second, we need to make some assumptions on the distribution {x} to allow recovery. We
will make the following assumption: for some large constant d, we normalize so that Exdi = 1
for every i, and then require that for some parameter τ = o(1)

Exd/2i x
d/2
j ≤ τ (2)

for every i 6= j. We will also make the additional condition that xi is somewhat symmetric
around zero, in the sense that for every non-square monomial xα of degree at most d (i.e.,∑
αi ≤ d and there is some i for which αi is odd )

Exα = 0 . (3)

(To make sure that (3) doesn’t trivialize (2), we require d to be a multiple of 4— in fact it will
be convenient for us to assume that d is a power of 2, which we assume everywhere below.)

Condition (2) is essentially minimal, and roughly corresponds to x having at most τn nonzero
(or significant) coordinates. For example, note that if the distribution {x} is obtain by setting
τn random coordinates to equal ±τ−(1/d) and the rest zero, then indeed Exdi = 1 for all i,
and if i 6= j

Exd/2i x
d/2
j =

(
ττ−(1/2)

)2
= τ

Condition (3) is morally stronger, and it is not clear that it is essential, but it is still fairly
natural. In particular for this problem it is without loss of generality to assume that Exki = 0
for every odd k, and so this can be considered a mild generalization of this condition.

We will also assume that every column of A has unit norm, and the spectral norm σ of AA>

is at most O(1). This are fairly reasonable assumptions as well. (For example if m = 10n
and A is a union of 10 orthogonal bases then σ = 10— can you see why?)

(Another minor assumption we make is that Ex2di ≤ nO(1)— this is an extremely mild condi-
tion and in some sense necessary for recovery, and so we will not speak much of it except in
the one place we use it.)

By appealing to the Arithmetic-Mean-Geometric-Mean inequality, one can show that if as-
sume condition (2) holds with the RHS equalling τ4d (which tends to zero if τ does) then we
get the stronger condition

Exα ≤ τ (4)

for every degree d monomial xα that is not of the form xdi . Thus, we call a distribution {x}
satisfying (4) and (3) (d, τ)-nice.

Main Result (quasipoly version) There are some constants d ∈ N, τ > 0 and an quasipoly time
algorithm R that given poly(n) samples from the distribution y = Ax outputs unit vectors
{ã1, . . . , ãm} that are 0.99 close to {a1, . . . , am} in the sense that for every i there is a j such
that 〈ak, ãj〉2 ≥ 0.99 and vice versa.

(See the paper for a version that runs in polynomial time while requiring sparsity τ = n−δ

for arbitrarily small δ > 0.)

Notes on constants:
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• In the more general statement the constants d, τ depend on the accuracy (e.g., 0.99) and
on the top eigenvalue of AA>.

• We will think of d as chosen first and then τ > 0 being an extremely small constant
depending on d. So for the rest of the analysis we will think of d as some large constant
and τ = o(1).

Outline of algorithm The algorithm is very simple: given examples y1, . . . , yS do the following:

1. Construct the polynomial P (u) = 1
S

∑S
i=1〈yi, u〉d

2. Run the SOS algorithm to obtain a degree k pseudo-distribution {u} satisfying the
constraints {‖u‖2 = 1, P (u) ≥ 1} (e.g., the last constraint is replaced by P (u) = 1 + y2

for some additional auxiliary variable y, but lets not worry about this implementation
details too much). The parameter k = O(log n) would be specified later.

3. Pick t = O(log n) random (e.g. Gaussian) vectors w1, . . . , wt.

4. Compute the matrix M such that Mi,j = Ẽ
∏t
`=1〈w`, u〉2uiuj .

5. Output a random Gaussian vector v such that Evivj = Mi,j .

We will prove the following:

Main Lemma With probability n−O(1), there exists some i such that 〈v, ak〉2 ≥ 0.99‖v‖2.
The main lemma says that we can get one vector with inverse polynomial probability. It is
not hard to show that we can verify when we are successful and so amplify this probability
to as close to 1 as we wish. I do not know of a black box reduction to get from this statement
recovery of all vectors, but it is possible to do so by a simple extension of the main ideas of
this lemma, see the paper for details.

Proof outline —- actual distributions As usual, we will first prove the main lemma assuming
that {u} is an actual distribution, and then extend this to pseudo distributions. We will give
an overview of the proof, making some simplifying assumptions as we go along— again see
the paper for the details.

Assumption We will assume that the polynomial P is identical to its expectation. That is, we
assume

P (u) = E〈y, u〉d = E〈Ax, u〉d = E〈x,A>u〉d

this is actually not so problematic, since this is a constant degree polynomial and we can take
a large enough polynomial number of samples S to get as close convergence to P as we need.

Consequences Let us open up this expression for P : letting v = A>u

P(u) =
∑
|α|≤d

Exαvα

noting that the non-square moments here vanish, and that the moments that have more than
one variables are at most τ , we can see that

‖v‖dd ≤ P (u) ≤ ‖v‖dd + τ
∑
|β|≤d/2

v2β ≤ ‖v‖dd + τd!(
∑
k

v2k)
d/2 (5)
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Note that
∑

k v
2
k = ‖A>u‖22 ≤ O(‖u‖22) under our assumption that σ = O(1). Thus we see

that if u is unit with P (u) ≥ 1 then (since τ = o(1)) it must hold that ‖v‖dd ≥ 1 − o(1), but
this implies that there is some i such that v2k = 〈ak, u〉2 ≥ 0.999. Indeed, otherwise

1− o(1) ≤ ‖v‖dd =
∑

vdk ≤ max
i
vd−2k

∑
v2k ≤ 0.999dO(1)

and the RHS would be smaller than 1/2 if d is a large enough constant.

Bottom line If {u} is an actual distribution over unit u’s with P (u) ≥ 1 then every vector in the
support would have 〈ak, u〉2 ≥ 1− o(1) for some k.

Useful corollary Let us record the following corollary of what we proved:

Corollary: If {u} if t > c logm is an even integer and c sufficiently large then there exists
some k0 such that for a = ak0 ,

Eu〈u, a〉t ≥ 0.999t . (6)

(Note that by convexity this also implies Eu〈u, a〉k ≥ 0.999k for every even k ≥ t.)
Proof of corollary: Since every vector in the support of {u} is close to some k, there
exist k0 such that with probability at least 1/m, 〈u, a〉2 ≥ 1− o(1). That means that

E〈u, a〉t ≥ 1
m(1− o(1))t ≥ (1− o(1))t−logm ≥ 0.999t

What’s next? We just showed that every vector in the support in the distribution {u} would be
a good solution. Now we just need to argue that Step 5 of the algorithm outputs something
close to the support.

This is not immediate. In particular if we dropped Step 3 and simply tried to define Mi,j =
Ẽuiuj then this will not work.

Heuristic analysis Let us assume that the distribution {u} was simply the uniform distribution
over {±a1, . . . ,±am}. This does satisfy all of our conditions. However, if we sample a
Gaussian {v} that matches the first two moments of {u} we simply get a random linear
combination (with Gaussian coefficients) of a1, . . . , am (can you see why?). This will not give
us any information about the ak’s (in fact can be shown that without loss of generality this
would be simply a random vector in Rn).

[Note to potential scribes - in class I showed an explicit example that if the ak’s are the
Fourier basis then the unweighted matrix M above is simply (1/n) times the identity and
hence gives no information about the basis. Also showed some figures how reweighing affects
the probability distribution and changes it from uniform to focused on one vector. Johan
H̊astad suggested to use the tth power of one Gaussian instead of t independent ones, which
might slightly simplify things, or at least notation.]

However, the reweighing has the effect that if we are lucky, it will isolate one of the ak’s. To
see why note that the matrix M we compute in the particular case above is simply:

M = 2
∑

fW (ak) · (ak)⊗2

where for W = (w1, . . . , wt), fW (ak) =
∏t
`=1〈w`, ak〉2 and for every vector z, z⊗2 is the matrix

Z such that Zi,jzizj .
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Now we claim that with probability n−O(1), we will be lucky and (essentially) it will be the case
that fW (a1)� n ·fW (ak) for every k > 1. Lets see a crude argument why this should happen
with n−O(log(n)) probability. Indeed, for every particular random random vector w, with
probability 0.99 that maxi≥1〈w, ak〉2 ≤ logm but with probability exp(−c log n) = n−O(1) we
would have that 〈w, ak〉2 ≥ 2 logm, and these events are essentially independent if the ak’s
are sufficiently close to orthogonal. (In general we can’t assume that, but it turns out that
this doesn’t matter for our final argument.) Hence with n−O(t) = n−O(logn) probability we
would have that for every ` and k > 1, 〈w`, a1〉2 ≥ 2〈w`, ak〉2 meaning that for every k > 1,
fW (a1) ≥ 2tfW (ak) = n2fW (ak) if we set t = 2 log n.

In this lucky case the matrix M will have the form

M = fW (a1)(a1)⊗2 +M ′

where M ′ is a matrix where all its entries are bounded by o(fW (a1)/n) and hence for every
i, j Mi,j = fW (a1)a1i a

1
j ± o(fW (a1)/n2).

Therefore, if we sample a random v such that Evivj = Mi,j then (using ‖a1‖ = 1)

E‖v‖2 =
∑
i

Mi,i = fW (a1)± o(nfW (a1)/n)

and

E〈v, a1〉2 =
∑

a1i a
1
jMi,j = fW (a1)(

∑
i,j

(a1i a
1
j )

2±o(1/n)
∑
i,j

a1i a
1
j = fW (a1)(1+o(1/n)(

∑
a1i )

2) = fW (a1)(1±o(1))

(since
∑

i a
1
i ≤
√
n‖a1‖)

Meaning that by arguments similar to before, if we scale v to a unit vector ṽ, we will get that
〈ṽ, a1〉2 ≥ 1− o(1).

Less heuristic analysis Now let’s try to make things more concrete. Let a = ak0 for the value
k0 obtained in the corollary above.

We want to prove that with decent (i.e., n−O(1)) probability over the choice of the vectors
W = (w1, . . . , wt), if we select v that matching the first two moments of

ẼfW (u)u⊗2 (7)

then it will satisfy
〈v, u〉2 ≥ 0.99‖v‖2 . (8)

We will prove that (with some decent probability over the choice of W ) the conditions (7)
and (8) hold in expectation, which amounts to

ẼfW (u)〈u, a〉2 ≥ 0.99ẼfW (u)‖u‖2 = 0.99ẼfW (u) (9)

(can you see why?). One needs to add an additional argument to show that this actually
happens with decent probability, but it is not a very deep one, and so we skip it here— as
always, see the paper for details.

If we select a random standard Gaussian vector w then by the rotation invariance of the
Gaussian distribution, 〈w, a〉 is a standard Gaussian (i.e., distributed per N(0, 1)), and so
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E〈w, a〉2 = 1 and the probability that 〈w, a〉2 ≥ 11 equals some Wikipedia-computable con-
stant p > 0.

Let A be this event and let C ≥ 10 be the the expectation of 〈w, a〉2 − 1 conditioned on A.

Note that by the rotation invariance of the Gaussian distribution, 〈w, b〉 is distributed like
N(0, ‖b‖) for every b ⊥ a even after conditioning on A.

For every vector unit u, we can write u = 〈u, a〉a+ b where b ⊥ a has norm
√

1− 〈u, a〉2, and
so conditioning on A

Ew|A〈u,w〉2 = 〈u, a〉2Ew|A〈a,w〉2 + 1− 〈u, a〉2 = C〈a, u〉2 + 1

Since w1, . . . , wt are chosen independently, if we condition on A happening for every ` (which
would occur with probability pt = exp(−O(log n))) then, letting Q(u) = (C〈u, a〉2 + 1)t,

EW |A,ufW (u) = EuQ(u)

and
EW |A,ufW (u)〈u, a〉2 = EuQ(u)〈u, a〉2

So, we just need to prove that if {u} satisfies our conditions, then there exists k such that for
a = ak,

EuQ(u)〈u, a〉2 ≥ 0.99EuQ(u) (10)

We will show that (10) reduces to the corollary we proved before, namely that

E〈u, a〉t ≥ 0.999t

Proof of Main Lemma from corollary Indeed, suppose that (6) holds and writeQ(u) = Q′(u)+
Q′′(u) by expanding the expression Q(u) = (C〈u, a〉2 + 1)t, and letting where Q′(u) contains
all the terms where we take C〈u, a〉2 to a power larger than t/2 and letting Q′′(u) contain the
rest of the terms.

First, EQ′′(u) is negligible compared to EQ(u), since every of the at most
(
t
t/2

)
terms in

Q′′(u) is bounded by (C + 1)t/2, while Q(u) contains the the much larger term CtE〈u, a〉2t ≥
0.9992tCt.

Thus we can assume Q(u) = Q′(u), but then

EQ′(u)〈u, a〉2 ≥ 0.999EQ′(u)

since we can show this ratio holds for every term of Q′(u) since for every k ≥ t

E〈u, a〉k+2 ≥ (E〈u, a〉k)(k+2)/k = E〈u, a〉k(E〈u, a〉k)2/k ≥ 0.999E〈u, a〉k

where the first inequality uses convexity and the last uses our assumption (6).

This concludes the proof of the Main Lemma for actual distributions, given the claim.

Extending to pseudo distributions All the arguments we used in the proof fall in the SOS
framework. We briefly illustrate why it is the case. First, our assumption that P is equal
to the expectation polynomial is justified since P converges to its expectation also in the
spectral norm, and hence would closely approximate it on pseudo expectations as well.
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If we go over our justification for the inequality (5), we would see that in fact we can replace
every ≤ sign there with � in the sense what we really showed was that there are some SOS
polynomials S, S′ such that

‖v‖dd + S = P (u) = ‖v‖dd + τd!‖v‖d2 − S′

The corollary can be phrased as using the inequality

(‖v‖dd)t/(d−2) ≤ ‖v‖tt‖v‖
2t/(d−2)
2

which has an SOS proof whenever these numbers are all integers.

Finally, all our arguments in justifying (9) used convexity and Cauchy-Schwarz/Holder type
arguments that have SOS proofs and hence hold for pseudo expectations as well.
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