
SOS Lecture 3: Sparsest cut and the ARV algorithm

Boaz Barak

July 1, 2014

Suggested reading Section 15.4 in the approximation algorithms book of Williamson and Shmoys
(available online) for more details. See also Section 3 in the book chapter of Chlamtac and
Tulsiani (available on http://ttic.uchicago.edu/~madhurt/Papers/sdpchapter.pdf) for
a good shorter overview of the proof. Trevisan also discusses the ARV algorithm in his
Lectures 11 and 14 (though the heart of the analysis is in Lecture 15 which has no online
notes).

Setting G = (V,E) is d-regular graph on n vertices. It has normalized adjacency matrix A
(Ai,j = 1/d if (i, j) ∈ E and Ai,j = 0 otherwise). Let L = I − A be its normalized Laplacian
matrix.

Sparsest cut problem Find set S ⊆ V that minimizes φ(S) = nE(S, S)/(d|S||S|). Let φ(G) =
minS φ(S).

Last lecture we saw the following theorem:

Cheeger-Alon-Milman ∃ poly-time algorithm to find S with φ(S) = O(
√
φ(G)).

This lecture we will show the ideas behind the following result:

Arora-Rao-Vazirani ∃ poly-time algorithm to find S with φ(S) = O(
√

log nφ(G))

The algorithm uses (a subset of) the degree 6 SOS program. As before, we will assume that
we have a pseudo-distribution over sets T with φ(T) ≤ φ for some φ. In fact, to simplify
matters we will again assume that the sets have size exactly 1/2 and represent each set by a
±1-valued vector x.

Thus we have a pseudo-distribution {x} over {±1} (i.e., satisfying {x2i = 1}) satisfying
{
∑
xi = 0} and

E(i,j)∈GẼ(xi − xj)2 ≤ φ .

For simplicity we assume that all edges and vertices contribute the same to the solution (using
convexity arguments this can be shown to be without loss of generality) and so we assume
that for every i, Exi = 0, and for every (i, j) ∈ E, Ẽ(xi−xj)2 = φ. Note that this means that∑

i,j

Ẽ(xi − xj)2 = 2n
∑

Ẽx2i − 2Ẽ(
∑
i

xi)
2 = 2n2

and hence the random variables are “well spread” in the sense that Ei,jẼ(xi − xj)2 ≥ 1/10.

Outline of the proof We will give the proof under the assumption that the distribution {xi} is
an actual distribution. We later comment on what we actually used about this assumption.
This is fairly common when working with the SOS algorithm.

1

Reducing to vertex separator Define the following graph H of n vertices– we say that i ∼H j
if Pr[xi = xj] < ∆ for some parameter ∆ that we will choose later to be roughly 1/

√
log n.

The main lemma is that

Definition: An n-vertex graph H is separable if there are disjoint sets L,R ⊆ V (H) such
that |L|, |R| ≥ n/1000 and E(L,R) = ∅.
ARV Main Lemma: Let H be a graph defined by ±1-valued random variables {xi}i∈[n]
such that i ∼H j iff Pr[xi = xj] < ∆, where ∆� 1/

√
log n, Exi = 0 and Ei,j(xi−xj)2 > 1/10.

Then H is separable.

From main lemma to algorithm: The main lemma easily implies an O(
√

log n) approx-
imation algorithm for the sparsest cut problem. If we start a BFS from L until we reach R,
we will obtain a sparse cut (exercise).

Why is ∆�
√

log n necessary? Here is an example showing that the condition ∆ � 1/
√

log n
is necessary. Let H be the graph with n = 2` vertices that we identify with the vectors
of the cube {±1}`. We can view those as correlated random variables x1, . . . , xn which are
sampled by choosing i ∈ [`] and then letting xα = αi for every index α ∈ {±1}`. Suppose that
∆ = c/

√
log n = c/

√
` for some c� 1. Then it can be shown that for every set L of measure

1/1000, the set Γ(L) of all vectors having Hamming distance at most ∆` = c
√
` has measure

1− o(1) and hence the graph is not separable. (The best set L to take would be the set {α :∑
αi ≥

√
log(1000)`} but then Γ(L) = {α :

∑
αi ∈ [−(c−log(1000))

√
`,+(c+log(1000))

√
`]}

which has measure 1− o(1) for c� 1.

Formally we have the following theorem:

Expansion of the Boolean cube Let L ⊆ {±1}n such that |L| ≥ Ω(2n) and let c� 1 then
the set L̃ = {x : ∃y ∈ L s.t. ‖x− y‖1 ≤ c

√
n} has size (1− o(1))2n.

Why is ∆�
√

log n sufficient? Of course the hard part (which we will not fully prove) is showing
that there is in fact a separator as long as ∆�

√
log n. We provide some intuition:

Let {y} be the Gaussian disrtribution that matches the first two moments of {x}. We sample
from y and let L be {i : yi < −10} and R = {i : yi > +10}. These two sets might have some
edges between them, but we will see that they can be “pruned” to remove those.

First, note that if Pr[xi − xj] = 1
4E(xi − xi)2 ≤ ∆ then yi − yj is a Gaussian random variable

with mean zero and variance ∆. Hence the probability that |yi− yj | ≥ 20 is exp(−(1/∆)). If
∆� 1/ log n then this probability is n−ω(1) and hence there would be no pair (i, j) such that
i ∼H j but i ∈ L and j ∈ R and we would be done. For ∆� 1/

√
log n, if the average degree

of H is at most 2O(
√
logn) (which incidentally is the case in the cube example above) then we

can still do a union bound over all edges (i, j) in H and reach the same conclusion.

Handling higher degrees For every choice of y, let My be directed graph containing all edges
i → j such that i ∼H j but yj − yi ≥ 20. If My has o(n) edges then we can simply remove
all the vertices touching an edge of My from L and R and get the vertex separator. More
generally, if My has a vertex cover of o(n) size then we can simply remove it and complete
the proof.

To handle the other case, where the graph has no small vertex cover, we follow the old Swedish
proverb

One man’s left is another man’s right

2

That is, we say that since a vertex is equally likely to be in L as it is to be in R, we may
hope that it would be the case that we are lucky and My, rather than just being a collection
of edges from L to R, actually also contains some edges in the other direction as well. If that
is the case, maybe we could actually find longer paths in My of the form i1 → i2 → · · · → it
in the graph My. This means that

• yi1 − yit ≥ 10t

• 1
4E(xi1 − xit)2 = Pr[xi1 6= xit] ≤ t∆ (using the union bound).

But since yi1 − yij is a Gaussian random variable with expectation zero and variance at most
t∆, the probability that it is at least 10t is at most

exp(−102
√
t∆) (1)

which would be o(n−2) if we can get t∆ = log n, in which case by the union bound, there
would not exist such a pair, contradicting our assumption.

Making this argument into a reality To actually make this argument formal takes a lot of
work, and we will not show the full proof, but here is the intuition. Interestingly, we will use
the same expansion theorem in the cube that was used for the counterexample showing that
we can’t go beyond

√
log n.

The main issue is the following - using simple averaging we can assume without loss of
generality that for every vertex j, with some probability δ > 0 there will exist a vertex i such
that i ∼H j and yj − yi > 10 and with the same probability there will exist a vertex k such
that i ∼H k and yk − yi > 10, but to show that we can chain these together and get the path
i→ j → k we need these two events to happen simultaneously.

We can think of every random variable xi as a vector vj ∈ {±1}` (where ` is the number of
points in the sample space). To sample the Gaussian variables y1, . . . , yn we can choose a
random vector r ∈ {±1}` and let yi = 〈xi, r〉/

√
`. (This is not exactly a Gaussian but is very

close to one when ` is large; to get exact Gaussian we choose r to be a standard Gaussian
vector — it will not change the argument.) So, we can think of the following situation: we
have the vector v0 correspond to the vertex j, and the vectors v1, . . . , vD corresponding to the
variables that are ∆-close to xj (i.e., the neighbors of j in H). We know that with probability
at least, say, 1/1000, over the choice of r there exists i such that 〈v0−vi, r〉 ≥ 10

√
`, which also

implies that with the same probability there exists k such that 〈vk−v0, r〉 ≥ 10
√
`. We would

like to show that these two events happen simultanesouly with some constant probability.

Let R be the set of r’s such that the first event happens for it. Note that |R| ≥ 2n/1000.
We now consider what happens if we choose a random r ∈ R and then perturb it to a
string r′ by modifying a set I ′ ⊆ [`] of c

√
` coordinates for some large constant c. Let i be

such that 〈v0 − vi, r〉 ≥ 10
√
`, and let I be the set of coordinates where vi and v0 differ.

Since v0 and vi correspond to ∆-close variables, |I| ≤ ∆`, and so with very high probability
|I ∩ I ′| ≤ O(∆|I ′|) = O(∆

√
`). In this case, the perturbation can change the dot product

〈v0 − vi, r〉 by at most O(∆
√
`) and hence (since ∆ = o(1)) we get that 〈v0 − vi, r′〉 ≥ 9

√
`.

But by the hypercube expansion theorem, if c is big enough then the set R′ obtained by first
picking a random r ∈ R and then perturbing it by c

√
` has measure at least 0.999. Hence

we have shown that (slightly weaker versions of) the events actually happen with probability
0.99 and so we can argue that they happen simultaneously. As we continue doing this to get

3

longer paths, the main difference would be that we would need to consider v0 and vi that
are not of distance 1 but of distance t in the graph, and hence in the calculation above we
would need t∆ < 1/(10c), and so we would only be able to get paths of length t = O(1/∆).
Plugging this to (??) we see that we get a contrdiction as long as ∆−2 > c log n for some
constant c, and hence we get an approximation algorithm of O(1/∆) = O(

√
log n).

4

