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Suggested reading This lecture is based on Section 5 of my paper with Kelner and Steurer
”Rounding SOS relaxations” http://arxiv.org/abs/1312.6652 For a possibly cleaner ex-
position, see pages 17-19 of the survey with Steurer

For some motivation and prior work on the problem itself, see Paul Hand, Laurent Demanet
”Recovering the Sparsest Element in a Subspace” http://arxiv.org/abs/1310.1654

Problem description In this lecture we will see how the SOS algorithm can be used to solve the
following problem: Suppose that V ⊆ Rn is a random k-dimensional linear subspace in which
someone ”planted” a sparse vector v0. The goal is to recover v0 given an arbitrary basis of
V . (See more formal description below.)

Motivation The problem itself is somewhat natural, and can be thought of as an average-case
real (as opposed to finite field) version of the ”shortest codeword” or ”lattice shortest vector”
problem. This also turns out to be related (at least in terms of techniques) to problems in
unsupervised learning such as dictionary learning / sparse coding.

Contrast with compressed sensing/sparse recovery The problem is similar to the sparse re-
covery (also known as ”compressed sensing”) task where one is given an affine subspace A
that is of the form v0 +V where v0 is sparse and V is an (essentially) random linear subspace,
and the goal is to recover v0.

(Typically the problem is described somewhat differently: we have an m×n matrix A (often
chosen at random), we get the value y = Av0 which determines the k = n −m dimensional
affine subspace v0 + Ker(A), and need to recover v0.)

One difference between the problems is parameters (we will think of k � n, while in sparse
recovery typically k ∼ n − o(n)) but another more fundamental difference is that a linear
subspace always has the all-zeroes vector in it, and hence, in contrast to the affine case, v0 is
not the sparsest vector in the subspace (only the sparsest nonzero one).

This complicates matters, as the algorithm of choice for sparse recovery is L1 minimization:
find v ∈ A that minimizes ‖v‖1 =

∑n
i=1 |vi|. (This can be done by the linear program

minn
i=1 xi subject to xi ≥ vi, xi ≥ −vi, v ∈ A.) But of course if A was a linear subspace but

not affine, then this would return the all zero vectors. (Though see below on variants that do
make sense for the planted vector problem.)

Formal description of problem We assume that v1, . . . , vk ∈ Rn are chosen randomly as stan-
dard Gaussian vectors, and v0 is some arbitrary unit vector with at most εn nonzero coordi-
nates. We are given some basis B for Span{v0, v1, . . . , vk}. The goal is to recover v0. For this
lecture, this means recovering a unit vector v such that 〈v, v0〉2 ≥ 0.99. For simplicity lets
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also assume that v0 is orthogonal to v1, . . . , vk. (This is not really needed but helps simplify
some minor calculations.)

Prior work The following variant of L1 minimization was suggested for this problem (Spielman-
Wang-Wright, Demanet-Hand): find a solution v ∈ V that minimizes ‖v‖1 =

∑
|vi| subject

to the condition maxi vi ≥ 1. This can be solved by n linear programs (can you see why?).

The problem is that a random k dimensional subspace V will contain a vector v with max vi ≥
1 but

∑
|vi| ≤ O(

√
k/n), and so if |v0| � n/

√
k, then even though it is would still with high

probability be the sparsest nonzero vector in V , it would not be the solution to this program.

Main result There exists ε > 0 such that if |v0| ≤ εn and k ≤ ε
√
n then we can recover the vector.

Algorithm To use the SOS algorithm we need to translate this problem into polynomial equa-
tions. Our intuition for doing so would be that sparse vectors v maximize so called ”hyper-
contractive” ratios ‖v‖q/‖v‖p for q > p. Specifically, we will assume we know ‖v0‖4 and so
consider the following set of equations on variables v

E = {v ∈ V, ‖v‖22 = 1, ‖v‖44 = C4/n}

When v0 is a unit vector with ≤ εn nonzero coordinates then if the coordinates all have the
same value then ‖v0‖44 = 1/(εn) and it can be shown that this case minimizes the 4-norm
(exercise).

Main Lemma Let {v} be a pseudo-distribution satisfying E . Then Ẽ‖Pv‖2 ≤ 0.001 where P is
the projector to the subspace Span{v1, . . . , vk}.
From main lemma to algorithm— use the quadratic sampling lemma:

Gaussian Quadratic Sampling Lemma If {v} is a degree d ≥ 2 pseudo distribution, then there
exists a Gaussian distribution {u} such that ẼP (v) = EP (u) for every polynomial P of degree
at most 2.

Proof of Gaussian Quadratic Sampling Lemma By shifting we can assume that Ẽvi = 0 for
all i. Since {v} is a degree 2 pseudo-distribution, its second moment matrix M = Ẽv⊗2 =
Ẽvv> is psd. Hence, we can write M = B>B where B is a d × n matrix with columns
b1, . . . , bn and so Mi,j = 〈bi, bj〉. Choose a random standard Gaussian vector g = (g1, . . . , gn)
and let zi = 〈bi, g〉.
Then, for every i, j, we get that

Ezizj = E〈bi, g〉〈bj , g〉 =
∑
a,b

bi(a)gabi(b)gb =
∑

ai(a)bj(a) = 〈bi, bj〉 = Mi,j

using the fact that the Gaussians are independent and so Egagb equals 0 if a 6= b and equals
1 otherwise.

QSL implies main theorem Let {u} be the Gaussian distribution obtained from {v}, then
E‖Pu‖22 ≤ 0.001. Using Markov we can argue that if we sample u from {u} then with
decent probability ‖Pu‖22 ≤ 0.01 and ‖u‖22 ≥ 1/2, which implies ‖Pu‖22 ≤ 0.002‖u‖2 and so
〈u, v0〉2 ≥ 0.99‖u‖2.
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Note Where did we use the fact that {u} is a degree 4 (as opposed to degree 2) pseudo distribution?
We didn’t— we only use it in the proof of the main lemma. (Note however that the hypothesis
of the Main Lemma doesn’t even make sense for pseudo distributions of degree smaller than
4.)

Proof of Main Lemma We first prove the main lemma for actual distribution and then use
Marley’s corollary. The proof has two parts:

Lemma 1 (actual distributions) With high probability

‖Pv‖44 ≤ 10‖Pv‖42/n (1)

for every v.

Lemma 2 (actual distributions) If P satisfies (1) then for every unit vector v ∈ V with ‖v‖4 =
‖v0‖4 = C/n1/4, 〈v, v0〉2 ≥ 1−O(1/C).

Note that Main lemma follows immediately from Lemma 1 and Lemma 2 since in our case
C � 1.

Proof of Lemma 2 (actual distributions) Lemma 2 is actually quite simple:

If v ∈ V then we can write v = αv0 + Pv, hence using the triangle inequality

‖v‖4 ≤ α‖v0‖4 + ‖Pv‖4

or
α ≥ 1− ‖Pv‖4/‖v0‖4

Plugging in ‖Pv‖4 ≤ 2‖v‖42/n1/4 and ‖v0‖4 = C/n1/4 we get the result.

Proof of Lemma 1 (actual distributions): An equivalent formulation is that given an orthonor-
mal basis matrix B for Span{v1, . . . , vk},

‖Bv‖44 ≤ 10‖v‖42/n (2)

Now, the matrix B whose columns are v1/
√
n, . . . , vk/

√
n is almost such a matrix (since these

vectors are random, they are nearly orthogonal), and so lets just assume it is the basis matrix.
So, we need to show that if B has i.i.d. N(0, 1/

√
n) coordinates and n� k2 then with high

probability (2) is satisfied.

Let w1, . . . , wn be the rows of B.

‖Bv‖44 =

n∑
i=1

〈wi, v〉4 = 1
n

n∑
i=1

n〈wi, v〉4

That means, that we can think of P (v) = ‖Bv‖44 as the average of n random polynomials each
chosen as n〈w, v〉4 where the w has i.i.d N(0, 1/

√
n). Since in expectation 〈w, v〉4 ≤ 5‖v‖42/n

(exercise), we can see that if n is sufficiently large then P (v) would be very close to its
expectation and so have P (v) ≤ ‖v‖42/n.

It turns out that ”sufficiently large” in this case means as long as n � k2, but the exercises
explore the case n� k4 which is a much easier argument.
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Testing the ”Marley Hypothesis” We now need to show that everything follows through even
when {v} is not an actual distribution. For this we need to phrase Lemmas 1 and 2 in a p.d.
way:

Lemma 1 (pseudo-distributions) With high probability

‖Pv‖44 � 10‖Pv‖42/n (3)

where we denote P � Q if Q− P is a sum of squares.

Lemma 2 (pseudo-distributions) If P satisfies (3) then for every degree 4 pseudo-distribution
{v} satisfying {‖v‖22 = 1, ‖v‖44 = ‖v0‖44 = V 4/n} it holds that Ẽ〈v, v0〉2 ≥ 1−O(1/c).

Proof of p.d. Lemma 1 It turns out that the proof of (1) actually already implies (3).

Proof of p.d. Lemma 2 The crucial part is to prove an SOS version of the triangle inequality
for the 4-norm.

We can still write v = 〈v0, v〉v0 + Pv and so

‖v‖44 = ‖〈v0, v〉v0 + Pv‖44

Therefore, if we can prove that for every pseudo-distribution of degree at least 4 over vectors
{(u,w)}, (

Ẽ‖u+ w‖44
)1/4

≤
(
Ẽ‖u‖44

)1/4
+
(
Ẽ‖w‖44

)1/4
then we can carry through the analysis as before.

This is true, but let us prove something a little weaker that still suffices: if Ẽ‖u‖44 ≥ Ẽ‖w‖44
then (

Ẽ‖u+ w‖44
)4
≤ Ẽ‖u‖44 + 15

(
Ẽ‖u‖44

)3/4 (
Ẽ‖w‖44

)1/4
this will follow from the Cauchy-Schwarz and Holder inequalities, which have SOS proofs.
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