SOS Lecture 4: SOS Lower bound for random 3XOR / Boaz Barak

Debt from last time Gaussian Sampling Lemma - didn’t forget but will return to it when we
need it

Limitations of SOS The SOS method is quite powerful and we have very few (in some sense
only one*) lower bounds for it. We will see the central one now. In some sense this is not
surprising, since it merely says that the SOS method cannot solve an NP hard problem,
but ”"beggars can’t be choosers” and we should be happy with what we are able to prove.
This lower bound was first proven by Grigoriev in 2001 (interestingly, about the same time
that Parrilo and Lasserre gave the SOS algorithm, which Grigoriev wasn’t aware of) and
rediscovered by Schoenebeck in 2008.

Theorem There exists € > 0 such that if £ is a random set of m = 100n 3XOR equations over
GF(2)™, then with constant probability there is a degree en distribution {z} that satisfies &.

(To formulate this as a polynomial program we naturally identify GF(2) with {£1} in which
case addition modulo 2 becomes multiplication and every linear equation becomes a polyno-
mial equation of the form x;z;x; = o for some o € {£1}.)

Notes This is non-trivial since (as you’ll show in an exercise) with probability 1 —o(1), £ will not
be satisfiable and in fact there will not be an assignment satisfying 1/2 + ¢ fraction of the
equations (where ¢ tends to zero with 100..).

The problem of determining whether a set of linear equations modulo 2 is satisfiable is of
course not NP hard. As a rule of thumb it seems that the SOS algorithm is often ”inherently
robust” in the sense that if it can determine whether some family of equations is satisfiable, it
can also determine whether it is almost satisfiable. In contrast the Gaussian elimination algo-
rithm is extremely ”brittle” and works only for perfectly (or exponentially close to perfectly)
satisfiable equations. So, the hardness for SOS can be ”explained” by the NP hardness (due
to Hastad) of the task of distinguishing between a set of linear equations that can be 0.999
satisfied and a set for which no assignment satifies more than 0.51 fraction of the equations.

The proof Let G = (LUR, E) be the m +n vertex bipartite graph where we connect a left vertex
¢ € L to the right vertices 7, j,k € R if the equation x;x;x), = o exists in £&. We make the
following claim:

Lemma 1. There exists some € > 0 such that with constant probability, for every subset
S C L with |S| < en,|T'(S) > 1.7|S|, where T'(S) = {j € R: Ji € Ss.t.(i,j) € R}.

We say that G is a ”lossless expander” if it satisfies the conditions of Lemma 1. (The name
comes from the extractor literature and generally applies to d-regular graphs where sufficiently
small sets have expansion larger than d/2; interestingly we do not know how to efficiently
verify lossless expansion, and also have very few explicit constructions of such graphs.)

The proof of the lemma is left as an exercise. Note that the qualification of constant proba-
bility (as opposed to probability close to 1) is needed since with probability at least 0.9 or so
we will have two equations that share two variables (for every particular pair this will happen
with probability n~2 and there are m? pairs). However, it is actually true that with very
high probability for random equations there will be a pseudo-distribution of ©2(n) degree that
satisfies m — o(m) of the constraints.

Given this the main result follows from the following lemma:



Lemma 2. Suppose that G is a lossless expander as in Lemma 1. Then there exists a degree
d = en/1000 pseudo-distribution {x} satisfying all constraints in &.

Constructing the pseudo-distribution The pseudo-distribution {x} is constructed by follow-
ing Einstein’s method who said

Pseudo-distributions should be constructed to be as random as possible but not
randomer.

Musings To quote some comments in prior lecture:

e In statistical learning problems (and economics) we often capture our knowledge (or lack
thereof) by a distribution. If an unknown quantity X is selected and we are given the
observations y about it, we often describe our knowledge of by a the distribution X|y.
In computational problems, often the observations y completely determine the value X,
but pseudo-distribution can still capture our ”computational knowledge”.

e The proof system view can also be considered as a way to capture our limited com-
putational abilities. In the example above, a computationally unbounded observer can
deduce from the observations y all the true facts it implies and hence completely deter-
mine X. One way to capture the limits of a computationally bounded observer is that
it can only deduce facts using a more limited, sound but not complete, proof system.

Here we we can think of a more concrete instantiation of this. Think of X is a ”planted” solu-
tion to the linear system (perhaps with some noise) and y as the actual equations themselves.
Pseudo-distributions can be thought of as capturing the knowledge of a computationally
bounded observer about the potential satisfying assignment for the equations £. A priori the
assignment could be completely random, but of course once we see the equations they deter-
mine some constraints on it. An unbounded observer would see that the equations determine
so many constraints that in the planted case, determine it completely and in the random case
there simply doesn’t exist such an assignment. But a bounded observer might only be able
to deduce short linear relations that are obtained by combining few of the equations. This is
what is meant to be captured by the quote above. Lets see this in action.

Definition of {z} For every U C [n] of size at most d, we need to define Exy = EHieU x;.
We start by having Ezy undefined for all U. Clearly if U = {i,j,k} where the equation
x;x;x), = o appears in £ then we must define Ezy = 0. We then apply the following rule
until we can’t do it anymore: if U,V are subsets of [n] of size at most d for which Exy and
Ezy are defined and |U @ V| < d then we define Ezpay = (Exy)(Exy). After we finish
applying this rule, everything that is not defined is defined to be zero.

Lemma 3. We never attempt to give two different values to Exyr.

Proof. If there is U that is assigned two different values, then it means that there is a deriva-
tion that shows Exg = —1. We will now show this leads to a contradiction. Such a derivation
can be described by a sequence of sets Uy, ...,U; such that U; = () and for every i, either
U; is one of the basic sets in & or U; = U; @ Uy, where j,k < 1. Let Ey,...,E, be the sets
corresponding to the equations in £ and oy, ..., 0, the corresponding values. For every ¢ in
this derivation there is a set S; C L such that U; = @eg, Ey and the value assigned to IEJ;UZ.
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We claim that for every set S C L of size at most 100d, | ©pcs | > |S]/10. Indeed, suppose
otherwise, and let T' = @ycg. Then, we get that every vertex in I'(S) \ 7' must have at least
two neighbors in S (since they need to be canceled). Since (by expansion) |I'(S)| > 1.7]5]
and there 3|S| total edges leaving S, we get that

31S| > 2(L.7S| - IT])

or

7| > 1.7S| — 1.5|S| = 0.2|S]

By induction, this means that every set .S; in the derivation must have size at most 10d
(otherwise, the first set .S; violating this will equal S; @ S, each of size at most 10d and hence
would have size in (10d, 20d] but then it can’t be the case that | ®scg, E¢| < d. In particular
we get that there is a set S = Sy of size at most 10d such that

DresSi =10

contradicting the claim. d

Positivity Let P = > cyzy be a polynomial of degree at most d/10. We need to show that
EP? > 0.
We define a relation U ~ V' if IEJ:U@Y is defined. Note that this is indeed an equivalence
relation, since if Ezygy is defined and Exy g is defined then so is Ezpew = Exwev)evew)-

Split P = ) P; where each P; contains the monomials that come from a particular equivalence

class. Then . } .
EP? =) EPP; =) EP’
ij i

since for every U,V if U # V then Ezpyay = 0.

Thus it suffices to consider the case when all the monomials of P come from the same equiv-
alence class. In this case we can write P = zy, y cyxy where for every U in this sum the
value Ezy is defined (using the fact that in our distribution x? is identical to 1). Therefore,

]EP2 = E(xUO)Q Z CUCVEJ}U$V = INE(Z CU]EJEU)Q
uyv

where the last equality holds because (zy,)? is identical to 1 and for every two defined values
ExU,ExV E.TU.CEV = (E%U)(Exv)

Reductions The random 3XOR lower bound is the analog of Hastad’s PCP, and just like the
latter serves as a basis for many hardness of approximation results, the former serves as a
basis for many SOS lower bounds. However, because this mimics the NP hardness results,
it amounts to showing that the SOS algorithm cannot prove that P=NP (or that NP has a
subexponential algorithm) which of course we didn’t expect it (or any other algorithm) to do
anyway.

The relation between these integrality gaps and NP hardness is not yet fully understood. As
one example, the same methods as above can show an SOS lower bound for linear equations
that are somewhat more structured - pick a subspace V' C GF(2)¥ that does not contain any



vector of Hamming weight 1 or 2, and pick random equations of the form (x;,,...,z; ) ®
(01,...,0k) € V. Until recently there was no corresponding NP hardness result, but this was
rectified in a recent breakthrough of Siu On Chan.

A very interesting open question is to show either an SOS lower bound or an NP hardness
result for the same question but where V is not a subspace but rather an arbitrary subset
of {0, 1}”f that supports a pairwise independent distribution. Perhaps the simplest example
is when (x1,...,25) € V if 1 @ 9 ® x3 = 24 A x5. (This is known as the TSA predicate.)
Only unique game hardness is known, but in contrast to problems such as Max-Cut, in this
case the unique games conjecture seems less inherent and I would imagine that it could be
replaced with NP hardness. In particular, no sub-exponential algorithm is known for this
question.

In a paper with Kindler and Steurer we made the (somewhat bold) conjecture that in fact all
these problems are hard even for random instances.



