
SOS Lecture 2 - Max Cut and Sparsest Cut /Boaz Barak

Suggested reading See Section 6.2 (pages 143-147 in electronic version) of Williamson-Shmoys
book ”Design of approximation algorithms” for an overview of the Geomans-Williamson
Max-Cut algorithm. The Cheeger-Alon-Milman Inequality is covered in many places. One
good source is Trevisan’s CS359G Lecture Notes http://theory.stanford.edu/~trevisan/
cs359g/, Lectures 3 and 4.

A tale of two problems

Setting G = (V,E) is d-regular graph on n vertices. It has normalized adjacency matrix A
(Ai,j = 1/d if (i, j) ∈ E and Ai,j = 0 otherwise). Let L = I − A be its normalized Laplacian
matrix.

(Uniform) Sparsest cut problem Find set S ⊆ V that minimizes φ(S) = nE(S, S)/(d|S||S|).
Let φ(G) = minS φ(S).

Max cut (min uncut) problem Find set S ⊆ V that maximizes cut(S) = E(S, S)/|E|, or equiv-
alently minimizes uncut(S) = 1−cut(S). Let cut(G) = maxS cut(S), uncut(G) = 1−cut(G).

Results A random subset of measure 1/2 will cut half the edges, and in particular this gives an
algorithm achieving a cut of value at least cut(G)/2 for the Max cut problem, or achieving
value at most 1− (1− φ(G))/2 for the sparsest cut problem. In fact, this algorithm for Max
Cut was suggested by Erdös in 1967, and is one of the first analyses of any approximation
algorithm.

A priori, it is not so clear how to beat this. Lets consider the case of Max Cut. In a random
d-regular graph (which is an excellent expander), one cannot cut more than a 1/2 + ε fraction
of the edges (where the ε goes to zero at least with d (maybe with n?)). But locally, it is hard
to distinguish a random d-regular graph from a random d-regular ”almost bipartite” graph,
where we split the graph into two equal parts L and R and each edge is with probability ε
inside one of those parts and with probability 1− ε between them. Such a graph G obviously
has cut(G) ≥ 1− ε but every neighborhood of it looks like a d-regular tree, just as in the case
of a random d-regular graph. For this reason, ”combinatorial” algorithms have a hard time
getting an approximation factor better than 1/2 for Max Cut.

• ∃ poly-time algorithm to find S with φ(S) = O(
√
φ(G)). (Cheeger, Alon-Milan)

• ∃ poly-time algorithm to find S with φ(S) = O(
√

log nφ(G)) (Arora-Rao-Vazirani)

• ∃ poly-time algorithm to find S with uncut(S) = O(
√

uncut(G)) (Goemans-Williamson.)
(Corollary: there is an algorithm to find S with cut(S) ≥ αcut(G) for some α > 1/2;
value of α turns out to be 0.878.. (?).)

• ∃ poly-time algorithm to find S with uncut(S) = O(
√

log nuncut(G)) (Agarwal-Charikar-
Makarychev-Makarychev, following ARV.)

• Assuming Unique Games Conjecture, there is no poly-time algorithm to find S with
uncut(S) = o(

√
uncut(G)).

• Assuming Small-Set Expansion conjecture, there is no poly-time algorithm to find S
with φ(S) = o(

√
φ(G)).
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Linear algebra view Let x be the {±1} characteristic vector of S (i.e., xi = +1 if i ∈ S and
xi = −1 otherwise).

Then
〈x, Lx〉 =

∑
i

x2i − 1
d

∑
i∼j

xixj = 1
2d

∑
i∼j

(xi − xj)2 = 4E(S, S)/d

If x is the mean-zero characteristic vector (i.e., xi = +|S| if i ∈ S and xi = −|S| if i ∈ S)
then

〈x, Lx〉 = 1
2d

∑
i∼j

(xi − xj)2 = (|S|+ |S|)2E(S, S)/d = n2E(S, S) .

Note that in this case ‖x‖2 = |S||S|2 + |S||S|2 = n|S||S|

Max cut The heart of the Goemans-Williamson theorem is the following:

{±1} quadratic sampling lemma: Let {x} be a degree 2 pseudo-distribution satisfying the con-
straints {x2i = 1}. Then there exists an actual distribution {z} over {±1}n such that for every
i, j, if Ẽxixj = 1− ε, then Ezizj ≤ −1 +O(

√
ε).

Proof By shifting we can assume that Ẽxi = 0 for all i (we can also scale it so that Ẽx2i = 1 though
it doesn’t matter for this proof). Since {x} is a pseudo-distribution, its second moment matrix
M = Ẽx⊗2 = Ẽxx> is psd. Hence, we can write M = V >V where V is a d × n matrix
with columns v1, . . . , vn and so Mi,j = 〈vi, vj〉. Choose a random standard Gaussian vector
g = (g1, . . . , gn) and let zi = 〈vi, g〉.
Then, for every i, j, we get that

Ezizj = E〈vi, g〉〈vj , g〉 =
∑
a,b

vi(a)gavi(b)gb =
∑

ai(a)vj(a) = 〈vi, vj〉 = Mi,j

using the fact that the Gaussians are independent and so Egagb equals 0 if a 6= b and equals
1 otherwise.

Corollary The distribution {z} satisfies

E〈z, Lz〉 = E4n · cut(z) ≥ (4−O(
√
ε))n

(Proof: exercise - uses concavity of
√
· function.)

Proof of Lemma The construction of the distribution {z} is that we simply use z = sign(y) where
{y} is the Gaussian distribution matching the first two moments of {x}. We thus simply need
to prove the following lemma: (can you see why)

Lemma Let Y, Y ′ be two Gaussian random variables satisfying EY 2 = EY ′2 = 1 and E(Y −Y ′)2 ≥
4− ε. Then E(sign(Y )− sign(Y ′))2 ≥ 4−O(

√
ε).

Proof of lemma Condition is equivalent to EY Y ′ ≤ −1+O(ε), and so we simply have to compute
what’s the probability that two Gaussians that almost perfectly anti-correlated (correlation
−1 + ε) agree in their signs, and it is not too hard to see that it is O(

√
ε). (Exercise)

Corollary There is a polynomial time algorithm finding S with uncut(S) = O(
√

uncut(G)).
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Sparsest cut We consider the case that there is a pseudo-distribution {T} over sets T of size
exactly n/2 such that |E(T, T )| ≤ εdn. We define the pseudo-distribution {x} so that xi = +1
if i ∈ S and xi = −1 otherwise.

Now let {z} be the distribution obtained by the 0/1 quadratic sampling lemma. Then for
every xi, xj , E1− zizj ≤ O(

√
E1− xixj) and so, letting S = {i : zi = +1},

4EE(T, T ) = d〈z, Lz〉 ≤ O(
√
εd)‖z‖2 = O(

√
εdn)

The condition that {T} satisfies that the sets have size exactly n/2 means that {x} satisfies
the constraint {

∑
xi = 0} which means in particular that

E(
∑

yi)
2 = Ẽ(

∑
xi)

2 = 0

which can be used to show that Pr[|S| ≤ 0.9n] ≥ 0.01, which suffices for the result (exercise).

The exercises discuss the idea needed to generalize the result when the pseudo-distribution
{T} is over sets of size k ≤ n/2.

In fact, the conditions we posit do not require the pseudo-distribution to be over 0/1 or ±1
valued vectors, and hence (after shifting) it is enough to find a pseudo (or actual) distribution
over vectors x ∈ Rn such that

∑
xi = 0 and x>Lx ≤ φ‖x‖2. This leads to the more usual

description of Cheeger’s inequality as relating expansion to the second largest eigenvalue of
the adjacency matrix (or equivalently, the second smallest eigenvalue of the Laplacian).
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