
S3CS 2014 - Sum of Squares - Homework 0.

Here is some suggested reading and some exercises that I would like you to do before the course.
Feel free to collaborate with others while solving those. Also, please don’t hesitate to email me with
any questions. (Please include “S3CS” in the email subject so I know that the email is related to
the course.) Note: Ryan O’Donnell is a much better lecturer than me, and so you’d probably be
able to follow his lectures even without doing the pre-work. So, I’d suggest giving a higher priority
to mine :)

Background and suggested reading. I will assume general “mathematical maturity”, and fa-
miliarity with some topics that are typically covered in undergraduate courses such as: eigenvectors
and eigenvalues, linear programming, duality and Farkas lemma, basics of probability (expectation,
variance, concentration), basic spectral graph theory (graphs and their adjacency matrices, relation
between spectrum of adjacency matrix and random walk).

Some sources for this material include Ryan O’Donnell’s CMU class “15-859T: A Theorist’s
Toolkit” (available online on http://www.cs.cmu.edu/~odonnell/toolkit13/ ), see in particular
Lectures 6–8 (spectral graph theory) and Lectures 13–14 (linear programming). See also the lecture
notes for Jonathan Kelner’s MIT course “18.409 Topics in Theoretical Comp Sci” (available online
on http://stellar.mit.edu/S/course/18/fa09/18.409/materials.html). While not strictly
necessary, you may find Luca Trevisan series of blog posts on expanders (from 2006, 2008, and
2011) illuminating, see http://lucatrevisan.wordpress.com/tag/expanders/ .

To get a sense of what we will talk about you can see my blog post “fun and games with
sums of squares” on the Windows of Theory blog http://wp.me/p2bJCi-MW as well as my survey
with David Steurer “Sum of Squares proofs and the quest toward optimal algorithms” at http:

//eccc.hpi-web.de/report/2014/059/

All matrices and vectors will be over the reals. In all the exercises below you can use the fact
that any n× n matrix A has a singular value decomposition (SVD)

A =

r∑
i=1

σiui ⊗ vi

with σi ∈ R and ui, vi ∈ Rn, and for every i, j ‖ui‖ = 1 , ‖vj‖ = 1 (where ‖v‖ =
√∑

v2i ), and for all

i 6= j, 〈ui, uj〉 = 0 and 〈vi, vj〉 = 0. (For vectors u, v, their tensor product is defined as u⊗ v is the
matrix T = uv> where Ti,j = uivj .) Equivalently A = UΣV > where Σ is a diagonal matrix and U
and V are orthogonal matrices (satisfying U>U = V >V = I). If A is symmetric then there is such
a decomposition with ui = vi for all i (i.e., U = V ). In this case the values σ1, . . . , σr are known
as eigenvalues of A and the vectors v1, . . . , vr are known as eigenvectors. (This decomposition is
unique if r = n and all the σi’s are distinct.) Moreover the SVD of A can be found in polynomial
time. (You can ignore issues of numerical accuracy in all exercises.)
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Exercise 1. For an n × n matrix A, the spectral norm of A is defined as the maximum of ‖Av‖
over all vectors v ∈ Rn with ‖v‖ = 1.

1. Prove that if A is symmetric (i.e., A = A>), then ‖A‖ ≤ maxi
∑

j |Ai,j |. See footnote for

hint1

2. Show that if A is the adjacency matrix of a d-regular graph then ‖A‖ = d.

Exercise 2. Let A be a symmetric n× n matrix. The Frobenius norm of A, denoted by ‖A‖F , is

defined as
√∑

i,j A
2
i,j .

1. Prove that ‖A‖ ≤ ‖A‖F ≤
√
n‖A‖. Give examples where each of those inequalities is tight.

2. Let tr(A) =
∑
Ai,i. Prove that for every even k, ‖A‖ ≤ tr(Ak)1/k ≤ n1/k‖A‖.

3. (harder) Let A be a symmetric matrix such that Ai,i = 0 for all i and Ai,j is chosen to be
a random value in {±1} independently of all others. (a) Prove that with high probability
‖A‖ ≤ n0.9. (b) Prove that with high probability ‖A‖ ≤ n0.51.

Note: While ‖A‖ can be computed in polynomial time, both maxi
∑

j |Ai,j | and ‖A‖F give even
simpler to compute upper bounds for ‖A‖. However the examples in Exercise 1 and 2 show that
they are not always tight. It is often easier to compute tr(Ak)1/k than trying to compute ‖A‖
directly, and as k grows this yields a better and better estimate.

Exercise 3. Let A be an n× n symmetric matrix. Prove that the following are equivalent:

1. A is positive semi-definite. That is, for every vector v ∈ Rn, v>Av ≥ 0 (where we think of
vectors as column vectors and so v>Av =

∑
i,j Ai,jvivj).

2. All eigenvalues of A are non-negative. That is, if Av = λv then λ ≥ 0.

3. The quadratic polynomial PA defined as PA(x) =
∑
Ai,jxixj is a sum of squares. That is,

there are linear functions L1, . . . , Lm such that PA =
∑

i(Li)
2.

4. A = B>B for some n× r matrix B

5. There exist a set of correlated random variables (X1, . . . , Xm) such that for every i, j, EXiXj =
Ai,j and moreover, for every i, the random variable Xi is distributed like a Normal variable
with mean 0 and variance Ai,i.

Exercise 4. Give a polynomial-time algorithm that given a matrix A that is not positive semidef-
inite, finds a matrix M such that 〈A,M〉 < 0, where 〈A,M〉 =

∑
i,j Ai,jMi,j = tr(AM) but

〈B,M〉 ≥ 0 for every B that is positive semidefinite. (Such an algorithm is known as a separation
oracle for the set of positive semidefinite matrices.)

Exercise 5. Let d be even. Recall that a polynomial P of degree d is a sum of squares if there
exist polynomials Q1, . . . , Qr such that P =

∑
Q2

i .

1. Prove that if P is a sum of squares, then in every such decomposition of it degQi ≤ d/2 for
all i. See footnote for hint2

1Hint: You can do this via the following stronger inequality: for any (not necessarily symmetric) matrix A, ‖A‖ ≤
√
αβ where α =

maxi
∑

j |Ai,j | and β = maxj
∑

i |Ai,j |.
2Hint: Prove that the coefficient of the highest degree in the Q2

i ’s is always positive and so can’t be canceled.
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2. We say that P is homogenous if every monomial of P has degree exactly d. Prove that if P is
homogenous and a sum of squares then it has a decomposition where every Qi is homogenous
as well. See footnote for hint3

Exercise 6. For A an n2 × n2 symmetric matrix, we let PA be the degree 4 polynomial PA(x) =∑
i,j,k,`Ai,j,k,`xixjxkxl. We say that A ∼ B if PA = PB.

1. Show that the set of B such that B ∼ A is an affine subspace of Rn2
(i.e., it is defined by

linear equations on the coefficients).

2. Prove that PA is a sum of squares polynomial if and only if there exists a positive semidefinite
matrix B such that B ∼ A.

3. (harder) Prove that PA is a sum of squares polynomial if and only if there does not exist
an n2 × n2 matrix X such that for every permutation π : [4] → [4] and i1, . . . , i4 ∈ [n],
Xi1,i2,i3,i4 = Xiπ(1),iπ(2),iπ(3),iπ(4)

, X is positive semidefinite, and tr(AX) < 0. (This is semidef-
inite programming duality— can you see why?)

Exercise 7. Let Pn
d denote the set of n-variate polynomials of degree d and Snd denote the set of

such polynomials that are sums of squares.

1. Prove that Pn
d is a linear subspace with dimension smaller than n2d.

2. Prove that if P,Q ∈ Snd and α, β ≥ 0, then αP + βQ ∈ Snd .

3. Prove that if P ∈ Pn
d \ Snd then there exists a linear function L : Pn

d → R such that L(P ) < 0
but L(Q) ≥ 0 for every Q ∈ Snd . Can you give an nO(d) time algorithm to find such a function
L given P? (This is a separation oracle for Snd .)

Exercise 8. Prove that the following 4-variate polynomial is a sum of squares:

P (a, b, c, d) = 1
4

[
a8 + b8 + c8 + d8

]
− a2b2c2d2

Exercise 9 (Harder - bonus). Prove that the following 4-variate polynomial is not a sum of squares:

P (a, b, c, d) = 1
4

[
a2b2 + a2c2 + b2c2 + d4

]
− abcd

3Hint: For every Qi, let Q′
i denote the polynomial obtained by taking only the monomials of Qi of degree d/2. Prove that P =

∑
Q′2

i .
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