
SOS Lecture 6: The SOS approach to refuting the UGC / Boaz Barak

Morally speaking, the Unique Games Conjecture (UGC) asserts that a simple algorithm—
namely the degree 2 SOS program— is the optimal efficient algorithm for a wide range of opti-
mization problems. Thus if the UGC is true one might expect that the SOS hierarchy is very often
useless— there is no point in going beyond the degree two case unless you go for a large degree
that would amount to the exponential-time brute force algorithm. We do not know whether the
UGC as stated is true, but we will see that this strong version of it is false— we have already seen
examples where we can get non-trivial improvements by the SOS algorithm with moderate degree,
and as we will see today, we can get such guarantees even for the Unique Games problem itself.
Namely, the SOS algorithm yields a sub-exponential (2n

ε
) time algorithm for the Unique Games

problem. While falling short of disproving the UGC, this algorithm does significantly outperform
the trivial brute-force algorithm.

The SOS hierarchy represents the most promising approach I know of towards refuting the UGC.
Progress towards this goal has been somewhat slow, with papers that show the algorithm works
for particular instances, or work for general instances but with parameters that are far from what’s
needed to refute the UGC. But it has also been steady, and an algorithm-optimistic (or complexity-
pessimistic) view towards it is that the problem might eventually succumb by the Grothendieck
“Rising Sea” method:

I can illustrate the second approach [to solving a problem] with the same image of a nut
to be opened. The first analogy that came to my mind is of immersing the nut in some
softening liquid, and why not simply water? From time to time you rub so the liquid
penetrates better, and otherwise you let time pass. The shell becomes more flexible
through weeks and months— when the time is ripe, hand pressure is enough, the shell
opens like a perfectly ripened avocado!

A different image came to me a few weeks ago. The unknown thing to be known
appeared to me as some stretch of earth or hard marl, resisting penetration. . . the sea
advances insensibly in silence, nothing seems to happen, nothing moves, the water is so
far off you hardly hear it. . . yet it finally surrounds the resistant substance.

Another, perhaps slightly less classy metaphor that comes to my mind is the Austin Powers
steamroller, though at this point it’s still unclear if the SOS steamroller will stop short of running
over the UGC...

I should note that the SOS hierarchy also plays an important role in the most promising ap-
proach I know of to prove the conjecture. This is the work of Khot and Moshkovitz which Dana
discussed in our reading group and I will refer to briefly today. I do believe in the ”rising sea”
approach in the sense that, true or false, settling the UGC will eventually be only a minor part of
a much larger theory that will give us a broad understanding of the power of the SOS algorithm,
and of efficient algorithms in general, for many classes of optimization problems.

1 The Small Set Expansion Hypothesis

There is actually a family of problems related to the Unique Games Conjecture. All these problems
share the feature that the best known approximation algorithm for them is the degree 2 SOS and
that we have no proof one can’t do better. The three most prominent problems in this class are:
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• SSE(ε): Distinguishing, given a d-regular graph G = (V,E) of n vertices, between the YES
case where there exists a set S of n/ log n vertices such that |E(S, S)| ≤ εd|S| and the NO
case where every set S of at most n/ log n vertices satisfies |E(S, S)| ≥ (1− ε)d|S|.

• UG(ε): Distinguishing, given a set of linear equations over n variables taking values in Zlogn

such that each equation only involves two variables, between the YES case where there exists
an assignment to the variables that satisfies a 1 − ε fraction of the equations, and the NO
case where every assignment satisfies at most ε fraction of them.1

• 2LIN(ε): Distinguishing, given a set of linear equations over n variables taking values in Z2

such that each equation only involves two variables, between the YES case where there exists
an assignment to the variables that satisfies a 1 − ε fraction of the equations, and the NO
case where every assignment satisfies a 1−

√
ε/10 fraction of them.

In all cases we think of ε as a small constant tending to zero (e.g., think ε = 0.01 or ε = 0.001).
We have the following relation between these problems

SSE(ε) � UG(ε) � 2LIN(ε)

by which we mean that there is a polynomial-time reduction from SSE(ε) to UG(ε′) (for some ε′

depending on ε and tending to 0 with ε) and from UG(ε) to 2LIN(ε′). Reductions in the other
directions are not known, but current knowledge suggests that all three problems are likely to be
computationally equivalent. In particular all known algorithmic and hardness results apply equally
well to the SSE(ε) and UG(ε). The best polynomial-time algorithm known for all three problems
is the degree 2 SOS algorithm. In particular for SSE this algorithm corresponds to a generalization
of Cheeger’s Inequality, while for 2LIN it corresponds to a (small) generalization of the Goemans-
Williamson Max-Cut algorithm. The version of 2LIN(ε) of distinguishing between value 1− ε vs.
1−1.01ε is known to be NP-hard (for some value of 1.01) and in fact this reduction has quasilinear
blowup and so under standard assumptions this problem cannot be solved in 2n

0.999
time.

The Unique Games Conjecture (UGC) asserts that for every ε > 0, UG(ε) is NP hard. The
Small Set Expansion Hypothesis (SSEH) asserts that for every ε > 0, SSE(ε) is NP hard. One
can also phrase a 2LIN hypothesis (2LINH) that for every ε > 0, 2LIN(ε) is NP-hard. Given
the discussion above, the SSEH implies the UGC and is very likely to be equivalent to it. Since
it also implies all consequences of the UGC (including the 2LINH), the SSEH is a natural anchor
for the problems in the ”Unique Games Sphere” and so a natural object of study towards refuting
the UGC. Conversely, the 2LINH is a natural object of study towards proving the UGC (which is
indeed the Khot-Moshkovitz approach).

Note: All these problems are typically stated with more parameters than ε, and we fixed the other
parameter to be log n in SSE and UG for simplicity. This version can be shown to be equivalent
to the more standard version by known reductions.

2 2 to q norm and small set expansion

The main current approach to the attacking the small-set expansion problem via SOS goes through
hyper-contractive norms. Specifically we will use the following result. Informally, we call a d-regular
graph G = (V,E) a small set expander if subsets S of size o(|V |) satisfy |E(S, S)| ≥ (1− o(1))d|S|.

1For every c < 1/2, the version of the UG(ε) where we compare 1− ε vs 1− εc is known to be equivalent to UG(ε′)
(for ε′ related to ε) using Rao’s parallel repetition theorem.
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Theorem 1 (Informal). For every even q > 2, a graph G is a small set expander if and only if
every vector w in G’s top eigenspace satisfies

Eiwqi ≤ O(Ew2
i )
q/2 (1)

Thus a sufficiently good approximation algorithm for (1) would yield an algorithm for the small
set expansion problem. This approach seems to be extremely ambitious in the sense that we try to
approximate the ratio of the q and 2 norms over an arbitrary subspace W , forgetting any additional
structure W may have had since it is the top eigenspace of some graph. However, this makes the
problem also cleaner and presumably, if there are hard instances for it, then it would be easier to
find them.

Keeping to a rough, informal level, the proof that O(1) levels of the SOS algorithm solve all
previously known hard instances rely on the fact that it can certify (1) for the subspace of low
degree polynomials over {±1}logn. With Kelner and Steurer, we showed that O(1) rounds of SOS
yield an dim(W )1/3 approximation (in some precise sense) of the 2 to 4 problem. If this result could
be improved to a constant or even polylog(n) (perhaps even no(1)), even at the expense of using
polylog(n) (or perhaps even no(1)) rounds this would refute the SSEH and likely can be extended
to refute the UGC as well.

We will now give an informal intuition behind the theorem, and sketch how it implies a sub-
exponential algorithm for small-set expansion (that can be extended to the Unique Games problem
as well), and then describe in full the dim(W )1/3 algorithm. (Depending on time, we may or may
not cover the full proof of Theorem 1.)

2.1 The relation between the 2 to 4 norm and small set expansion

We now give some intuition on the relation between the 2 to q norm and small set expansion.
For simplicity, we focus on the case q = 4 although it is not hard to see that the same intuition
holds for every even q > 2. In the second lecture we saw the following results that says that if
Ew4

i ≤ O(Ew2
i )

2 for every w in the top eigenspace of G then G is a small set expander:

Lemma 2. Let G = (V,E) be regular graph, λ ∈ (0, 1) and W be the span of eigenvectors of G’s
normalized adjacency matrix corresponding to eigenvalue at least 1− λ. If every w ∈W satisfies:

Eiw4
i ≤ C

(
Eiw2

i

)2
(2)

then for every set S of measure δ set,

φ(S) ≥ λ(1−
√
Cδ)

The proof of the lemma (which we saw) is a fairly straightforward contrapositive argument—
if S is a set of o(1) measure that doesn’t expand, then the projection of 1S to the top eigenspace
will still have large 4 norm compared to its 2 norm.

The other direction— transforming a vector w in the top eigenspace with large 4 to 2 norm
ratio into a small set that doesn’t expand— is trickier. It is instructive to compare this with
Cheeger’s Inequality. The difficult direction of Cheeger’s Inequality transforms a vector w in the
top eigenspace (but orthogonal to the all 1’s vector) into a set of measure at most 1/2 that does
not expand. In fact, Cheeger doesn’t need the vector w to be an eigenvector at all. As long as

w>Gw ≥ (1− ε)‖w‖2 (3)
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the transformation of Cheeger (which involves choosing a random threshold τ with probability
proportional to τ2 and taking the set of all coordinates of w that are larger than τ) will yield such
a set.

One could hope that if w satisfies Ew4
i � (Ew2

i )
2 then by using the same or a similar transfor-

mation we can get a small set that doesn’t expand. However, this is a bit tricky— in particular
we cannot do so by only assuming (3), since it is trivial to modify every vector w to have high 4
norm without hurting (3) too much. For example if w satisfies Ew2

i = 1, we can add n0.3e1 to w.
This change will make the 4-norm of w huge, but will be negligible in the 2 norm and hence will
not hurt (3). Therefore, to make the proof go through we must use the fact that w is completely
contained in the top eigenspace, as opposed to merely satisfying (3).

Intuition for the actual proof. To get some intuition for the proof, lets assume that the graph
G is ”nice” in the following sense: for every vector w, if w is in the eigenspace of G corresponding
to eigenvalues larger than 1 − ε then the vector w�q, defined as w�qi = wqi , is in the eigenspace
corresponding to eigenvalues larger than 1− qε. For example, Cayley graphs over the Boolean cube
are ”nice”:

Exercise 1: Prove that if G is a Cayley graph over GF (2)` (i.e., G’s vertices are elements of
GF (2)` and x is connected to y if x ⊕ y ∈ S for some subset S ⊆ GF (2)`) then it is nice. See
footnote for hint2 Can you generalize this to other Cayley graphs?

Now this means that if there is a vector w in G’s top eigenspace satisfying Ew4
i � (Ew2

i )
2

then the vector v = w�2 is also in G’s top eigenspace (for a slightly looser definition of ”top”)
and satisfies Ev2

i � (E|vi|)2. However it turns out that the Cheeger transformation does actually
produce a set of measure at most O(δ) if you apply it to a vector v satisfying δEv2

i > (E|vi|)2.
Indeed, without loss of generality we can normalize so that

∑
|vi| = 1, and so we can think of

|vi| as a probability distirbution and this condition means that it has collision probability at least
1/(δn). Let S be the set of i’s such that |vi| > 1/(100δn). Note that |S| ≤ 100δn. Now one can
show that if we do the Cheeger transformation then with high probability we will output a subset
of S. (For a formal argument see the paper of Dimitriou and Impagliazzo (1998) or the appendix
of Arora,Barak Steurer (2010).)

The argument for ”non nice” graphs is substantially more complicated. Specifically, rather than
giving a simple transformation that takes any w satisfying the conditions into a set S that does not
expand, the argument needs to assume that w is (close to) the optimal vector in the subspace in
terms of the relation between its q and 2 norm. The full proof is enclosed below and we will cover
it in class based on time constraints.

Exercise 2: (Open) Find a simpler proof for Theorem 1

Theorem 1 immediately implies a sub-exponential time algorithm for small set expansion using
the following exercise (a version of which for q = 4 we’ve already seen in a previous lecture):

Exercise 3: Let q be any even constant and W be a subspace of Rn with dimension� n2/q. Then
there exists w ∈W such that (Ewqi )� (Ew2

i )
2. See footnote for hint3

This yields a sub-exponential algorithm since for SSE(ε) we can take consider the subspace
corresponding to eigenvalues larger than 1 − ε and so q to be roughly 1/ε. This means that

2Hint:The eigenvectors for such a graph are always the functions {χα}α∈GF (2)`
where χα(x) = −1〈x,α〉. Note that χα � χβ = χα⊕β .

3Hint:Given an orthonormal basis w1, . . . , wd for W , we want to find some signs σ1, . . . , σd ∈ {±1} so that some coordinate i of the vector

w =
∑
σiwi will satisfy |wi| ≥ Ω(d/

√
n) which would imply Ewqi ≥ d

q/nq/2+1, while of course ‖w‖2 = d and so Ew2
i = d/n.
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either G’s top eigenspace has dimension at most O(n2/q), in which case we can enumerate over
(a sufficiently fine net of) it in exp(O(n2ε)) time, or if the dimension of the subspace is higher
and then we know that it can’t be a small set expander by the combination of this exercise and
Theorem 1. This algorithm can be extended for the Unique Games problem as well (see Arora,
Barak and Steurer, 2010). Note that this means that if we take ε = 0.01, we would need to look at
graphs of size roughly 250 before this algorithm is slower than a quadratic time one (for ε = 0.001
this would be 2500). So, even if the SSEH/UGC are true, they do not seem to tell us very much
on inputs that actually fit in the world’s storage capacity. This is in contrast to problems such as
SAT where, despite progress in SAT solvers, its exponential behavior is in fact quite observable
even on relatively modest sized inputs of a few thousand variables or so (not to mention variants
of SAT arising from private-key cryptography, where we can see the exponential behaviour even
on inputs as small as a few dozen variables— e.g. we still don’t know of a much better than brute
force algorithm to break the 56-bit cipher DES.) That said, even if the SSEH hypothesis is false, it
would be still very interesting to know if a linear time algorithm exists for the SSE(ε) problem.

3 Using SOS for the 2 to 4 problem

In a previous lecture we saw that SOS can certify that the span of low degree polynomials over
the Bolean cube has bounded 4 to 2 norm ratio. We did not show how this implies that the SOS
algorithm solves the UG/SSE/Max-Cut problems on previously suggested candidate hard instances
(see our STOC 2012 paper for that), but in any case this work was only for specific instances. We
now describe an approach for general instances of the problem.

A variant of Theorem 1 shows that for any constants β > α and δ > 0, an algorithm for the
following problem is sufficient to solve SSE(ε) (with ε related to the parameters below— in the
application we will let W be the subspace corresponding to eigenvalues of G larger than 1−O(ε)):
given a subspace W ⊆ Rn, distinguish between the YES case when there is a set S with |S| ≤ n/β
such that the projection of 1S to W has norm (1− δ)‖1S‖ and the NO case where for every w ∈W
such that Ew4

i ≤ α(Ew2
i )

2. For simplicity lets consider the version with δ = 0. (This seems
potentially easier, but we don’t know of any better algorithm than the one for δ > 0.)

Therefore we consider the following problem: given a d-dimensional subspace W ⊆ Rn, distin-
guish between the YES case: there is a set S with |S| ≤ n/β such that 1S ∈ W and the NO case:
Ew4

i ≤ α(Ew2
i )

2 for every w ∈W . We identify the approximation factor of this problem with β/α.
Ideally we would like an algorithm solving the problem for O(1) approximation factor, but what we
would show is an O(d1/3) approximation algorithm (taken from the work with Kelner and Steurer
which also handled the case of δ > 0).

Theorem 3. There is some constant c such that if β ≥ cd1/3α, then if there exists a degree 20
psuedo-distribution {w} over Rn satisfying the constraints w ∈ W , ‖w‖2 = 1, w2

i = wi for all
i, Eiw4

i ≥ β(Ew2
i )

2, then there exists some v ∈ W satisfying Ev4
i ≥ α(Ev2

i )
2. Moreover, we can

efficiently find such a v from the moments of {w}.

Proof. Let Π be the projector to W and let δi = Πei where ei is the ith standard basis vector.
The algorithm will use the combination of the following steps:

Random vector rounding: pick a random w ∈W .

Projection rounding: try all vectors of the form δi.
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Conditioning: find i1, . . . , i4 and change {w} to the distribution where we re-weigh the probability
of every vector by a factor of w2

i1
· · ·w4

i4
= wi1 · · ·wi4 .

Quadratic sampling: sample a gaussian distribution {v} that matches the first two moments of
{w}.

We will show that if the first two methods fail, then after conditioning, quadratic sampling will
yield a good solution.

If there exists an i such that Ej(δij)4 ≥ α(Ej(δij)2)2 then we’re done, so we can assume that

Ej(δij)4 ≤ α(Ej(δij)2)2 for every i ∈ [n].

Note that wi = 〈w, ei〉 = 〈w, δi〉 for every w ∈W .
Note that since the w’s are characteristic vectors of sets of size n/β, Eiw4

i = 1/β. Thus, by
Cauchy-Schwarz

1
β = ẼwEi〈w, δi〉4 ≤

√
Ẽ〈w,w′〉4Ei,j〈δi, δj〉4 (4)

(Exercise 4: verify this.)
Under our assumption for every i,

Ej〈δi, δj〉4 = Ej(δij)4 ≤ α
(
E(δij)

2
)2

Lets assume the RHS is the same up to a factor of α for every j (Exercise 5: show that otherwise
random vector rounding succeeds). Then we get that

EiEj〈δi, δj〉4 ≤ α2
(
Ei,j(δij)2

)2
but δij = 〈ej ,Πei〉 and so Ei,j(δij)2 is simply 1/n2 times the Frobenius norm squared of Π which is
d. Hence we get that

EiEj〈δi, δj〉4 ≤ α2d2/n4

Plugging this into (4), squaring and dividing both sides by α2d2/n4 we get that

Ẽ〈w,w′〉4 ≥ n4

α2β2d2

since d = β3/(c3α3) we get

Ẽ〈w,w′〉4 ≥ n4c6α4

β8

We now make the following claim, which crucially depends on the fact that w2
i = wi for all i:

Claim: There exists i1, . . . , i4 such that if we modify the distribution {w} by multiplying the
probability of every w with w2

i1
· · ·w2

i4
then

Ẽnew〈w,w′〉 ≥
(
Ẽold〈w,w′〉4

)1/4

Exercise 6: prove this claim
The claim implies that

Ẽ〈w,w′〉 ≥ ncα
β2

Now if we pick v to be a random vector matching the first two moments of {w}, then we claim
that Eiv4

i ≥ cα
β2 (Exercise 7: verify this.) but on the other hand Ev2

i = Ew2
i = 1/β, hence

concluding the proof.
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Theorem 3 and the Khot-Moshkovitz construction. The factor d1/3 seems rather arbitrary
and it is natural to ask whether by using more rounds we can improve it further, perhaps getting a
factor of dΩ(1/r) for degree-r SOS. This should be sufficient to refute the SSEH and quite possible
extended to refute the UGC and 2LINH as well.

In contrast, Khot and Moshkovitz gave a candidate integrality gap for the 2LIN problem.
Specifically for arbitrarily large constants c, r they construct an instance I of 2LIN (mod 2) for
which there is a degree-r pseudo-distribution consistent with satisfying 1 − ε fraction of I’s con-
straint, but they conjecture that in fact one cannot satisfy more than 1−cε fraction of I’s constraints.
Lets call this conjecture the Khot-Moshkovitz conjecture. Even if true, the Khot-Moshkovitz con-
jecture does not contradict the conjecture that r-rounds of SOS yield an nO(1/r) approximation
algorithm for the SSE,UG and 2LIN problems, since one would need to take r = Ω(log n) for the
latter algorithm to reach the range of parameters of the UGC and its ilk.

However, the Khot-Moshkovitz construction is only “step zero” in their plan to eventually
prove the UGC/SSEH and hence contradict the conjecture that r-SOS rounds yield an nO(1/r)

approximation for this problem. Specifically, to obtain a proof of the UGC, one would need to
improve the KM paper in the following aspects: Step 1 would be to prove the Khot-Moshkovitz
conjecture that no assignment can satisfy more than a 1 − cε fraction of the equations in their
instance. Step 2 would be to improve the gap from 1− ε vs 1−cε to 1− ε vs 1−Ω(

√
ε) and improve

the number of rounds from a constant to nΩ(1). Step 3 is to extend the result from 2LIN(ε) to
UG(ε) (and maybe also to SSE(ε)). Step 4 would be to to extend the result from a lower bound on
SOS to an NP-hardness proof. In my (personal and quite possibly wrong) opinion, the significance
of these hurdles is in the order listed. In particular, if the first and second step are completed
then this would be sufficient to rule out what seems to be the most natural scenario under the
assumption that the UGC is false— that SOS solves SSE(ε), UG(ε) and 2LIN(ε) in polynomial
or quasipolynomial time, and I believe that achieving Steps 3 and 4 in this case should not be that
much harder. Thus, despite the fact that Steps 3 and 4 seem more qualitative in nature than Step
2, I actually view Steps 1 and 2 as the most significant hurdles to overcome (or the more likely to
be false if the UGC is false).

4 Formal statement and proof of Theorem 1

In this section (which is more or less copied from (Barak, Brandao, Harrow, Kelner, Steurer, and
Zhou 2012) we show that a graph is a small-set expander if and only if the projector to the subspace
of its adjacency matrix’s top eigenvalues has a bounded 2→ q norm for even q ≥ 4. While the “if”
part was known before, the “only if” part is novel. This characterization of small-set expanders is
of general interest, and also leads to a reduction from the SSE problem to the problem of obtaining
a good approximation for the 2→ q norms. For simplicity of notation, throughout this section we
use expectation norms — i.e. ‖w‖p = (Ei|wi|p)1/p.

Notation For a regular graph G = (V,E) and a subset S ⊆ V , we define the measure of S
to be µ(S) = |S|/|V | and we define G(S) to be the distribution obtained by picking a random
x ∈ S and then outputting a random neighbor y of x. We define the expansion of S, to be
ΦG(S) = Pry∈G(S)[y 6∈ S], where y is a random neighbor of x. For δ ∈ (0, 1), we define ΦG(δ) =
minS⊆V :µ(S)≤δ ΦG(S). We often drop the subscript G from ΦG when it is clear from context. We
identify G with its normalized adjacency (i.e., random walk) matrix. For every λ ∈ [−1, 1], we
denote by V≥λ(G) the subspace spanned by the eigenvectors of G with eigenvalue at least λ. The
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projector into this subspace is denoted P≥λ(G). For a distribution D, we let cp(D) denote the
collision probability of D (the probability that two independent samples from D are identical).

Our main theorem of this section is the following:

Theorem 4. For every regular graph G, λ > 0 and even q,

1. (Norm bound implies expansion) For all δ > 0, ε > 0, ‖P≥λ(G)‖2→q ≤ ε/δ(q−2)/2q implies
that ΦG(δ) ≥ 1− λ− ε2.

2. (Expansion implies norm bound) There is a constant c such that for all δ > 0, ΦG(δ) >
1− λ2−cq implies ‖P≥λ(G)‖2→q ≤ 2/

√
δ.

One corollary of Theorem 4 is that a good approximation to the 2 → q norm implies an
approximation of Φδ(G).

Corollary 5. If there is a polynomial-time computable relaxation R yielding good approximation
for the 2→ q, then the Small-Set Expansion Hypothesis is false.

(Note: here I use the standard notion of the SSEH with δ being an arbitrary small constant as
opposed to equaling 1/ log n; I didn’t verify that the Raghvandra-Steurer-Tulsiani reduction can be
used for the setting of δ = 1/ log n as well.)

Proof. Using (Raghavendra, Steurer, Tulsiani), to refute the small-set expansion hypothesis it is
enough to come up with an efficient algorithm that given an input graph G and sufficiently small
δ > 0, can distinguish between the Yes case: ΦG(δ) < 0.1 and the No case ΦG(δ′) > 1− 2−c log(1/δ′)

for any δ′ ≥ δ and some constant c. In particular for all η > 0 and constant d, if δ is small enough
then in the No case ΦG(δ0.4) > 1− η. Using the first part of Theorem 4, in the Yes case we know
‖V1/2(G)‖2→q ≥ 1/(10δ1/4), while in the No case, we can choose η to be sufficiently small so that the
condition ΦG(δ0.2) ≥ 1− η implies (via the second part of Theorem 5) that ‖V1/2(G)‖2→q ≤ 2/δ0.1.
Thus an O(δ−0.15) approximation for the 2→ q norm will refute the SSEH.

The first part of Theorem 4 follows from previous work (e.g., see [?]). For completeness, we
include a proof in Appendix ??. The second part will follow from the following lemma:

Lemma 6. Set e = e(λ, q) := 2cq/λ, with a constant c ≤ 100. Then for every λ > 0 and 1 ≥ δ ≥ 0,
if G is a graph that satisfies cp(G(S)) ≤ 1/(e|S|) for all S with µ(S) ≤ δ, then ‖f‖q ≤ 2‖f‖2/

√
δ

for all f ∈ V≥λ(G).

Proving the second part of Theorem 4 from Lemma 6 We use the variant of the local
Cheeger bound obtained in [?, Theorem 2.1], stating that if ΦG(δ) ≥ 1−η then for every f ∈  L2(V )
satisfying ‖f‖21 ≤ δ‖f‖22, ‖Gf‖22 ≤ c

√
η‖f‖22. The proof follows by noting that for every set S, if f

is the characteristic function of S then ‖f‖1 = ‖f‖22 = µ(S), and cp(G(S)) = ‖Gf‖22/(µ(S)|S|).

Proof of Lemma 6. Fix λ > 0. We assume that the graph satisfies the condition of the Lemma with
e = 2cq/λ, for a constant c that we’ll set later. Let G = (V,E) be such a graph, and f be function in
V≥λ(G) with ‖f‖2 = 1 that maximizes ‖f‖q. We write f =

∑m
i=1 αiχi where χ1, . . . , χm denote the

eigenfunctions of G with values λ1, . . . , λm that are at least λ. Assume towards a contradiction that
‖f‖q > 2/

√
δ. We’ll prove that g =

∑m
i=1(αi/λi)χi satisfies ‖g‖q ≥ 5‖f‖q/λ. This is a contradiction

since (using λi ∈ [λ, 1]) ‖g‖2 ≤ ‖f‖2/λ, and we assumed f is a function in V≥λ(G) with a maximal
ratio of ‖f‖q/‖f‖2.
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Let U ⊆ V be the set of vertices such that |f(x)| ≥ 1/
√
δ for all x ∈ U . Using Markov and the

fact that Ex∈V [f(x)2] = 1, we know that µ(U) = |U |/|V | ≤ δ, meaning that under our assumptions
any subset S ⊆ U satisfies cp(G(S)) ≤ 1/(e|S|). On the other hand, because ‖f‖qq ≥ 2q/δq/2, we
know that U contributes at least half (in fact 1 − 2−q) of the term ‖f‖qq = Ex∈V f(x)q. That is,
if we define α to be µ(U)Ex∈Uf(x)q then α ≥ ‖f‖qq/2. We’ll prove the lemma by showing that
‖g‖qq ≥ 10α/λ.

Let c be a sufficiently large constant (c = 100 will do). We define Ui to be the set {x ∈
U : f(x) ∈ [ci/

√
δ, ci+1/

√
δ)}, and let I be the maximal i such that Ui is non-empty. Thus, the

sets U0, . . . , UI form a partition of U (where some of these sets may be empty). We let αi be the
contribution of Ui to α. That is, αi = µiEx∈Uif(x)q, where µi = µ(Ui). Note that α = α0 + · · ·+αI .
We’ll show that there are some indices i1, . . . , iJ such that:

(i) αi1 + · · ·+ αiJ ≥ α/(2c10).

(ii) For all j ∈ [J ], there is a non-negative function gj : V → R such that Ex∈V gj(x)q ≥
eαij/(10c2)q/2.

(iii) For every x ∈ V , g1(x) + · · ·+ gJ(x) ≤ |g(x)|.

Showing these will complete the proof, since it is easy to see that for two non-negative functions
and even q, g′, g′′, E(g′(x) + g′′(x))q ≥ Eg′(x)q + Eg′′(x)q, and hence (ii) and (iii) imply that

‖g‖44 = Eg(x)4 ≥ (e/(10c2)q/2)
∑
j

αij . (5)

Using (i) we conclude that for e ≥ (10c)q/λ, the right-hand side of (5) will be larger than 10α/λ.
We find the indices i1, . . . , iJ iteratively. We let I be initially the set {0..I} of all indices. For

j = 1, 2, ... we do the following as long as I is not empty:

1. Let ij be the largest index in I.

2. Remove from I every index i such that αi ≤ c10αij/2
i−ij .

We let J denote the step when we stop. Note that our indices i1, . . . , iJ are sorted in descending
order. For every step j, the total of the αi’s for all indices we removed is less than c10αij and hence
we satisfy (i). The crux of our argument will be to show (ii) and (iii). They will follow from the
following claim:

Claim 7. Let S ⊆ V and β > 0 be such that |S| ≤ δ and |f(x)| ≥ β for all x ∈ S. Then there is a
set T of size at least e|S| such that Ex∈T g(x)2 ≥ β2/4.

The claim will follow from the following lemma:

Lemma 8. Let D be a distribution with cp(D) ≤ 1/N and g be some function. Then there is a set
T of size N such that Ex∈T g(x)2 ≥ (Eg(D))2/4.

Proof. Identify the support of D with the set [M ] for some M , we let pi denote the probability
that D outputs i, and sort the pi’s such that p1 ≥ p2 · · · pM . We let β′ denote Eg(D); that is,
β′ =

∑M
i=1 pig(i). We separate to two cases. If

∑
i>N pig(i) ≥ β′/2, we define the distribution D′

as follows: we set Pr[D′ = i] to be pi for i > N , and we let all i ≤ N be equiprobable (that is be
output with probability (

∑N
i=1 pi)/N). Clearly, E|g(D′)| ≥

∑
i>N pig(i) ≥ β′/2, but on the other

hand, since the maximum probability of any element in D′ is at most 1/N , it can be expressed as
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a convex combination of flat distributions over sets of size N , implying that one of these sets T
satisfies Ex∈T |g(x)| ≥ β′/2, and hence Ex∈T g(x)2 ≥ β′2/4.

The other case is that
∑N

i=1 pig(i) ≥ β′/2. In this case we use Cauchy-Schwarz and argue that

β′2/4 ≤

(
N∑
i=1

p2
i

)(
N∑
i=1

g(i)2

)
. (6)

But using our bound on the collision probability, the right-hand side of (6) is upper bounded by
1
N

∑N
i=1 g(i)2 = Ex∈[N ]g(x)2.

Proof of Claim 7 from Lemma 8. By construction f = Gg, and hence we know that for every x,
f(x) = Ey∼xg(y). This means that if we let D be the distribution G(S) then

E|g(D)| = Ex∈SEy∼x|g(y)| ≥ Ex∈S |Ey∼xg(y)| = Ex∈S |f(x)| ≥ β .

By the expansion property of G, cp(D) ≤ 1/(e|S|) and thus by Lemma 8 there is a set T of size
e|S| satisfying Ex∈T g(x)2 ≥ β2/4.

We will construct the functions g1, . . . , gJ by applying iteratively Claim 7. We do the following
for j = 1, . . . , J :

1. Let Tj be the set of size e|Uij | that is obtained by applying Claim 7 to the function f and the

set Uij . Note that Ex∈Tjg(x)2 ≥ β2
ij
/4, where we let βi = ci/

√
δ (and hence for every x ∈ Ui,

βi ≤ |f(x)| ≤ cβi).

2. Let g′j be the function on input x that outputs γ · |g(x)| if x ∈ Tj and 0 otherwise, where

γ ≤ 1 is a scaling factor that ensures that Ex∈Tjg′(x)2 equals exactly β2
ij
/4.

3. We define gj(x) = max{0, g′j(x)−
∑

k<j gk(x)}.

Note that the second step ensures that g′j(x) ≤ |g(x)|, while the third step ensures that g1(x) +
· · · + gj(x) ≤ g′j(x) for all j, and in particular g1(x) + · · · + gJ(x) ≤ |g(x)|. Hence the only thing
left to prove is the following:

Claim 9. Ex∈V gj(x)q ≥ eαij/(10c)q/2

Proof. Recall that for every i, αi = µiEx∈Uif(x)q, and hence (using f(x) ∈ [βi, cβi) for x ∈ Ui):

µiβ
q
i ≤ αi ≤ µic

qβqi . (7)

Now fix T = Tj . Since Ex∈V gj(x)q is at least (in fact equal) µ(T )Ex∈T gj(x)q and µ(T ) = eµ(Uij ),

we can use (7) and Ex∈T gj(x)q ≥ (Ex∈T gj(x)2)q/2, to reduce proving the claim to showing the
following:

Ex∈T gj(x)2 ≥ (cβij )
2/(10c2) = β2

ij/10 . (8)

We know that Ex∈T g′j(x)2 = β2
ij
/4. We claim that (8) will follow by showing that for every

k < j,
Ex∈T g′k(x)2 ≤ 100−i

′ · β2
ij/4 , (9)

where i′ = ik − ij . (Note that i′ > 0 since in our construction the indices i1, . . . , iJ are sorted in
descending order.)
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Indeed, (9) means that if we let momentarily ‖gj‖ denote
√

Ex∈T gj(x)2 then

‖gj‖ ≥ ‖g′j‖ − ‖
∑

k<j gk‖ ≥ ‖g
′
j‖ −

∑
k<j

‖gk‖ ≥ ‖g′j‖(1−
∞∑
i′=1

10−i
′
) ≥ 0.8‖g′j‖ . (10)

The first inequality holds because we can write gj as g′j − hj , where hj = min{g′j ,
∑

k<j gk}. Then,
on the one hand, ‖gj‖ ≥ ‖g′j‖ − ‖hj‖, and on the other hand, ‖hj‖ ≤ ‖

∑
k<j gk‖ since g′j ≥ 0. The

second inequality holds because ‖gk‖ ≤ ‖g′k‖. By squaring (10) and plugging in the value of ‖g′j‖2
we get (8).

Proof of (9) By our construction, it must hold that

c10αik/2
i′ ≤ αij , (11)

since otherwise the index ij would have been removed from the I at the kth step. Since βik = βijc
i′ ,

we can plug (7) in (11) to get
µikc

10+4i′/2i
′ ≤ c4µij

or
µik ≤ µij (2/c)

4i′c−6 .

Since |Ti| = e|Ui| for all i, it follows that |Tk|/|T | ≤ (2/c)4i′c−6. On the other hand, we know
that Ex∈Tkg′k(x)2 = β2

ik
/4 = c2i′β2

ij
/4. Thus,

Ex∈T g′k(x)2 ≤ 24i′c2i′−4i′−6β2
ij/4 ≤ (24/c2)i

′
β2
ij/4 ,

and now we just choose c sufficiently large so that c2/24 > 100.

11


	The Small Set Expansion Hypothesis
	2 to q norm and small set expansion
	The relation between the 2 to 4 norm and small set expansion

	Using SOS for the 2 to 4 problem
	Formal statement and proof of Theorem 1

