
SOS Lecture 3: Lower Bounds — 3SAT/3XOR and Planted Clique / Boaz Barak

These notes are an expanded version of the notes for my summer course scribed by Akash Kumar

In this lecture we will see some lower bounds (or more accurately, negative results) for the Sum
of Squares algorithm. Namely, we will see computational problems which the SOS algorithms fails
to solve with a small degree. Another way to say this is that we will see cases that demonstrate the
difference between pseudo-distributions and actual distributions. If we take the point of view that
pseudo-distributions capture the knowledge of a computationally-bounded observer, then these are
examples where being computationally bounded has very a significant effect on this knowledge. We
have jokingly referred to ”Marley’s Corollary” as roughly saying that as long as you don’t use the
probabilistic method then ”every little thing gonna be alright” and pseudo-distributions can be
counted on to be similar to actual distributions. Thus it’s not surprising that we will in fact use
the probabilistic method in constructing these examples.

1 Lower bounds for random 3SAT/3XOR

In the Max-3XOR problem, we are given a set of linear equations (mod 2) in n Boolean variables
x1, . . . , xn such that each equation only involves three variables (i..e., has the form xi⊕xj⊕xk = ai,j,k
), and we need to find the assignment x that satisfies the largest number of equations. (For simplicity
of notation, we will actually think of x a string in {±1}n, meaning that the equations have the
form xixjxk = ai,j,k for some ai,j,k ∈ {±1}.) Finding whether or not there exists an assignment
that satisfies all equations can of course be done via Gaussian elimination, but H̊astad proved in
1995 that for every ε > 0 it is NP-hard to distinguish between the case that there is an assignment
satisfying 1 − ε fraction of the equations, and the case that every assignment satisfies 1/2 + ε
fraction of the equations. (There is always an assignment satisfying 1/2 of the equations— can
you see why?.) In fact, since H̊astad’s reduction only had linear blowup from the underlying PCP
system (known as ”Label Cover”), and thanks to the work Moshkovitz and Raz we now know of
such PCP systems which themselves have a quasilinear blowup from 3SAT, if we assume that there
is no 2n

0.999
algorithm for 3SAT (an extremely reasonable assumption which is in fact weaker than

what’s known as the ”Exponential Time Hypothesis”) then the SOS algorithm would require degree
at least n0.999 to do so. However, it is always good to verify these predictions by proving them
unconditionally, which is what is achieved (in a very strong form) by the following theorem:

Theorem 1 (Grigoriev, 1999). For every constant ε > 0 and large enough n, there exists an
instance ψ of Max-3XOR over n variables such that:

• Every assignment x ∈ {±1}n satisfies at most 1/2 + ε fraction of the equations of ψ.

• There exists a degree Ω(n) pseudo distribution {x} that is consistent with the constraints
{x2

i = 1} for all i ∈ [n] and the constraint {xixjxk = ai,j,k} for every i, j, k such that ψ
contains the equation ai,j,kxixjxk = 1.

Moreover, there is m = O(n) such that with constant positive probability, a random ψ with
m equations will satisfy the properties above. (I believe this constant probability can actually be
upgraded to 1− o(1) at the expense of a slight complication in the proof; Exercise 1: verify this,
see footnote for hint1)

1Hint: The reason that a random instance is not an expander with high probability is that there may be a few pairs of 3-variable equations
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Note that this theorem is stronger than what is predicted by the NP-hardness results, as it says
that SOS cannot even distinguish between the case that the equations are completely satisfiable
and the case that one can satisfy at most a 1/2 + ε fraction, which as we mentioned can in fact
be done in polynomial time via Gaussian elimination. So how come this powerful algorithm does
not solve this easy problem? One answer is that while the SOS algorithm may be optimal in some
domains, it does not mean it’s optimal for all problems.2 In particular, it does not seem able to
take advantage of algebraic structure such as the one present in linear equations. Another related
observation is that, unlike some other algorithms, the SOS algorithm (at least when applied to
natural simple systems of equations such as those arising from constraint satisfaction problems)
doesn’t seem to do ”half measures” in the sense that it is inherently robust to noise. That is,
because of its continuous nature, the SOS algorithm does not really distinguish between the case
that x satisfies all the equations (i.e.

∑
i,j,k ai,j,kxixjxk = m) and the case that it satisfies almost all

of them (i.e.
∑

i,j,k ai,j,kxixjxk ≥ (1− ε)m) . This is in stark contrast to algebraic algorithms such
as Gaussian elimination that are very brittle, and completely break down even in the presence of
very small amounts of noise. Therefore, if the SOS algorithm would have solved the ”1 vs. 1/2 + ε”
Max-3XOR problem, then it would also have been able to solve the ”1− ε vs. 1/2 + ε” variant of
the problem, but this latter variant is NP-hard.

Some bibliographical remarks: Theorem 1 was proven by Grigoriev in 2001, and later redis-
covered by Schoenebeck in 2008. Schoenebeck also observed that it immediately implies a lower
bound for 3SAT, since a ⊕ b ⊕ c = 1 implies that a ∨ b ∨ c = 1, and a random 3SAT instance
is unsatisfiable. Tusliani extended this further by first showing that the same ideas can be used
to show a lower bound for a very particular type of the ”Label Cover” problem, which can be
thought of as an ”SOS PCP theorem”. He then showed that SOS lower bounds are in general
closed under ”gadget reductions” and so managed to transform many of the NP-hardness results
obtained from the PCP theorem into matching unconditional SOS lower bounds. Siu On Chan
(2013) provided a very interesting result in the other direction, giving an actual PCP Theorem
that exactly matches the parameters of the ”SOS PCP Theorem”. An excellent question asked
in class is whether there is an algorithm that combines both SOS and Gaussian elimination in a
natural way. I don’t know of an algorithm for this, but there is a proof system, which simply uses
the same rules of derivation {P ≥ 0, Q ≥ 0} |= {P + Q ≥ 0, PQ ≥ 0} as the SOS system but
tracks the actual degree as opposed to the syntactic degree, see this paper of Grigoriev, Hirsch, and
Pasechnik http://eccc.hpi-web.de/report/2001/103/. A proof system is still very interesting
since it can demonstrate that a problem lies in NP ∩ coNP and (as we discussed) there are very
few examples for problems in this class that are not also known to be in P . We know very few
lower bounds for this system, though the NP completeness results imply that there should be a
3XOR instance where one can satisfy at most, say, 0.51 fraction of the equations, but the best
upper bound proven by this system with degree � n would not be better than 0.99.

that have two common variables. The effect of this should be the same as adding a small number of equations of the form xi⊕xj = σ (or xixj = σ

in {±1} notation) to the instance, and one should be able to show that the pseudo-distribution we construct can be modified to satisfy these

constraints as well.
2Throughout this course, when saying that the SOS algorithm solves a problem X, I always assume that the

representation of X as polynomial equations is fixed to some canonical form. If we allowed arbitrary polynomial-
time computable representations then we could simulate any algorithm using the SOS algorithm as even linear
programming is P-complete.
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1.1 Proving Theorem 1

To prove Theorem 1 we need to (1) give a construction of some highly unsatisfiable 3XOR instance ψ
and (2) construct a degree O(n) pseudo-distribution {x} that pretends to satisfy all the constraints
of ψ . As mentioned, the construction of ψ is simple - we simply choose it as a random 3XOR
instance with m = cn constraints for some constant c (depending on ε).3 Let us think of the
choice of ψ as choosing a bipartite graph on G on m+ n vertices with left-degree 3 and a random
a ∈ {±1}m such that the `th equation is that a`xixjxk = 1 where {i, j, k} are the neighbors of `.
The theorem follows from the following lemmas:

Lemma 2. For every G, with 1− exp(−Ω(n)) probability over the choice of a ∈ {±1}cn it will hold
that every assignment x satisfies at most 1/2 + ε fraction of the equations where ε tends to zero as
c grows.

Lemma 3. There is some δ, p > 0 such that with probability at least p > 0 the graph G is a (δn, 1.7)-
expander, where we say that a bipartite graph G = (L,R,E) is a (s, α) expander if |Γ(S)| ≥ α|S|
for every S ⊆ L with |S| ≤ s, where Γ(S) denotes the set of neighbors of S.

Lemma 4. For every a ∈ {±1}m, if G is a (k, α) expander for α > 1.5 then there exists a
degree k/100 pseudo-distribution {x} consistent with the constraints Ẽxixjxk = a` for every ` and
{i, j, k} = Γ(`).

We defer the proofs of Lemmas 2 and 3. The proofs use, as promised, the probabilistic method,
but are not complicated and follow by the usual Chernoff+union bound argument. Despite being
simple, the fact that they use the probabilistic method is in some sense the reason that they do
not carry over to the SOS setting. This serves as a caution that we shouldn’t equate a proof being
”SOS’able” with it being ”simple”— there can be highly complex proof in the SOS setting, and
every simple proof that is not ”SOS’able” with low degree. I believe that Lemma 3 actually can be
derandomized using the paper of Capalbo, Reingold, Vadhan, Wigderson. One way to demonstrate
that Marley’s corollary is not a universal rule is to do Exercise 2: Prove that there is no SOS proof
that the CRVW graph is a (k, α) expander for α > 1.5 . (I actually don’t know if this exercise is
true, and if it is I think it would actually be an interesting research result, showing a ”robust” SOS
lower bound with a deterministic construction.) Alekhnovich (2001) had a fascinating conjecture
that as long as G is a sufficiently good expander, the instance (G, a) with a random a would be
hard.

Note that despite having a very simple proof, I don’t know of any derandomization for Lemma 2.

1.2 Proof of Lemma 4

To prove Lemma 4 we need to show the existence of a degree Ω(n) pseudo-distribution {x} that
pretends to range over x ∈ {±1}n that satisfies the constraints of the system (G, a). Our philos-
ophy is that a pseudo-distribution captures the knowledge of computationally bounded observer.
Note that (actual) distributions are the standard way to model knowledge of a computationally
unbounded observers that only have partial information— this is known as Bayesian reasoning. For
example, suppose that Mickey is a computationally all-powerful observer. If Mickey was given no
information at all then we model its knowledge by the uniform distribution over {±1}n. Note that
this distribution satisfies that ExS := E

∏
i∈S xi = 0 for every non empty set S. (Note that since

3We will use the words equations, constraints and clauses interchangebly.
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the distribution is over x’s that satisfy x2
i = 1 then knowing E

∏
i∈S xi for every set S suffices to

deduce Ep(x) for every polynomial p(·).)
If Mickey later learns that x7x13x22 = −1 and x22x44x60 = +1 then we model his knowledge by

the distribution that is uniform over the the strings that satisfy these conditions— namely ExS = 0
unless S is either empty or one of {7, 13, 22}, {22, 44, 60} and {7, 13, 44, 60}.

Now if Mickey was given all the equations, then, being computationally unbounded, then if the
equations come from Lemma 2 he would be to figure out that there exists no x that satisfies all the
equations (or even a 0.6 fraction of them), and hence that there simply exists no such distribution.
However, if these equations are given to the Donald that can only do ns-time computation, then
he might not be able to do that. Specifically, Donald could deduce from x7x13x22 = −1 and
x22x44x60 = +1 that x7x13x44x60 = −1 etc.. but not able to draw all possible logical inferences and
hence figure out that there is no solution x to these equations. Thus, just in the case of Mickey,
we design the pseudo-distribution to be as random as possible subject to being consistent with the
deductions Donald is able to make, in other words we follow Einstein’s maxim that

Pseudo-distributions should be as random as possible but not randomer

More concretely we will assume that Donald’s knowledge only applies to terms of the form∏
i∈S xi for |S| ≤ s, and that given subsets S, T such that |S|, |T | ≤ s, if U = S⊕T has size at most

s, then he can deduce that xU = xSxT , but these are all the deductions he can make. Specifically
we define the pseudo-distribution {x} by the following iterative process:

• Input to the process: graph G = ([m] ∪ [n], E) and string a ∈ {±1}m.

• For every ` ∈ [m], define ẼxΓ(`) = a`.

• Apply the following rule until we can’t apply it any further: for every subsets S, T of size at
most s such that ẼxS and ẼxT are defined, |S⊕T | ≤ s, define ẼxS⊕T = ẼxSẼxT . (If ẼxS⊗T
was already defined before with a different value, the process fails and halts.)

• When done, for every nonempty |S| ≤ s such that ẼxS is undefined, define ẼxS = 0. For
every monomoial m(x) of degree at most s that contains square terms define Ẽm(x) = ẼxS
where S is the set of i’s such that xi appears with an odd degree in m(x).

We need to prove that {x} defined above is a valid pseudo-distribution. For starters, we need
to verify that it never halts:

Lemma 5. If the G is a (10s, 1.7) expander then the process above never halts.

Before proving the lemma, lets see why it implies that {x} is a valid pseudo-distribution for
degree at most s/2. First note (Exercise 3: check this) that by definition, we get that for every
polynomial p of degree at most s − 3 and every S = Γ(`), Ẽp(x)xS = a`Ẽp(x). Thus we need
to prove that for every polynomial q of degree at most s/2, Ẽq2 ≥ 0. Exercise 4: Prove that
it suffices to do so for the case that q is multilinear namely q(x) =

∑
|S|≤s/2 αSxS for some real

numbers {αS}|S|≤s/2.

For two subsets S, T of size at most s/2, we say that S ≡ T if ẼxS⊕T 6= 0. Note that this is
indeed an equivalence relation— it is symmetric, reflexive (since Ẽx∅ = Ẽ1 = 1), and transitive,
since if S ≡ T and T ≡ U then ẼxS⊕U = Ẽx(S⊕T )⊕(T⊕U = ẼxS⊕T ẼxT⊕U . Separate the monomials
of q into the equivalence classes and so write q =

∑m
i=1 qi where all monomials in qi belong to a
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particular equivalence class. Note that if S and T are not equivalent then ẼxSxT = ẼxS⊕T equals
zero, and hence

Ẽq2 = Ẽ(
∑
i

qi)
2 =

∑
Ẽq2

i

Thus it suffices to show that Ẽq2 ≥ 0 where q(x) =
∑

S∈C αSxS where C is some fixed equivalence

class. Let S0 be a member of that class. Thus for every S, T ∈ C, ẼxS⊕S0 6= 0 and ẼxT⊕S0 6= 0 and
so (by our rule) ẼxS⊕T = ẼxS⊕S0ẼxT⊕S0 . Therefore,

Ẽq2 =
∑
S,T∈C

αSαT ẼxSxT =
∑
S,T∈C

αSαT (ẼxS⊕S0)(ẼxT⊕S0) =
(∑

αSẼxS⊕S0

)2
≥ 0

1.3 Proof of Lemma 5

[BOAZ: this proof is copy pasted from previous lecture notes and so uses somewhat
inconsistent notation. On a very high level, the proof goes as follows: for a set E of
equations, let Γ(E) denote ⊕`∈EΓ(`), i.e. Γ(E) is the set of variables that appear an odd
number of times in the equations in E. If we have a derivation U1, . . . , Ut of sets of size
at most d such that either Ui is the variables of an equation (i.e., Ui = Γ(`)) or the value
ẼUi is always derived from prior values ẼUj , ẼUk for j, k < i, then we can keep track
of the sets of equations Ei that correspond to every Ui (e.g., if Ui = Γ(`) then Ei = {`}
and in the other case Ei = Ej⊕Ek. Note that Ui = Γ(Ei) and the value derived to ẼUi
is equal to

∏
`∈Ei aΓ(`). We then use the expansion property to argue that for every i,

|Ei| ≤ 10s , and |Γ(E)| ≥ |Ei|/10 for all E with |E| ≤ 100s. But this implies that Ui
uniquely determines Ei, since if we had Ui = Uj but Ei 6= Ej then we would get that
∅ = Ui ⊕ Uj = Γ(Ei) ⊕ Γ(Ej) = Γ(Ei ⊕ Ej). But since |Γ(Ei ⊕ Ej)| ≥ |Ei ⊕ Ej |/10, if
Ei 6= Ej then the set Ei ⊕ Ej can’t be empty. Thus the value for a set U that can be
derived in some way is always uniquely defined as ⊕`∈ExΓ(`) no matter how we derived
it. ]

Observe that if there is a derivation that gives different values to some monomial U of degree at
most d, then there is also another derivation that shows Ẽ

[
xφ
]

= −1. We will show that this leads

to a contradiction. Let the derivation of Ẽ
[
xφ
]

= −1 be described by a sequence of set U1, U2, · · ·Ut
with Ut = φ. Notice that each Ui in this derivation is either some constraint in E or a product of
some of the constraints from E . Let E1, E2 · · ·Em be the sets corresponding to the equations in E
and σ1, σ2, · · ·σm be the corresponding values. For every Ui that is derived, we see that there is
some Si ⊆ L for which Ui = ∪`inSiE`.

Now, we will see that the assumption of there being two different derivations for Ẽ
[
xφ
]

with
opposite values leads to the conclusion that the above algorithmic process must assign some value
to Ẽ

[
xU
]

for some |U | > d which is not possible. This conflicts with the assumption that there are 2
different derivations for the same set with opposite values. The plan is roughly the following. First
we observe that every derived monomial with short derivation spans many variables (by expansion
property) (has large degree). The idea is to show that two derivations with opposite values means
that there is some monomial with degree greater than d that the algorithm defines.

Claim 6. For every S ⊆ L with |S| ≤ 100d, | ⊕`∈S E`| ≥ |S|/10.
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Proof. Suppose not. Let T = ⊕`∈SE`. Observe that the monomial in T may not all of the variables
from Γ(S) (that is, those which appear in Γ(S) \ T ) . So, these variable nodes must have at least
2 neighbors in S as they need to cancel out. This gives (by expansion property)

#edges leaving |S| ≥ # edges entering S from the “omitted” variables in Γ(S) \ T
=⇒ 3|S| ≥ 2(1.7|S| − |T |)
=⇒ |T | ≥ 0.2|S|

As observed already the above claim asserts that whatever you derive by XORing a small subset
of clauses on the left gives rise to a monomial with decent degree.

Corollary 7. Notice that this means that every set Si in the derivation must have size no larger
than 10d.

Proof. A quick proof. Suppose not – then the first such violating set Si = Sj ⊕Sk where Sj and Sk
both describe short derivations and Si is a bigger derivation with length in the interval (10d, 20d].
And by the above observation, this would mean ⊕`∈SiE` > d.

Thus, the existence of 2 sets with different values implies that there is a set S = St with size at
most 10d such that ⊕`∈SE` = φ contradicting the observation above.

For P : {±1}k → ±, we define a Max-P instance ψ to be a collection of equations of the
form P (ai1xi1 , . . . , aikxik) = a, and the goal is again to find an assignment x satisfying as many
of the equations as possible. We say that P is a nice subspace predicate if there is some subspace
V ⊆ GF (2)k such that P = 1V (using the identification GF (2)↔ {±1} using the map n↔ (−1)b)
and such that every u ∈ V ⊥ satisfies |u| ≥ 3.

As was noted by Tulsiani, Chan, the proof of Theorem 1 generalizes to the following statement:
Exercise 5: Prove the following theorem.

Theorem 8. For every nice subspace predicate P = 1V , constant ε > 0 and large enough n, there
exists an instance ψ of Max-P over n variables such that:

• Every assignment x ∈ {±1}n satisfies at most |V |/2k + ε fraction of the equations of ψ.

• There exists a degree Ω(n) pseudo distribution {x} that is consistent with the constraints
{x2

i = 1} for all i ∈ [n] and the constraint corresponding to every equation in ψ.

Moreover, there is m = O(n) such that with constant positive probability, a random ψ with m
equations will satisfy the properties above.

1.4 Proof of Lemmas 3 and 2

[BOAZ — these two proofs are also at the moment copy-pasted from previous notes and use
inconsistent notation.]
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Proof. We will prove the result for the graphs Gφ obtained from a random k-xor instance with n
variables and γn constraints for some large constant Γ. In fact, the same proof holds for a random
instance of any Max-K-CSP over any alphabet. Let us begin by trying to understand what is the
probability that a set fails to have large expansion. Let us say that in fact, there is a small set of
variables T ⊆ R that is the vertex boundary of some set S of size s = εn where ε is some constant
to be determined later. Let |T | ≤ cs = (k−1−δ)s denote the size of this small set of variables that
appear in this set S of the random k-xor instance (where δ ∈ (0, 1

2)). Observe that the probability
p that this indeed happens – that a set S of size εn happens to have small vertex boundary can be
upper bounded by

p ≤
(
n

cs

)
·
((cs

k

)
s

)
· s!
(
γn

s

)
·
(
n

k

)−s
Here,

•
(
n
cs

)
denotes which cs variables to use.

•
((csk )
s

)
denotes the number of ways cs variables can be put together to get s clauses each of

arity k.

• s!
(
γn
s

)
counts the choices for where to put such clauses in our ordered sequence of γn clauses.

• And the last term,
(
n
k

)−s
denotes the probability that the clauses were generated using the

described method.

Now, using Stirling’s which says a
b
b ≤ a

b ≤
ae
b
b and s! ≤ ss, we obtain by collecting terms we get

p ≤
( s
n

)2δ·s/2 (
e2k+1−δk1+δγ

)s
≤
( s
n

)δs
·
(
γ5
)s

=

(
sγ5/δ

n

)δs
We need to show that the probability that any set of at most s ≤ εn constraints contains less

than cs variables is o(1). To do this, consider the following.

εn∑
s=1

(
sγ5/δ

n

)δs
=

ln2 n∑
s=1

(
sγ5/δ

n

)δs
+

εn∑
s=ln2 n+1

(
sγ5/δ

n

)δs

≤ O
(
γ5

nδ
· ln2 n

)
+O

(
εγ5/δ

)δ ln2 n

Now, we are almost done. Observe that the first term is clearly o(1) and that the second term is
o(1) for ε = O( 1

100γ5/δ ). This gives us that indeed small sets of size εn fail to have a large boundary

with large probability which is what we wanted.
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2 SOS Lower bounds for planted clique

The planted clique problem is one of the most classical computational problems, whose roots come
from a 1976 question of Karp of whether we can find the largest clique in a random graph. In the
early 1990’s, Jerrum and Kucera suggested the easier planted model, whereby the goal is to find a
ω-clique that has been added to a random graph. Note that if ω � log n then this would be the
unique maximum ω-clique in the graph. (Exercise 6: prove that with probability at least 0.99 a
random G(n, 1/2) graph has the maximum clique size of at most c log n for some constant c; how
small can you make c? .) The larger ω is, the easier this problem. Another variant which seems to
have equivalent difficulty is to distinguish between a random graph and a graph to which a random
ω-clique was added. One easy bound on ω for this problem arises from the following exercises:

Exercise 7: Let A be the adjacency matrix of a random G(n, 1/2) graph and B = 2A − J
where J is the all 1’s matrix. (1) Prove that for every t, ETr(Bt) ≤ 2O(t)nt/2. (2) Conclude that
with probability at least 0.99, ‖B‖ ≤ O(

√
n).

Exercise 8: Let A be the adjacency matrix of a n-vertex graph with average degree n/2 that
contains a ω clique and B = 2A− J . Prove that ‖B‖ ≥ Ω(ω).

Thus we can easily distinguish between a random G(n, 1/2) graph and an n vertex graph
containing a ω �

√
n clique, and in fact these ideas can be used to actually find the clique in the

latter case (Exercise 9: Show this; see footnote for hint4). Many people have thought of improving
this

√
n bound but with no success, often proving that certain methods won’t work. In fact by

now the difficulty of this question has been conjectured in several works that have connected this
problem to questions in machine learning, compressed sensing, computing equilibrium and more.

The algorithm that works for ω ∼
√
n can be thought of as an instantiation of the degree 2 SOS

algorithm and thus we come again to the question of whether degree d > 2 SOS can do better than
degree 2. As in the case of the Unique Games, Small-Set Expansion, Max-Cut, Cheeger etc.., the
answer is that we don’t know. But, given that this is an average case problem (such as the random
3XOR problem discussed above), one could perhaps hope that we will be able to prove some SOS
lower bounds in this case. Indeed last year Meka and Wigderson claimed that for every constant
d there is some ε > 0 such that the degree d SOS algorithm cannot certify that a random graph
doesn’t contain an ε

√
n clique. However (as we will see) their proof was flawed. Nevertheless in a

very new result, Meka, Potechin and Wigderson were able to prove a weaker result. Namely that
the degree d SOS cannot certify that a random graph doesn’t contain an Ω̃(n1/d) clique. We will
see a (slight weakening of a) special case of their result, namely

Theorem 9. Let G = G(n, 1/2) be a random graph. With probability at least 0.9, there exists a
degree 4 pseudo-distribution {x} over Rn satisfying {x2

i = xi} for all i, {xixj = 0} for all i and j
that are not neighbors in G, and

Ẽ
∑

xi ≥ Ω(n1/8)

2.1 Proof of Theorem 9

Once again, to construct a pseudo distribution, we think of a computationally bounded observer
that is told that there is a planted clique in the graph, and needs to form beliefs about what
is the probability that some set S with |S| ≤ 4 is contained in the clique (or equivalently, what
should be the expectation ẼxS). Clearly if S is not itself a clique, then this probability is zero.
Otherwise, since both clique and surrounding graph are random, we would expect the probability

4Hint: Show that we can get a set S with large correlation with the clique by looking at the largest eigenvector of B, and then show that

we can use to actually find the clique by looking at the set of vertices that have very large degree into S.
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to be the roughly the same for every clique. This motivates defining our pseudo-distribution: for

every set S of size at most 4, if S is not a clique then ẼxS = 0, and otherwise ẼxS = 2(|S|2 )(ω/n)|S|

(where
(

1
2

)
= 0).5 Analogous to what we did for 3XOR, we use the constraints that x2

i = xi to
reduce every monomial m(x) to a multilinear monomial of the form xS . Note that we get that
Ẽ
∑
xi = n(ω/n) = ω.

It turns out that this simplistic pseudo-distribution is already sufficient to prove a weak lower
bound on the clique size

Lemma 10. If ω � n1/8 then the pseudo-distribution above is a valid degree 4 pseudo-distribution
satisfying the conditions of Theorem 9

On the other hand, we (and Meka-Wigderson) have violated Einstein’s maxim and made this
pseudo-distribution ”randomer than possible” if we want to reach the ω ∼

√
n bound.

Lemma 11. If ω � n1/3 then there exists a quadratic polynomial Q such that ẼQ2 < 0

2.2 Proof of Lemma 10

Let Ma,b,c,d = Ẽxaxbxcxd. We need to prove that the matrix M is positive semidefinite. Let us
focus our attention to the rows {a, b} of M where a 6= b and columns {c, d} where c 6= d (this turns
out to be the crux of the proof). Since the entire row corresponding to {a, b} will be zero if (a, b) is
not an edge ofG, we can think of M as an E×E matrix where E is the edge set of G. Recall that for
every a, b, c, d Ma,b,c,d depends solely on |{a, b, c, d}. Thus we can write M = M2 +M3 +M4 where
M s
a,b,c,d = Ma,b,c,d if |{a, b, c, d}| = s and equals zero otherwise. Let us ignore M3 for now (this is

not the main issue) and so focus on proving that M2 +M4 is positive semidefinite. Note that M2

simply contains all diagonal elements and each has magnitude Ẽxaxb = 2ω2/n2. Therefore, we can
scale by this number and reduce showing that M2 + M4 is psd to showing that I + M ′ is p.s.d
where I is the E × E identity, and M ′ is defined as follows:

M ′a,b,c,d =


0 |{a, b, c, d}| 6= 4

3ω2/n2(1− 1/16) {a, b, c, d} is 4-clique

−(3/16)ω2/n2 {a, b, c, d} is not a 4-clique

Note that M ′ is simply M4, scaled by n2/(2ω2) and subtracting from each entry {a, b, c, d}
with |{a, b, c, d}| a constant so that the expected entry of M4 is zero. The reason that this suffices
follows from the following exercise:

Exercise 10: Let E be the n2×n2 expectation matrix of M . Namely, for every a, b, c, d, Ea,b,c,d

is the expected value of Ma,b,c,d which is 2−(s2)2(s2)(ω/n)s where s = |{a, b, c, d}|. Prove that E is
p.s.d and its smallest nonzero eigenvalue is Ω(ω2/n2).

This exercise is actually a special case follows from the theory of Johnson Association Schemes
that is used in proving more general bounds. In particular the following is true (and may be useful
for the previous exercise):

Exercise 11: Let ` ∈ N and J be a matrix indexed by all subsets S ⊆ [n] of size at most s such

that JS,T =
(|S∩T |

`

)
. Then J is psd. (If you get stuck, take a look at the Meka-Wigderson paper.)

5This is because conditioned on S being a clique, the probability that it is contained in the random ω-clique

would be roughly
(
w
|S|

)
divided by the the number of |S|-clique in the graph which is

(
n
|S|

)
2−(|S|

2 ); we get the above

probability using the approximation
(
n
k

)
∼

(
en
k

)k
.
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The Frobenius norm squared of M ′, namely
∑

a,b,c,d(M
′
a,b,c,d)

2 equals O(n4ω4/n4) = O(ω4).
Note that the Frobenius norm squared is the sum of the eigenvalues squared, and thus if M ′ was
”generic” or ”pseudorandom” in the sense that it would have Θ(n2) eigenvalues with roughly the
same magnitude λ, then λ will satisfy n2λ2 = O(ω4) or λ ≤ O(ω2/n). Thus in this case, as long as
ω �

√
n the matrix I +M ′ (and hence M) will be positive semidefinite. A priori you might hope

that, sicne M ′ arises from a random graph then it will in fact be sufficiently ”psuedorandom” to
satisfy this, but as we will see in Lemma 11, this turns out to be false. Nevertheless we are able to
prove the following claim:

Claim: w.h.p. Tr(M ′4) ≤ O(ω8/n)

The theorem follows from the claim since we get that ‖M ′‖ ≤ Tr(M ′4)1/4 ≤ ω2/n1/4. Hence if
ω2 � n1/4 (or ω8 � n) then I +M ′ will be psd.

Proof of Claim: By Markov we simply need to show that ETr(M ′4) ≤ O(ω8/n). (Note that this
is an actual expectation, taken over the random choice of the graph G; since the set E of edges
depends on this randomness, it might be more convenient to think of M ′ as an n2 × n2 matrix for
this argument.) The expectation of the trace is the sum over all 4-tuples of edges e1, e2, e3, e4 of

EM ′e1,e2M
′
e2,e3M

′
e3,e4M

′
e4,e1 (1)

Now if e1, e2, e3, e4 are all disjoint, then, conditioned on e1, e2, e3, e4 being edges, the events ”e1∪e2

is a 4-clique”, ”e2 ∪ e4 is a 4-clique”, etc.. are independent. Thus we get that (1) equals

EM ′e1,e2EM
′
e2,e3EM

′
e3,e4EM

′
e4,e1

but EM ′e,f = 0 for every pair of edges e, f by the construction of M ′. Therefore, the contribution to
the trace must come from 4-tuples of edges that are not all disjoint. Since each such 4-tuple involves
at most 7 vertices, there are O(n7) such tuples, and since every entry as magnitude O(ω2/n2), the
expectation of the trace is at most

O(n7) ·O(ω2/n2)4 = O(ω8/n)

Exercise 12: Prove that in fact ETr(M ′4) ≤ O(ω8/n2), hence concluding that the pseudo-
distribution is psd as long as ω � n1/4. See footnote for hint6

2.3 Proof of Lemma 11

Intuitively, one may hope that the pseudo-distribution above remains valid even for a larger value
of ω, as long as ω �

√
n. However, Lemma 11 shows this is not the case. To understand the

reason, let’s see that there is a simple observation available to the computationally-bounded Donald
that would yield different results in this pseudo-distribution than it would have if it was truly a
distribution over planted cliques. Specifically, for a n-vertex graph G, let r1, . . . , rn ∈ Rn be the
vectors such that

ri(j) =


+1 (i, j) is an edge

0 i = j

−1 otherwise

Let P (x) be the polynomial
∑
〈ri, x〉4. Note the following facts about P (x): (Exercise 13: verify

those)

6Hint:Show that in fact the only nonzero contribution to the trace come from 4-tuples of edges e1, e2, e3, e4 such that |e1∪e2∪e3∪e4| ≤ 6.
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1. For every fixed x ∈ Rn, if we choose the graph at random then EP (x) = O(n‖x‖4).

2. If x is the 0/1 characteristic vector of an ω-clique (and hence ‖x‖2 = ω) then P (x) ≥
ω(ω − 1)4 = Ω(ω5).

Hence when ω5 � nω2 (or ω � n1/3), P (x) will distinguish between a ”typical” vector x and
a vector x that is the characteristic vector of an ω-clique. We claim that in the distribution {x}
above, ẼP (x) actually behaves as if x was ”typical” and thus gives it too low a value:

Claim: With high probability ẼP (x) ≤ O(nω2).

Proof: Using Markov, it suffices to prove that EGẼP (x) ≤ O(nω2) where the expectation is taken
over the random choices in making the graph and the pseudo-expectation is as defined above. Lets
open up the definition of P (x) and write

EẼP (x) =
∑
i

∑
a,b,c,d∈[n]\{i}

Eri(a)ri(b)ri(c)ri(d)Ẽxaxbxcxd

(using the fact that ri(i) = 0 for all i). Fix some i ∈ [n], and now suppose that we fix the random
choices of all neighbors in the graph except the neighbors of i. This means that Ẽxaxbxcxd is
determined for every {a, b, c, d} ⊆ [n] \ {i} and the random {±1} variables ri(a), ri(b), ri(c), ri(d)
are independent of this choice. Thus we can write for every i and a, b, c, d ∈ [n] \ {i}, Therefore

Eri(a)ri(b)ri(c)ri(d)Ẽxaxbxcxd = ẼxaxbxcxdEri(a)ri(b)ri(c)ri(d)

Note that Eri(a)ri(b)ri(c)ri(d) = 0 unless a = b = c = d or |{a, b, c, d}| = 2. In the first case
Ẽxaxbxcxd = ω/n and in the second case it equals O(ω2/n2). Hence for every i∑

a,b,c,d∈[n]\{i}

Eri(a)ri(b)ri(c)ri(d)Ẽxaxbxcxd ≤ nω/n+O(n2ω2/n2) = O(ω2)

which summing over all i implies that

EẼP (x) = O(nω2)

The above shows that {x} is already very fishy as a pseudo-distribution, since (in the ω � n1/3

range) it gives P (x) a value that is far too low to be consistent with being a distribution over
ω-cliques. But we still haven’t shown that it does in fact violate the constraints of being a valid
pseudo-distribution. We now show this

Lemma 12 (Lemma 11,restated). If ω � n1/3 then there exists a quadratic polynomial Q such
that ẼQ2 < 0

Proof. We let
Q(x) = (c(n/ω)x1 − n〈r1, x〉2)2

for some large enough constant c to be determined later. Now

ẼQ2 = c2n2

ω2 Ẽx2
1 + Ẽ〈r1, x〉4 − 2cn

ω Ẽ〈r1, x〉2x2
1 (2)

Let us compute each term of (2). First, clearly

Ẽx2
1 = Ẽx1 = ω/n

11



and hence the first term equals c2n/ω. We just computed the second term above as O(ω2). To
compute the third term, note that

Ẽ〈r1, x〉2x2
1 =

∑
a,b∈[2..n]

r1(a)r1(b)Ẽxaxbx2
1

which simply counts the number of triangles in the graph of the form {1, a, b} (which is Ω(n2))
multiplied by Ω(ω3/n3). (Indeed, note that if {1, a, b} is a triangle then r1(a) = r1(b) = +1, and
otherwise Ẽxaxbx2

1 = Ẽxaxbx1 = 0.) Thus the third term is −Ω(c(n/ω)n2(ω3/n3) = −Ω(cω2). We
see that if we want this expression to be negative then we need the third term to dominate the
other two, and hence we need to satisfy c � 1 and cω2 � c2n/ω, or ω3 � cn. Thus if ω � n1/3

then we can find a constant c that would make ẼQ2 < 0.

3 Knapsack lower bound

One very nice SOS lower bound we did not show is the following theorem of Grigoriev

Theorem 13 (Grigoriev). For every n there is degree Ω(n) pseudo-distribution {x} satisfying the
constraints {x2

i = xi} and {
∑
xi = n/2}.

Note that if n is odd, then there cannot be an actual distribution satisfying these constraints.
The arxiv paper of Meka and Wigderson, despite having a fatal flaw, is still very much worth
reading, and in particular is a good source for understanding the proof of this result.
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