
SOS Lecture 2: Max Cut, Sparsest Cut, Small Set Expansion and some relations of Isoperimetry
and Hypercontractivity / Boaz Barak

Lecture notes by Adrian Vladu and Henry Yuen

Suggested reading

• As I mentioned in the email, Spielman’s Spectral Graph Theory lectures 1,2 and 6 1 are
good reading for the background to this lecture. Spielman’s disclaimer (and in particular
the warning that you should “Be skeptical of all statements in these notes that can be made
mathematically rigorous”) also applies to the lecture notes in this course.

• See Section 6.2 (pages 143-147 in electronic version) of [WS11] for an overview of the Goemans-
Williamson Max-Cut algorithm.

• The Cheeger-Alon-Milman Inequality is covered in many places. One good source is Trevisan’s
CS359G Lecture Notes 2.

• The Feige-Schechtman graph is from their paper [FS02]. It is also described in several lec-
ture notes. One good source is the lecture of Ryan O’Donnell from the CMU “Advanced
Approximation Algorithms” course 3.

• The result that degree 4 SOS (or more accurately degree 2 + the squared triangle inequalities)
solve max-cut on random geometric (i.e. Feige-Schechtman) graphs is from [BHHS11].

• Chapter 9 (“basic hypercontractivity”) in Ryan O’Donnell’s book is highly recommended
reading. In particular what we show here is that what he calls “The Bonami Lemma” has a
degree 4 SOS proof. This result, as well as other applications, and an equivalence between
small set expansion and hypercontractive norm bounds is from [BBH+12]. (The direction
of the equivalence we described was known before, and in particular appears in O’Donnell’s
book, but you may be interested in looking at the proof of the other direction.)

Both papers mentioned above are available on my home page.

Recap and some musings

The Sum of Squares algorithm is parameterized by a number `, known as its degree, and its running
time is nO(`). When ` = 1 this corresponds to linear programming, when ` = 2, it corresponds
to semi-definite programming, and when ` = n it corresponds to the brute force/exhaustive search
algorithm.

In this course, we are most interested in the range 2 < ` � n. To borrow an analogy from
Avi Wigderson, this regime is a bit like the “dark matter” of the SOS algorithm. We know it
exists, but we have surprisingly few examples of problems that cannot be solved by the degree 2
case, and can provably be solved by SOS of non-trivially small degree. This is related to the well
known phenomenon that, while we know by Ladner’s theorem that there are infinitely many “NP
intermediate”’ problems, most natural computational problems are either in P or NP-hard. In

1See http://www.cs.yale.edu/homes/spielman/561/
2See http://theory.stanford.edu/~trevisan/cs359g/, Lectures 3 and 4
3Available on http://www.cs.cmu.edu/~anupamg/adv-approx/lecture16.pdf.
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fact, most natural problems either have a low-exponent polynomial-time algorithm (e.g., n2 or n3)
or are exponentially hard (e.g., no exp(n0.99) algorithm is known). There are of course problems,
such as k-SUM or k-CLIQUE, where the natural exhaustive search algorithm takes time nO(k)

where k is some parameter of the problem; I would consider those as “exponential” in the sense
that the best algorithm is still exhaustive search even if it runs in polynomial time.

One could play devil’s advocate and suggest that maybe the only problems in this “dark matter”
are artificial problems such as those constructed by Ladner, and so perhaps studying SOS for degree
larger than 2 is a waste of time. In this course, starting with this lecture, we will see several of the
few known examples where degree > 2 proofs help. I will leave to your judgment how natural they
are, and, most importantly, I hope you manage to find some new ones!

(I should remark that, even if we restrict attention to domains where SOS is optimal, the “dark
matter” region I am describing here is not identical to the set of problems that are not in P but not
NP complete. There are very few examples, perhaps the most notable ones arising from Lattice-
based cryptography, of natural problems in NP that are believed to be exponentially hard but not
NP-complete.)

Here are some exercises to make sure that you are comfortable with pseudo-distributions:

Exercise 1: Prove the pseudo-distribution Cauchy-Schwarz condition: If µ is a pseudo-
distribution of degree at most 2d, and P,Q are polynomials of degree d then

ẼµPQ ≤
√
ẼµP 2

√
ẼµQ2

Exercise 2: Recall that we say that a degree-d pseudo-distribution µ satisfies the constraint
{p = 0} if Ẽµpq = 0 for every q for which this expectation makes sense (i.e. of degree at most
d−deg p). Give an example of a pseudo-distribution µ that satisfies Ẽp(x) = 0, but does not satisfy
the constraint {p = 0}. How high can you make the degree of µ?

Exercise 3: Show that if Ẽµp2 = 0 then Ẽµpq = 0 for every q of degree at most d/2− degP .

Exercise 4: (Hölder’s inequality) Prove that if µ is a degree 4 distribution over variables

u1, . . . , un, w1, . . . , wn ∈ Rn then Ẽµ
∑

i u(i)3w(i) ≤
(
Ẽµ‖u‖44

)3/4 (
‖w‖44

)1/4
.

A tale of two problems

Let G = (V,E) be a d-regular graph on n vertices with normalized adjacency matrix A (Ai,j = 1/d
if (i, j) ∈ E and Ai,j = 0 otherwise). Let L = I − A be its normalized Laplacian matrix. For a set
S ⊆ V , we consider the following quantities:

1. The expansion or conductance of S, denoted by φ(S), is defined as

φ(S) =
E(S, S)

d ·min{|S|, n− |S|}

Note that this number is always in [0, 1]; sometimes this number is defined as

φ(S) =
nE(S, S)

d|S||S|

(one can see that this is equivalent up to a factor of 2). The conductance of the graph G is
defined as φ(G) = minS φ(S).
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2. The (fractional) cut size of S is the number

cut(S) =
E(S, S)

|E|

Note that for S = Θ(n), cut(S) = Θ(φ(S)). The maximum cut value of G, denoted by
maxcut(G) is maxS cut(S).

3. The (uniform) sparsest cut problem is the task of computing φ(G) (or possibly also finding
the set S such that φ(G) = φ(S) — we will not distinguish between these two problems).
The max-cut problem is the task of computing maxcut(G) (or finding the set S such that
cut(S) = maxcut(G)).

Known results. We now survey what is known about those two problems, which turn out to
be extremely similar in their computational status. In both cases, finding the exact solution is NP
hard, and so we are looking for some form of approximation.

A random subset of measure 1/2 will cut half the edges, and in particular this gives an algorithm
achieving a cut of value at least cut(G)/2 for the max-cut problem. In fact, this algorithm for max-
cut was suggested by Erdös in 1967, and is one of the first analyses of any approximation algorithm.

A priori, it is not so clear how to beat this. Let us consider the case of max-cut. In a random
d-regular graph (which is an excellent expander), one cannot cut more than a 1/2 + ε fraction
of the edges (where ε goes to zero as n goes to infinity). But locally, it is hard to distinguish
a random d-regular graph from a random d-regular ”almost bipartite” graph, where we split the
graph into two equal parts L and R and each edge is with probability ε inside one of those parts
and with probability 1 − ε between them. Such a graph G obviously has maxcut(G) ≥ 1 − ε but
every neighborhood of it looks like a d-regular tree, just as in the case of a random d-regular graph.
For this reason, ”combinatorial” (or even linear programming) algorithms have a hard time getting
an approximation factor better than 1/2 for max-cut. To support this claim, [CLRS13] shows that
no polynomial-time extension of the max-cut linear program can beat the 1/2 factor. For a similar
reason, a priori it is not clear how to find any set with φ(S)� 1/2, even if φ(G) = o(1). However, in
both those cases it turns out one can beat the ”combinatorial” (or linear programming) algorithms.

The famous Cheeger’s Inequality (or more accurately, its discrete variant by Alon, Alon-Milman,
Dodziuk) implies that there is a polynomial time algorithm to find S with φ(S) = O(

√
φ(G)).

Cheeger’s Inequality can be viewed as the degree-2 SOS algorithm. The analogous algorithm for
max-cut took more time, but was found eventually by Goemans and Williamson [GW95] who
gave an algorithm, based on rounding the degree-2 SOS algorithm; on an input graph G with
maxcut(G) ≥ 1−ε, it find a set S with cut(S) ≥ 1−f(ε) for some f(ε) = O(

√
ε). This algorithm is of-

ten described in terms of its approximation ratio cut(S)/maxcut(G), which is minε>0
1−f(ε)

1−ε ≈ 0.878.
Leighton and Rao gave a polynomial-time algorithm to find S with φ(S) = O(log n)φ(G) [LR99]
and in a breakthrough work, Arora, Rao and Vazirani improved this to an algorithm that outputs a
set S with O(

√
log n)φ(G) [ARV09]. Their algorithm uses the degree 4 SOS algorithm, and we will

see it in this course. Shortly thereafter, Agarwal, Charikar, Makarychev and Makarychev gave the
analogous result for max-cut, namely an algorithm that given G with maxcut(G) = 1− ε, outputs
S with cut(S) ≥ 1−O(

√
log n)ε [ACMM05].

Assuming the Unique Games Conjecture (or its close variant the Small-Set Expansion Con-
jecture), the algorithms of Cheeger and Goemans-Williamson are optimal. Namely, there is no
poly-time algorithm to find S with φ(S) = o(

√
φ(G)), and no poly-time algorithm that given G

with maxcut(G) = 1 − ε, finds a set S with cut(S) = 1 − o(
√
ε). One way to think of the Unique
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Games Conjecture is that it is saying that degree 2 SOS is special in the sense that for great many
problems, improving on it requires to going to degree nΩ(1). (A priori you could perhaps think
that degree 2 is very special, in the sense that improving on it would require degree Ω(n), but that
has been refuted by the sub-exponential algorithm for unique games [ABS10] and its encapsulation
within the SOS framework [BRS11, GS11]. Degree 2 SOS is special in the sense that it seems much
easier to for us to analyze, but whether degree 4 offers no improvements, or is just more challenging
for us to prove that it does, remains to be seen. We will see today and in the next lectures some
examples where higher (but not super high) degree does help, but as of now these still fall short of
disproving the UGC.

Remark: Isoperimetry, local testing, and extremal questions

The max-cut and sparsest cut problems are all special case of the task of determining
isoperimetric properties of graphs.
The classical isoperimteric inequality states that the circle is the body with the most area
for a given perimeter. More generally, the isoperimetric question in a particular space, is
to determine the set in that space with the smallest surface area given some prescribed
volume. (With the circle being the answer in two dimensional Euclidean space, and spheres
in higher dimensions.) Such questions have a great many applications in a variety of areas,
including geometry, graph theory, probability theory and mathematical physics. In partic-
ular isoperimetric inequalities are often used to analyze the convergence times of random
walks. For a graph, φ(S) is a natural proxy for the surface area of a set S, and so one
variant of the isoperimetric question is to find, given some number δ > 0, the set S of
size δn that minimizes φ(S). This is known as the “small set expansion” question and is
intimately related to the unique games conjecture. We are often able to prove isoperimetric
inequalities for particular families of graphs, and understanding whether or not these proofs
can be ”SOS’ed” with low degree is key to understanding the power of this algorithm.
Isoperimetric inequalities are a special case of a more general paradigm of extremal questions
in mathematics. Such questions again arise in great many areas, and in particular not just in
geometry but also in coding theory and additive combinatorics. In many cases we have some
collection of objects Ω (e.g. all subsets of some space of a certain size, or maybe all strings
of some length, or all subsets of some group) and some parameter or “test” T : Ω→ R (e.g.,
T (S) can be the surface area of some set S, or T (S) might measure the probability that a
certain local test fails on S, or the size of the set S+S where + is the group operation). The
generalization of an isoperimetric inequality would be to show that there is some set C of
“special” objects (e.g., the spheres, or codewords of some code, or subgroups) that minimize
T (·). The next natural question is the “unique decoding” question, showing that if T (S) is
close to the minimum, then S itself is close to some member of C. Another natural question
is the “list decoding” question, showing that if T (S) is much smaller than the average value
of T (·), then S is at least somewhat correlated with an element of C.

Linear algebra view

Let x be the {±1} characteristic vector of S (i.e., xi = +1 if i ∈ S, and xi = −1 otherwise).
Then

〈x, Lx〉 = 〈x,
(
I − 1

dA
)
x〉 =

∑
i

x2
i − 1

2d

∑
i∼j

xixj = 1
2d

∑
i∼j

(xi − xj)2 = 4E(S, S)/d = 2n · cut(S)
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Observe that each edge is counted twice in the sum over i ∼ j, and contributes 4 if it belongs to
the cut.

Similarly, if x is the {0, 1} characteristic vector instead (i.e., xi = 1 if i ∈ S and xi = 0 otherwise)
and |S| ≤ n/2 then

〈x, Lx〉 = 1
dE(S, S) = φ(S)‖x‖22

(since ‖x‖22 = |S|).
Exercise 5: Show that if x is the mean 0 characteristic vector of S (i.e., xi = n− |S| if i ∈ S

and xi = −|S| if i 6∈ S) then 〈x, Lx〉/‖x‖2 = nE(S,S)

d|S||S| . Show that this also equals φ(S) up to a

multiplicative factor of two.

1 The Goemans Williamson Algorithm

The Goemans-Williamson algorithm takes as input a graph G with maxcut(G) ≥ 1− ε and outputs
a set S such that cut(S) ≥ 1−O(

√
ε). It follows from the theorem below:

Theorem 1 (Goemans-Williamson). There is a polynomial-time algorithm R which, given

• an n-vertex d-regular graph G = (V,E)

• a degree 2 pseudo-distribution µ, such that Ẽx∼µx2
i = 1 and Ẽ〈x, Lx〉 ≥ 2n(1− ε)

outputs a vector z ∈ {±1}n, such that 〈z, Lz〉 ≥ 2n(1− fGW (ε)) where fGW (ε) ≤ 10
√
ε.

This immediately implies the algorithm, because given a graph with maxcut(G) ≥ 1−ε, running
the degree-2 SOS algorithm on {x2

i = 1 ∀i, 〈x, Lx〉 = 2n(1 − ε)} yields a valid pseudo-distribution
satisfying the requirements for Theorem 1. Running algorithm R, then gives an integral cut of
value at least 1− fGW (ε) = 1−O(

√
ε).

At the heart of the proof of the Goemans-Williamson algorithm is the following very useful
lemma:

Lemma 2 (Quadratic Sampling Lemma). Let µ be a degree-2 pseudo-distribution over Rn. Then
there is a poly-time that algorithm can sample from a Gaussian distribution y over Rn such that
Ep(y) = Ẽx∼µp(x) for every polynomial p of degree at most 2.

Note on notation: In the rest of this course, in cases where there is little chance of confusion, we
will often denote a pseudo-distribution as {x} rather than µ and then use notation such as Ẽp(x)
instead of Ẽx∼µp(x). So, we could also write this lemma as:

Lemma 2 (Quadratic Sampling Lemma). Let {x} be a degree-2 pseudo-distribution over Rn.
Then there is a poly-time that algorithm can sample from a Gaussian distribution y over Rn such
that Ep(y) = Ẽp(x), for every polynomial p of degree at most 2.

Why does Lemma 2 imply Theorem 1? The theorem follows by simply letting zi = sign(yi).
Note that under our assumptions

1
2n Ẽ〈x, Lx〉 = 1

2n Ẽ

 1
2d

∑
i∼j

(xi − xj)2

 = 1
4dn

∑
i∼j

Ẽ(xi − xj)2 ≥ 1− ε
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and hence
1

4dn

∑
i∼j

E(yi − yj)2 ≥ 1− ε

We need to show that 1
4dn

∑
i∼j E(zi − zj)2 ≥ 1 − O(

√
ε). Using convexity, this follows from the

following claim:

Claim: Let y, y′ be Gaussian variables with Ey2 = Ey′2 = 1 such that E(y − y′)2 ≥ 1 − δ. Then
Pr[sign(y) = sign(y′)] ≤ 10

√
δ.

This can be proven via a standard calculation (Exercise 6: do this), and essentially follows
from the fact that two unit vectors of inner product 1− δ have distance roughly

√
δ. Thus all that

remains is to prove the quadratic sampling lemma:

Proof of the quadratic sampling lemma. By shifting, it suffices to consider the case that
Ẽxi = 0 for all i (Exercise 7: show this). Let M be the n × n matrix such that Mi,j = Ẽxixj .
Since Ẽf(x)2 ≥ 0 for every linear function f , it must holds that M is positive semidefinite and
hence M = V V > for some matrix V . Another way to say this is that Mi,j = 〈vi, vj〉 for some
N , and for some vectors v1, . . . , vn ∈ RN . Let g be a standard Gaussian vector in RN and define
yi = E〈vi, g〉. (Note that, as desired, E〈vi, g〉 = 0 for all i.) For every i, j we have that

Eyiyj = E〈vi, g〉〈vj , g〉 =
∑
k,`

Evikgkv
j
`g`

but since we have that Egkg` =

{
1, if k = `

0, if k 6= `
, this equals

∑
k

vikv
j
k = 〈vi, vj〉 = Mi,j

Hence y agrees with x on all quadratic monomials and hence on all quadratic polynomials as
well.

Exercise 8: Prove that if x is an actual distribution over Rn with mean 0n, taking the value
x(α) ∈ Rn with probability pα, where α ranges over some finite index set I, we would get an
equivalent distribution to the one above by letting y =

∑
α∈I gαx

(α), where gα is a Gaussian with
mean 0 and variance pα.

Note that the algorithm resulting from the proof of Theorem 1 performs the following: given
the vectors v1, . . . , vn that arise from the pseudo-distribution {x}, we obtain a cut z (identified
with a vector in {±1}n) by choosing a random gaussian vector g and outputting zi = sign〈vi, g〉.
That is, we cut the vertices based on which side of the hyperplane defined by g they fall on. For
this reason, this rounding technique is often known as “random hyperplane rounding”.

Also note that in analyzing this algorithm we didn’t use ”Marley’s Corollary”, since the quadratic
sampling lemma is easy enough to prove even without assuming that {x} was an actual distribution,
but we will find that assumption useful as we analyze algorithms using higher degrees, including
the Arora-Rao-Vazirani algorithm.
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Remark: Vector view of SOS

In the proof above, we used the convenient fact that an n× n matrix M is psd if and only
if there are vectors v1, . . . , vn ∈ RΩ (for some Ω) such that Mi,j = 〈vi, vj〉. Thus a degree
2 pseudo-distribution can be completely characterized by such vectors (along with another
vector which would correspond to the first moments / averages). This can be generalized
to higher degrees as follows:

Exercise 9: Let P be some basis for the degree ≤ d/2 polynomials (you can think of
the monomial basis). Prove that a bilinear operator M : Rnd/2 × Rnd/2 → R is a degree d

pseudo-expectation operator if and only if there exists vectors {vp}p∈P in RN for some N
such that M(p, q) = 〈vp, vq〉 and 〈vp, vq〉 = 〈vr, vs〉 whenever pq = rs.

Note that if M corresponded to the expectation of an actual random variable X, which we
can think of as a function from some probability space Ω to RN , then we could choose the
vector vp to have as its ωth coordinate the value p(X(ω)), where we will use the expectation
inner product, i.e. 〈〈〈u, v〉〉〉 = Eω∈Ωu(ω)v(ω) =

∑
ω∈Ω pωvi(ω)vj(ω) (pω is the probability of

the element ω; the space Ω can even be infinite in which case the sum is replaced with an
integral).

2 Can we do better with degree 2 SOS?

It is perhaps surprising that we can do better than the random cut algorithm, but knowing that
we can bypass it whets our appetite for more. So far, we don’t know if we can beat the Goemans-
Williamson algorithm, but we do know that won’t be possible with the degree-2 SOS program.

Theorem 3. There is a graph G and ε > 0 such that maxcut(G) ≤ 1−
√
ε/10 but there is a degree-2

pseudo-distribution {x} such that Ẽx2
i = 1 for all i and Ẽ〈x, Lx〉 ≥ 2n(1− ε).

Proof. The graph is simply the odd cycle on n = 1/
√
ε vertices. Since the graph is not bipartite,

every cut must cut at least one edge, so maxcut(G) ≤ 1−1/n = 1−
√
ε. For the pseudo distribution,

we arrange unit vectors v1, . . . , vn along the two dimensional circle such that 〈vi, vj〉 = −1 + ε if
j = i + 1 (mod n). Let Ẽxixj = 〈vi, vj〉. Then, for all i, Ẽx2

i = 〈vi, vi〉 = 1, and Ẽ〈x, Lx〉 =
Ẽ(
∑

i x
2
i − 1

2

∑
i∼j xixj) = n(2− ε) = 2n(1− ε/2) ≥ 2n(1− ε).

One issue with this result, apart from the fact that the odd cycle doesn’t seem like a very hard
instance, is that the value of ε here is 1/n2, which means that even finding a cut of 1−1/

√
ε is pretty

good (in fact, the best one can do, given that the graph isn’t bipartite). However, this of course can
be easily fixed by simply considering the disjoint union of many odd 1/

√
ε cycles, hence yielding an

instance where ε is independent of n. Another issue is to determine the right constant, and more
generally, for every ε > 0, come up with a graph that has a degree-2 pseudo-distribution pretending
to range over cuts with value 1− ε, but where the true max cut is at most 1− fGW (ε) + o(1) where
fGW (·) is the function obtained by the proof of the Goemans-Williamson theorem (Theorem 1).
This was achieved by Feige and Schechtman [FS02], who defined the following graph:

For ε > 0, `, n ∈ N, the Feige-Schechtman graph FS(ε, `, n) is obtained by sampling n random
unit vectors v1, . . . , vn in R` and letting i ∼ j if 〈vi, vj〉 ≤ −1 + ε. We will typically think of the
case that n is exponentially larger than ` and so this graph closely approximates the infinite graph
where vertices are all vectors in the unit `-dimensional sphere. In [FS02], Feige and Schechtman
proved the following two results about this graph:
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Figure 1: The odd-cycle graph, along with a depiction of a vector solution for the degree-2 SoS
program.

Lemma 4. There is a degree-2 pseudo-distribution {x} such that Ẽx2
i = 1 for all i and Ẽ(xi−xj)2 ≥

2(1− ε) for all i ∼ j.

Proof. This is essentially by construction. Define Ẽxixj = 〈vi, vj〉 where v1, . . . , vn are the vectors
used to define the graph. Note that this is PSD and hence is a valid degree-2 pseudo-expectation
operator, and that it satisfies the conditions of the Lemma.

Lemma 5. For every δ > 0, if n is large enough, with high probability maxcut(FS(ε, `, n)) ≤
1− fGW (ε) + δ

This is the heart of their proof. To show this, one needs to show that the maximum cut
in the Feige-Schechtman graph is obtained by a hyperplane cut, namely by a set S of the form
{i : 〈vi, a〉 > 0} for some vector a. This turns out to be related to classical isoperimetric results of
Borell. We will prove a slightly weaker result. Namely, that the Feige-Schechtman graph is at least
not worse than the cycle:

Lemma 6. There is some constant c > 0 such that for every δ > 0, if n is large enough,
maxcut(FS(ε, `, n)) ≤ 1− c

√
ε.

Proof. We will assume that 1/
√

2ε− ε2 = k for some odd integer k (this assumption can be waived
with a bit more work, at the cost of having a suboptimal value for the constant c). For sufficiently
large n, we can imagine that the FS graph is simply on the continuous sphere. Pick a random edge
i ∼ j of the graph, and consider the intersection of the sphere with the plane spanned by vi and
vj . Inside that plane we can find a k-cycle subgraph of the graph that contains the edge i ∼ j. By
following this approach we obtain a set C1, . . . , CN of k-cycles that uniformly covers the edges of
the Feige-Schechtman graph (i.e., each edge of the Feige-Schechtman graph is contained in about
the same numbe of cycles). Now, for every possible cut S, it must miss at least one edge from
every one of those Ci’s. But by the uniformity condition, if a cut misses a α fraction of the edges
in the FS graph, on average it should miss an α fraction (or α ± o(1), to account for our finite
approximations) of the edges in the cycles.
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This is a weaker result because the constant c will not match that in fGW .
Similar results hold for sparsest cut— the cycle (here it doesn’t matter if it’s even or odd) yields

an example of a graph with eigenvalue gap of ε but where the best cut has conductance
√
ε, and

the analog of the Feige-Schechtman graph can give better constant dependence.

3 Can we do better with higher degree?

This is a question many people are interested in, and we don’t know the answer. As mentioned
above, Khot’s Unique Games Conjecture implies that no polynomial-time algorithm (or even an
exp(no(1))-time one) can beat the Goemans-Williamson algorithm. So, in particular it should mean
that using SOS algorithm with degree no(1) will not yield improved performance over degree 2.
However, we don’t even know if degree 4 SOS doesn’t do better than degree 2. Indeed, the known
hard instances for degree 2, including the odd cycle and the Feige-Schechtman graph, can in fact
be solved via degree 4 SOS (for some other instances the best known bound is 16 or so, but we
have no evidence that degree 4 doesn’t work as well).

Lemma 7. Let n be odd. There is no degree-4 pseudo-distribution {x} over Rn consistent with the
constraints {x2

i = 1}i=1..n such that Ẽ
∑n

i=1(xi − xi+1)2 > 4(n− 1) (identifying xn+1 with x1).

The proof of this lemma follows from the following exercise
Exercise 10: (Squared Triangle Inequality) Let {x} be a degree-4 pseudo-distribution over Rn

consistent with the constraints {x2
i = 1}. Then for all i, j, k ∈ [n], Ẽ(xi − xk)2 ≤ Ẽ(xi − xj)2 +

Ẽ(xj − xk)2.
Note that if {x} is an actual distribution consistent with these constraints, then it means that

it is supported on {±1}n, and hence E(xi − xj)2 = 4 Pr[xi 6= xj ] which immediately implies the
inequality. Therefore, the 3-variate polynomial (xi−xj)2 +(xj−xk)2−(xi−xk)2 is non-negative on
{±1}3 which immediately implies the result for degree-6 pseudo-distributions. (Can you see why?)
This is just as good for our purposes, but working out the degree 4 case should be a nice exercise.

We can now prove the lemma:

Proof. Using the equation (a+ b)2 = 2a2 + 2b2 − (a− b)2 we get that

Ẽ
n∑
i=1

(xi + xi+1)2 < 4n− 4(n− 1) = 4

By the triangle inequality applied to the variables xi, xi+2 and −xi+1, we get that

Ẽ(xi − xi+2)2 ≤ Ẽ(xi + xi+1)2 + (xi+1 + xi+2)2

which repeating (n− 1)/2 times we get that

Ẽ(xi − xi+1)2 ≤
∑

j∈(i+1,..,n,1,..,i−1)

Ẽ(xj + xj+1)2

If we sum this over all i’s, then on the RHS every term Ẽ(xj +xj+1)2 gets counted n− 1 times and
so we get ∑

i

Ẽ(xi − xi+1)2 ≤ (n− 1)
∑
j

Ẽ(xj + xj+1)2 < (n− 1)4

contradicting our assumptions.
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This results immediately implies that the degree 4 SOS algorithm can also certify that the
max-cut of the FS(ε, `, n) graph is 1−Ω(

√
ε) if n is large enough (can you see why?). Interestingly,

it can be shown that if we choose a significantly smaller n (though still exponential in `) so that
almost all short cycles (and in particular the odd ones) disapper, then as long as the average degree
remains large enough, the value of the maximum cut remains 1− Ω(

√
ε). However, the proof that

the degree 4 SOS algorithm certifies this breaks down. Nonetheless, it turns out that the degree-4
SOS algorithm still gives a value of 1 − Ω(

√
ε) even in this regime (see Barak, Hardt, Holenstein,

Steurer [BHHS11]).

4 SOS’ing proofs of isoperimetric inequalities

Moving beyond max cut, another important problem is the small set expansion problem. This
is the task, given some graph G = (V,E) and δ, of computing min|S|≤δ|V | φ(S). Once again, the
question is about approximating it, and the small set expansion conjecture posits that it is NP hard
to determine if this quantity is at most ε or at least 1−ε, where ε = 1/O(log(1/δ)). (The conjecture
was stated by Raghavendra and Steurer [RS10] in a slightly different form, and its equivalence to
this form was shown by Raghavendra, Steurer and Tulsiani [RST10].)

The Boolean cube (i.e., the graph on 2` vertices identified with {±1}` such that x ∼ y if∑
|xi − yi| = 2) is a canonical example of a small set expander. That is, even though the graph

is not a great expander, since for example 1 − 1/` fraction of the edges touching the set S =
{(+1, x) : x ∈ {±1}`−1} stay inside it, for smaller set a much larger fraction of the edges go out. In
fact, one can show that for every k, the sets S of measure 2−k that minimize φ(S) have the form
S = {(α, x) : x ∈ {±1}`−k} for some α ∈ {±1}k. (Note that these sets have 1− k/` of their edges
staying inside them.)

How do you prove such a thing (at least approximately)? The key here is again linear algebra.
Recall that for every set S of measure less than 1/2, 〈x, Lx〉/‖x‖2 = φ(S) where x is the {0, 1}
characteristic vector of S. Therefore, to prove that if |S| is small then φ(S) is large, it is enough
to show that sparse vectors are not close to the low eigenspace of the operator L. Specifically, we
have the following result:

Lemma 8. Let G = (V,E) be regular graph, λ ∈ (0, 1) and W be the span of eigenvectors of L(G)
corresponding to eigenvalue at most λ. If every w ∈W satisfies:

Eiw4
i ≤ C

(
Eiw2

i

)2
(1)

then for every set S of measure δ set,

φ(S) ≥ λ(1−
√
Cδ)

To understand the lemma, let us try to parse what (1) means in the case that w is the 0/1
characteristic vector of some set S of measure µ. In this case the LHS equals µ and the RHS equals
Cµ2, and so we get that µ ≥ 1/C. Thus in particular (1) implies that the space W does not contain
the characteristic vector of any set of measure < 1/C, and the conclusion of the Lemma is that if
S has measure � 1/C then it has expansion at least λ− o(1), which means that its characteristic
vector has almost all of its mass outside W .

Proof. Throughout this proof, it will be convenient for us to use the expectation norms and inner
product, and so we denote |||x|||p = (Ei|xi|p)1/p and 〈〈〈x, y〉〉〉 = Exiyi. Thus (1) translates to
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|||w|||44 ≤ C|||w|||42 for every w ∈ W . Let S be the set and x its 0/1 characteristic vector. Note
that we still have

φ(S) = 〈〈〈x, Lx〉〉〉/|||x|||2 .

Write x = x′ + x′′ where x′ ∈W and x′′ ∈W⊥. Our main claim is

Claim: |||x′|||2 ≤ C1/4|||x|||4/3
Proof of Claim:

|||x′|||22 = 〈〈〈x′, x′〉〉〉 = 〈〈〈x′, x〉〉〉 ≤ |||x′|||4|||x|||4/3
where the second equality is because x′ is a projection of x, and the last inequality is an application
of Holder’s inequality. The proof then follows using |||x′|||4 ≤ C1/4|||x′|||2.

Given this, since |||x|||4/3 = δ3/4 we can use the eigenvector decomposition (v1, . . . , vn) and
(λ1, . . . , λn) of L to write

〈〈〈x, Lx〉〉〉 =
∑

λi〈〈〈x, vi〉〉〉2

bunching together all the vectors with eigenvalue smaller than λ (whose contribution to the sum is
non-negative), and all the vectors with eigenvalues larger than λ (who contribute at least λ|||x′′|||22)
we get

〈〈〈x, Lx〉〉〉 ≥ λ|||x′′|||22 = λ(|||x|||22 − |||x′|||22) ≥ λ(δ − C1/2δ3/2)

and thus (using |||x|||22 = δ) we get

φ(S) = 〈〈〈x,Lx〉〉〉
|||x|||22

≥ λ(1−
√
Cδ)

Let us now see how we apply this result to the Boolean cube. First, we need the following
characterization of the Boolean cube

Exercise 11: Let G be the Boolean cube on {±1}`. Prove that the eigenvectors of G are
{χS}S⊆[`] where for every x ∈ {±1}`, χS(x) =

∏
i∈S xi and the eigenvalue corresponding to χS is

|S|/`.

Thus, for every λ, the subspace spanned by eigenvectors of eigenvalue at most λ is the set of
f : {±1}` → R that are spanned by the functions χS with |S| ≤ λ`. Thus the following result
shows that sufficiently small sets in the hypercube expand a lot

Theorem 9 ((2, 4) hypercontractivity). Let f =
∑
fαχα with |α| ≤ d. Then

Ex∈{±1}`f(x)4 ≤ 9d
(
Ex∈{±1}`f(x)2

)2
(2)

Theorem 9 has a simple proof but underlies many results used in hardness of approximation,
social choice theory, and more (see Ryan’s book [O’D14]). In particular, as we mentioned, by
combining it with Lemma 8 it implies some isoperimetric results on the Boolean cube.

Proof. We prove the result by induction on d and `. (The case ` = 0 or d = 0 is trivial.) Separate
f to the parts that do and don’t depend on ` and write

f(x) = f0(x1, . . . , x`−1) + x`f1(x1, . . . , x`−1)

11



note that the degree of f1 is at most d−1. Now let us expand Ef(x)4 and note that the expectation
of odd powers of x` vanish (since it is independent from the other variables) and so we get that

Ef4 = Ef4
0 + f4

1 + 6f2
0 f

2
1 (3)

By Cauchy Schwarz we can bound the last term by 6
√(

Ef4
0

) (
Ef4

1

)
. By induction we can assume

Ef4
b ≤ 9d

(
Ef2

b

)2
for b = 0, 1 and so plugging this into (3) we get

Ef4 ≤ 9d
(
Ef2

0

)2
+ 9d−1

(
Ef2

1

)2
+ 6 · 9d−1/2Ef2

0Ef2
1 ≤

9d
((

Ef2
0

)2
+
(
Ef2

1

)2
+ 2Ef2

0Ef2
1

)
=

9d
(
Ef2

0 + Ef2
1

)2
but this equals 9d

(
Ef2

)2
, since f = f0 + x`f1 and Ex`f0f1 = 0.

Remark: Max-cut, sparsest-cut and small-set expansion as finding non-
Gaussian vectors in subspaces

The sparsest-cut, max-cut, and small-set expansion can all be thought of as the problem of
finding

min
x
p(x)

where p : Rn → R is a quadratic polynomial (e.g., p(x) = 〈x, Lx〉 or p(x) = −〈x, Lx〉) and
subject to x satisfying certain constraints (e.g. x ∈ {0, 1}n (or sometimes {±1}n) in the
case of max-cut/sparsest cut, or x is the characteristic vector of a sparse set in the case of
small set expansion). By scaling appropriately, we can also assume x is restricted to have
unit norm.

Since a vector x of unit norm minimizes a quadratic form p(·) if and only if it resides in
the linear subspace correspondings to the small eigenvalues of p(·) (thought of as a linear
operator), the problem essentially reduces to finding a vector in (or close to) W that satisfies
these constraints. If W was a “generic” subspace of not too high a dimension, then all the
vectors w inside it would be rather “smooth” and in particular every w ∈W will satisfy that
the distribution X(w) which is obtained by sampling a random coordinate i and outputting
wi is close to the Gaussian distribution. So, in some sense all of these problems are about
finding non-Gaussian vectors in a subspace. Note that for every w there is some Gaussian
distribution that matches the first two moments of X(w). Thus being “non Gaussian”
inherently implies looking at higher moments. For example, one can verify that if w is a
sparse vector shifted and scaled to have EX(w) = 0 and EX(w)2 = 1 then EX(w)4 is much
larger than EN(0, 1)4 (indeed this is the underlying reasoning behind Lemma 8, and as I
mentioned, some kind of a reverse direction holds as well). So, one can hope that degree
> 2 SOS would help with that.
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Making this into an SOS proof

Lemma 8 reduces the question of certifying whether a graph is a small set expander to certifying a
polynomial equation, and so to understand if the degree 4 SOS algorithm can certify the expansion
properties of the Boolean cube, we need to come up with an SOS proof for the (2, 4) hypercon-
tractivity theorem (Theorem 9). Eyeballing the proof, we see that it doesn’t use the probabilistic
method, and so by Marley’s Corollary it should have an SOS proof. However, as far as we know,
Marley didn’t publish his proof in a peer-reviewed journal, and so we’d better doublecheck the case.
(I should note that joking aside, it is definitely not a universal statement that all known interesting
low degree polynomial inequalities that have a non-probabilistic method proof are known to have
a low degree SOS proof, in fact Ryan O’Donnell has several interesting open questions along these
lines. However so far in my experience, though it took some work, we typically were always able to
find such proofs for the statements that arise in analyzing SOS algorithms (or some close-enough
approximation of them), and so the main hurdle was to actually phrase the statement as low degree
polynomial inequality in the first place.)

Indeed, this turns out to be the case as shown by the following lemma giving an SOS proof
for Theorem 9. For two polynomials p, q we write p � q if p = q −

∑m
i=1 r

2
i for some polynomials

r1, .., rm.

Lemma 10. Let d, ` ∈ N. For every x ∈ {±1}n, let Lx(·) be the linear function in the variables
{fα}|α|≤d such that

Lx(f) =
∑
α

(∏
i∈α

xi

)
fα

then

Ex∈{±1}`Lx(f)4 � 9d
(
Ex∈{±1}`Lx(f)2

)2
(4)

The notation in this lemma are a bit subtle, and so it’s worth taking the time and make sure we
parse it. First, note that the lemma immediately implies Theorem 9. Indeed, since Lx(f) = f(x),
plugging this in (5) yields (2). However, we use the second notation to emphasize that x is not
a variable of Lx, nor of the polynomials implicitly defined in (5). These are polynomials in the
coefficients of f . In particular, Lx is linear, no matter what the number d is, and both the LHS
and RHS of (2) are degree 4 polynomials. The lemma also implies that if {f} is a degree-4 pseudo-
distribution then

ẼfEx∈{±1}`f(x)4 ≤ 9dẼf
(
Ex∈{±1}`f(x)2

)2

We now turn to prove the lemma. The proof is a close variant of the proof of Theorem 9 but
we have to be a bit more careful and make a stronger induction hypothesis. In particular, we will
prove the following stronger result

Lemma 11. Let d, e, ` ∈ N. For every x ∈ {±1}n, let Lx(·) be the linear function in the variables
{fα}|α|≤d such that

Lx(f) =
∑
α

(∏
i∈α

xi

)
fα

and let L′x(·) be the linear function in the variables {gα}|α|≤e such that

L′x(f) =
∑
α

(∏
i∈α

xi

)
gα
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then
Ex∈{±1}`Lx(f)2L′x(g)2 � 9(d+e)/2

(
Ex∈{±1}`Lx(f)2

)(
Ex∈{±1}`L

′
x(f)2

)
(5)

Proof. We prove the lemma by induction on `, d, e, again, if any of those is zero then the result is
trivial. Below we use the notation f(x) for Lx(f) and g(x) for L′x(g), but you should remember
that f(x) is a linear polynomial in the variables {fα} (rather than being a degree d polynomial in
x).

Let f0, f1, g0, g1 be such that f(x) = f0(x) + x`f1(x) and g(x) = g0(x) + x`g1(x). Note that
the coefficients of f0, f1, g0, g1 are a linear function of the coefficients of f, g (because f0(x) =
1
2f(x1, . . . , xn−1, 1)+ 1

2f(x1, . . . , xn−1,−1) and f1(x) = 1
2f(x1, . . . , xn−1, 1)− 1

2f(x1, . . . , xn−1,−1)).
Moreover, the monomial-size of f0, f1, g0, and g1 are at most d, d− 1, e, and e− 1, respectively.

Since Ex` = Ex3
` = 0, if we expand Ef2g2 = E(f0 + x`f1)2(g0 + x`g1)2 then the terms where x`

appears in an odd power vanish, and we obtain

Ef2g2 = Ef2
0 g

2
0 + f2

1 g
2
1 + f2

0 g
2
1 + f2

1 g
2
0 + 4f0f1g0g1

By expanding the square expression 2E(f0f1−g0g1)2, we get 4Ef0f1g0g1 � 2Ef2
0 g

2
1 +f2

1 g
2
0 and thus

Ef2g2 � Ef2
0 g

2
0 + Ef2

1 g
2
1 + 3Ef2

0 g
2
1 + 3Ef2

1 g
2
0 . (6)

Applying the induction hypothesis to all four terms on the right-hand side of 6 (using for the last
two terms that the monomial-size of f1 and g1 is at most d− 1 and e− 1),

Ef2g2 � 9
d+e
2
(
Ef2

0

) (
Eg2

0

)
+ 9

d+e
2
(
Ef2

1

) (
Eg2

1

)
+ 3 · 9

d+e
2
−1/2

(
Ef2

0

) (
Eg2

1

)
+ 3 · 9

d+e
2
−1/2

(
Ef2

1

) (
Eg2

0

)
= 9

d+e
2
(
Ef2

0 + Ef2
1

) (
Eg2

0 + Eg2
1

)
.

Since Ef2
0 + Ef2

1 = E(f0 + x`f1)2 = Ef2 (using Ex` = 0) and similarly Eg2
0 + Eg2

1 = Eg2, we derive

the desired relation Ef2g2 � 9
d+e
2

(
Ef2

) (
Eg2

)
.
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