
SOS Lecture 1: Introduction / Boaz Barak

Admin

Reading Sections 1 and 2 of my survey with Steurer ”Sum of Squares proofs and the quest toward
optimal algorithms”

Additional reading Introduction of Ryan O’Donnell and Yuan Zhou’s paper ”Approximability
and Proof Complexity”

Lecture notes of Monique Laurent (https://sites.google.com/site/mastermathsdp/lectures)
and Pablo Parrilo (http://stellar.mit.edu/S/course/6/sp14/6.256/materials.html )

Disclaimer I haven’t tried to solve most of the exercises myself, and it could be that you’ll run
into various inaccuracies or issues while trying to solve them, let me know if you do. Also, all
historical discussions and references are from memory or second-hand sources, and not based
on the original texts, and so may be inaccurate.

Prelude

Consider the following questions:

1. Do we need a different algorithm to solve every computational problem, or can a single
algorithm give the best performance for a large class of problems?

2. In statistical physics and other areas, many people believe in the existence of a computational
threshold effect, where a small change in the parameters of a computational problems seems
to lead to a huge change in its computational complexity. Can we give rigorous evidence for
this intuition?

3. In machine learning there often seem to be tradeoffs between sample complexity, error prob-
ability, and computation time. Is there a way to map the curve of this tradeoff?

4. Suppose you are given a 3SAT formula ϕ with a unique (but unknown) satisfying assignment
x. Is there a way to make sense of statements such as ”The probability that x17 = 1 is 0.6” or
”The entropy of x is 1000”? (even though of course information theoretically x is completely
determined by ϕ, and hence that probability is either 0 or 1 and x has zero entropy).

5. Is Khot’s Unique Games Conjecture true?

If you learn the answers to these questions by the end of this seminar series, then I hope you’ll
explain them to me, since I definitely don’t know them. However we will see that, despite these
questions a-priori having nothing to do with Sums of Squares, that the SOS algorithm can yield a
powerful lens to shed light on some of those questions, and perhaps be a step towards providing
some of their answers.

1 Introduction

Theoretical computer science studies many computational models for different goals. There are
some models, such as bounded-depth (i.e. AC0) circuits, that we can prove unconditional lower

1



bounds on, but do not aim to capture all relevant algorithmic techniques for a given problem. (For
example, we don’t view the results of Furst-Sax-Sipser and H̊astad as evidence that computing the
parity of n bits is a hard problem.) Other models, such as bilinear circuits for matrix multiplication,
are believed to be strong enough to capture all known algorithmic techniques for some problems,
but then we often can’t prove lower bounds on them.

The Sum of Squares (SOS) algorithm (discovered independently by researchers from different
communities including Shor, Parrilo, Nesterov and Lasserre) can be thought of as another example
of a concrete computational model. On one hand, it is sufficiently weak for us to know at least
some unconditional lower bounds for it. In fact, there is a sense that it is weaker than AC0, since
for a given problem and input length, SOS is a single algorithm (as opposed to an exponential-sized
family of circuits). Despite this fact, proving lower bounds for SOS is by no means trivial, even for
a single distribution or instances (such as a random graph) or even a single instance. On the other
hand, while this deserves more investigation, it does seem that for many interesting problems, SOS
does encapsulate all the algorithmic techniques we are aware of, and that there is some hope that
SOS is an optimal algorithm for some interesting family of problems, in the sense that no other
algorithm with similar efficiency can beat SOS’s performance on these problems.

The possibility of the existence of such an optimal algorithm is very exciting. Even if at the
moment we can’t hope to prove its optimality unconditionally, this means that we can (modulo
some conjectures) reduce analyzing the difficulty of a problem to analyzing a single algorithm, and
this has several important implications. For starters, it reduces the need for creativity in designing
the algorithm, making it required only for the algorithm’s analysis. In some sense, much of the
progress in science can be described as attempting to automate and make routine and even boring
what was once challenging. Just as we today view as commonplace calculations that past geniuses
such as Euler and Gauss spent much of their time on, it is possible that in the future much of
algorithm design, which now requires an amazing amount of creativity, would be systematized and
made routine. Another application of optimality is automating hardness results— if we prove the
optimal algorithm can’t solve a problem X then that means that X can’t be solved by any efficient
algorithm.

But beyond just systematizing what we already can do, optimal algorithms could yield qual-
itative new insights on algorithms and complexity. For example, in many problems arising in
statistical physics and machine learning, researchers believe that there exist computational phase
transitions— where a small change in the parameter of a problems causes a huge jump in its compu-
tational complexity. Understanding this phase transitions is of great interest for both researchers
in these areas and theoretical computer scientists. The problem is that these problems involve
random inputs (i.e., average case complexity) and so, based on current state of art, we have no way
of proving the existence of such phase transitions based on assumptions such as P 6= NP. In some
cases, such as the planted clique problem, the problem has been so well studied that the existence of
a computational phase transition had been proposed as a conjecture in its own right, but we don’t
know of good ways to reduce such reductions to one another, and we clearly don’t want to have as
many conjectures as there are problems. If we assume that an algorithm is optimal for a class of
problems, then we can prove a computational phase transition by analyzing the running time of this
algorithm as a function of the parameters. While by no means trivial, this is a tractable approach
to understanding this question and getting very precise estimates as to the location of the threshold
where the phase transition occurs. (Note that in some sense the existence of a computational phase
transition implies the existence of an optimal algorithm, since in particular it means that there is
a single algorithm A such that beating A’s performance by a little bit requires an algorithm taking
much more resources.)

2



Beyond all that, an optimal algorithm gives us a new understanding of just what is it about a
problem that makes it easy or hard, and a new way to look at efficient computation. I don’t find
explanations such as “Problem A is easy because it has an algorithm” or “Problem B is hard because
it has a reduction from SAT” very satisfying. I’d rather get an explanation such as “Problem A is
easy because it has property P” and ”Problem B is hard because it doesn’t have P” where P is some
meaningful property (e.g., being convex, supporting some polymorphisms, etc..) such that every
problem (in some domain) with P is easy and every problem without it is hard. For that, we would
want an algorithm that will solve all problems in P and a proof (or other evidence) that it is optimal.
Such understanding of computation could bear other fruits as well. For example, as we will see in
this seminar series, if the SOS algorithm is optimal in a certain domain, then we can use this to
build a theory of “computational Bayesian reasoning” that can capture the “computational beliefs”
of a bounded-time agent about a certain quantity, just as traditional Bayesian reasoning captures
the beliefs of an unbounded-time agent about quantities on which it is given partial information.

I should note that while much of this course is very specific to the SOS algorithms, not all of it
is, and it is possible that even if the SOS algorithm is superseded by another one, some of the ideas
and tools we develop will still be useful. Also, note that I have deliberately ignored the question
of what family of problems would the SOS be optimal for. This is clearly a crucial issue— every
computational model (even AC0) is optimal for some problems, and every model falling short of
general polynomial-time Turing machines would not be optimal for all problems. It definitely seems
that some algebraic problems, such as integer factoring, have very special structure that makes it
hard to conjecture that any generic algorithm (and definitely not the SOS algorithm) would be
optimal for them. (See also my blog post http://wp.me/p2bJCi-Gp on this topic.) The reason
I don’t discuss this issue is that we still don’t have a good answer for it, and one of the research
goals in this area is to understand what should be the right conjecture about optimality of SOS.
However, we do have some partial evidence and intuition, including those arising from the SOS
algorithm’s complex (and not yet fully determined) relation to Khot’s Unique Games Conjecture,
that leads us to believe that SOS could be an optimal algorithm for a non-trivial and interesting
class of problems.

In this course we will see:

1. A description of the SOS algorithm from different viewpoints— the traditional semidefinite
programming/convex optimization view, as well as the proof system view, and the ”pseudo-
distribution” view.

2. Discussion of positive results (aka ”upper bounds”) using the SOS algorithms to solve graph
problems such as sparsest cut, and problems in machine learning.

3. Discussion of known negative results (aka ”lower bounds” / ”integrality gaps”) for this algo-
rithm.

4. Discussion of the interesting (and not yet fully understood) relation of the SOS algorithm to
Khot’s Unique Games Conjecture (UGC). On one hand, implies that the SOS algorithm is
optimal for a large class of problems. On the other hand, the SOS algorithm is currently the
main candidate to refute the UGC.

2 Polynomial optimization

The SOS algorithm is an algorithm for solving a computational problem. Let us now define what
this problem is:

3



Definition 1. A polynomial equation is an equation of the form {P (x) ≥ 0} (in which case it is
called an inequality) or an equation of the form {P (x) = 0} (in which case it is called an equality)
where P is a multivariate polynomial mapping x ∈ Rn to R. The equation {P (x) ≥ 0} (resp.
{P (x) = 0}) is satisfied by x ∈ Rn if P (x) ≥ 0 (resp. P (x) = 0).

A set E of polynomial equations is satisfiable if there exists an x that satisfies all equations in
E .

The polynomial optimization problem is to output, given a set E of polynomial equations as
input, either an x satisfying all equations in E or a proof that E is unsatisfiable.

(Note: throughout this seminar we will ignore all issues of numerical accuracy— assume the
polynomials always have rational coefficients with bounded numerator and denominator, and all
equalities/inequalities can be satisfied up to some small error ε > 0.)

Here are some examples for polynomial optimization problems:

Linear programming If all the polynomials are linear then this is of course linear programming
that can be done in polynomial time.

Least squares If the equations consist of a single quadratic then this is the least squares algorithm.
Similarly, one can capture computing eigenvalues by two quadratics.

3SAT Can encode 3SAT formula as degree 3 polynomial equations: the equation x2i = xi is
equivalent to xi ∈ {0, 1}. The equation xixj(1 − xk) = 0 is equivalent to xi ∧ xj ∧ xk =
xi ∨ xj ∨ xk.

Clique Given a graph G = (V,E) the following equations encode that x is a 0/1 indicator vector
of a k-clique: x2i = xi,

∑
xi = k, xixj = 0 for all (i, j) 6∈ E.

Other examples Learning, etc...

The SOS algorithm is designed to solve the polynomial optimization problem. As we can see
from these examples, the full polynomial optimization problem is NP hard, and hence we can’t
expect SOS (or any other algorithm) to efficiently solve it on every instance. (Exercise 1: prove
that this is the case even if all polynomials are quadratic, i.e. of degree at most 2.) Understanding
how close the SOS algorithm gets in particular cases is the main technical challenge we will be
dealing with.

These examples also show that polynomial optimziation is an extremely versatile formalism,
and many other computational problems (including SAT and CLIQUE) can be directly and easily
phrased as instances of it. Henceforth we will ignore the question of how to formalize a problem
as a polynomial optimization, and either assume the problem is already given in this form, or use
the simplest most straightforward translation if it isn’t. While there are examples where choosing
between different natural formulations could make a difference in complexity, this is not the case
(to my knowledge) in the questions we will look at.
Note: We can always assume without loss of generality that all our equations are equalities, since
we can always replace the equation P (x) ≥ 0 by P (x) − y2 = 0 where y is some new auxiliary
variable. Also, we sometimes will ask the question of minimizing (or maximizing) a polynomial
P (x) subject to x satisfying equations E , which can be captured by looking for the largest µ such
that E ∪ {P ≥ µ} is satisfiable.

4



3 The SOS algorithm

The Sum of Squares algorithm is an algorithm to solve the polynomial optimization problem. Given
that it is NP hard, the SOS algorithm cannot run in polynomial time on all instances. The main
focus of this course is trying to understand in which cases the SOS algorithm takes a small (say
polynomial or quasipolynomial) amount of time, in which cases it takes a large (say exponential)
amount. An equivalent form of this question (which is the one we’ll mostly use) is that, for some
small ` (e.g. a constant or logarithmic) we want to understand in which cases the ”n`-capped”
version of SOS succeeds to solve the problem and in which cases it doesn’t, where the ”T (n)-
capped” version of the SOS algorithm halts in time T (n) regardless of whether or not it solved the
problem.

In fact, we will see that for every value of d, the SOS of squares always returns some type of
a meaningful output. The main technical challenge is to understand whether that output can be
transformed to an exact or approximate solution for the polynomial optimization problem.

Definition 2 (Sum of Squares - informal definition). The SOS algorithm gets a parameter ` and
a set of equations E , runs in time nO(`) and outputs either:

• An object we will call a ”degree-` pseudo solution” (or more accurately a degree-` pseudo-
distribution over solutions).

or

• A proof that a solution doesn’t exist.

We will later make this more precise: what is exactly a degree-` pseudo solution, what is exactly
the form of the proof, and how does the algorithm work.

History. The SOS algorithm has its roots in questions raised in the late 19th century by Minkowski
and Hilbert of whether any non-negative polynomial can be represented as a sum of squares of other
polynomials. Hilbert realized that except for some special cases (most notably univariate polyno-
mials and quadratic polynomials), the answer is negative and that there is an example (which he
constructed by non constructive means) of non-negative polynomial that cannot be represented in
this way. It was only in the 1960’s that Motzkin gave a very concrete example of such a polynomial

1 + x4y2 + x2y43x2x2 (1)

In his famous 2000 address, Hilbert asked as his 17th problem whether any polynomial can
be represented as a sum of squares of rational functions. (For example, Motzkin’s polynomial (1)
can be shown to be the sum of squares of (I think) four rational functions of denominator and
numerator degree at most 6). This was answer positively by Artin in 1927. His approach can be
summarized as, given a hypothetical polynomial P that cannot be represented in this form, to use
the fact that the rational functions are a field to extend the reals into a ”pseudo-real” field R̃ on
which there would actually be an element x̃ ∈ R̃ such that P (x̃) < 0, and then use a ”transfer
principle” to show that there is an actual real x ∈ R such that P (x) < 0. (This description is not
meant to be understandable but to make you curious enough to look it up..) Later in the 60’s and
70’s Krivine and Stengle extended this result to show that any unsatisfiable system of polynomial
equations can be certified to be unsatisfiable via a Sum of Squares proof, a result known as the
Positivstallensatz.

5



Figure 1: SOS was used to analyze the “falling leaf” mode of the U.S. Navy F/A-18 ”Hornet”, see
A. Chakraborty, P. Seiler, and G. J. Balas, Journal of guidance, control, and dynamics, 34(1):7385,
2011

In the late 90’s / early 2000’s, there were two separate efforts on getting quantitative or algo-
rithmic versions of this result. On one hand Grigoriev and Vorobjov asked the question of how
large the degree of an SOS proof needs to be, and in particular Grigoriev proved several lower
bounds on this degree for some interesting polynomials. On the other hand Parrilo and Lasserre
(independently) came up with hierarchies of algorithms for polynomial optimization based on the
Positivstallensatz using semidefinite programming. (Something along those lines was also described
by Naum Shor in a 1987 Russian paper, and mentioned by Nesterov as well.)

It took some time for people to realize the connection between all these works, and in particular
the relation between Grigoriev-Vorbjov’s work and the works from the optimization literature took
some time to be discovered, and even 10 years after, it was still the case that some results of
Grigoriev were rediscovered and reproven in the Lasserre language.

Applications of SOS SOS has applications to: equilibrium analysis of dynamics and control
(robotics, flight controls, ...), robust and stochastic optimization, statistics and machine learning,
continuous games, software verification, filter design, quantum computation and information, au-
tomated theorem proving, packing problems, etc... (For two very different examples, see Figures 1,
2.)

6



Figure 2: SOS was used to get the best known bounds on the classical ”sphere packing” problem.
See D. de Laat, F.M. de Oliveira Filho, F. Vallentin, Forum of Mathematics, Sigma, 2 (2014), e23

The TCS vs Mathematical Programming view of SOS

While the SOS algorithm is intensively studied in several communities, there are some
differences in emphasizes between the different aspects. While I am not an expert on all
SOS works, my impression that the main characteristics of the TCS viewpoint, as opposed
to others are:

1. In the TCS world, we typically think of the number of variables n as large and tending
to infinity (as it corresponds to our input size), and the degree d of the SOS algorithm
as being relatively small— a constant or logarithmic. In contrast, in the optimization
and control world, the number of variables can often be very small (e.g. around ten
or so, maybe even smaller) and hance d may be large compared to it.

Note that since both time and space complexity of the general SOS algorithm scale
roughly like nd, even d = 6 and n = 100 would take something like a petabyte of
memory (in practice, though we didn’t try to optimize too much, David Steurer and
I had a hard time executing a program with n = 16 and d = 4 on a Cornell cluster).
This may justify the optimization/control view of keeping n small, although if we
show that SOS yields a polynomial-time algorithm for a particular problem, then we
can hope that we would be able to then optimize further and obtain an algorithm
that doesn’t require a full-fledged SOS solver.

2. Typically in TCS our inputs are discrete and the polynomials are simple, with integer
coefficients etc. Often we have constraints such as x2i = xi that restrict attention to
the Boolean cube, and so we are less concerned with issues of numerical accuracy,
boundedness, etc..

3. Traditionally people have been concerned with exact convergence of the SOS
algorithm—- when does it yield an exact solution to the optimization problem. This
often precludes d from being much smaller than n. In contrast as TCS’ers we would
often want to understand approximate convergence— when does the algorithm yield
an ”approximate” solution (in some problem-dependent sense).

Since the output of the algorithm in this case is not actually in the form of a solution
to the equations, this raises the question of a obtaining rounding algorithms, which
are procedures to translate the output of the algorithm to an approximate solution.

7



4 Several views of the SOS algorithm

We now describe the SOS algorithm more formally. For simplicity, we consider the case that the
set E only consists of equalities (which is without loss of generality as we mentioned before). When
convenient we will assume all equalities are homogenous polynomials of degree d. (This can be
always be arranged by multiplying the constraints.) You can restrict attention to d = 4— this will
capture all of the main issues of the general case.

4.1 SOS Algorithm: convex optimization view

We start by presenting one view of the SOS algorithm, which technically might be the simplest,
though perhaps at first not conceptually insightful.

Definition 3. Let Rnd denote the set of n-variate polynomials of degree at most d. Note that this
is a linear subspace of dimension roughly nd.

We will sometimes also write this as R[x]d where we want to emphasize that these polynomials
take the formal input x = x1 . . . xn.

Definition 4. Let E = {p1 = · · · pm = 0} be a set of polynomial equations where pi ∈ Rnd for all i.
Let ` ∈ N be some integer multiple of 2d. The degree-` SOS algorithm either outputs ’fail’ or a
bilinear operator M : Rn`/2 × Rn`/2 → R satisfying:

• Normalization: M(1, 1) = 1 (where 1 is simply the polynomial p(x) = 1).

• Symmetry: If p, q, r, s ∈ Rn`/2 satisfy pq = rs then M(p, q) = M(r, s).

• Non-nonnegativity (positive semi definiteness): For every p, M(p, p) ≥ 0.

• Feasibility: For every i ∈ [m], p ∈ Rn`/2−d, q ∈ Rn`/2, M(pip, q) = 0.

Exercise 2: Show that if the symmetry and feasibility constraints hold for monomials they
hold for all polynomials as well.

Exercise 3: Show that the set of M ’s satisfying the conditions above is convex and has an
efficient separation oracle.

Indeed, such an M can be represented as an n`/2 × n`/2 PSD matrix satisfying some linear
constraints. (Can you see why?) Thus by semidefinite programming finding such an M if it exists
can be done in nO(`) time (throughout this seminar we ignore issues of precision etc..). The question
is why does this have anything to do with solving our equations, and one answer is given by the
following lemma:

Lemma 5. Suppose that E is satisfiable. Then there exists an operator M satisfying the conditions
above.

Proof. Let x0 be a solution for the equations and let M(p, q) = p(x0)q(x0). Note that M clearly
satisfies all the conditions.

Since the set of such operators M is convex, for every distribution µ over solutions of E , the
operator M(p, q) = Ex∼µp(x)q(x) also satisfies the conditions. As ` grows, eventually the only
operators that satisfy the condition will be of this form.

For this reason we will call M a degree-` pseudo-expectation operator. For a polynomial p of
degree at most `, we define M(p) as follows: we write p =

∑
αipi where each pi is a monomial of

8



degree at most `, and then decompose pi = p′ip
′′
i where the degree of p′i and p′′i is at most `/2 and

then define M(p) =
∑
αiM(p′i, p

′′
i ). We will often use the suggestive notation Ẽp for M(p).

Exercise 4: Show that M(p) is well defined and does not depend on the decomposition.

4.2 Intuition— the Boolean cube

To get some intuition, we now focus attention about the special case that our goal is to maximize
some polynomial p0(x) over over Boolean cube {±1}n (i.e., the set of x’s satisfying x2i = 1.) This
case is not so special in the sense that (a) it captures much of what we want to do in TCS and (b)
the intuition it yields largely applies to more general settings.

Recall that we said that for every distribution µ over x’s satisfying the constraints, we can
get an operator M as above by looking at Ex∼µp(x)q(x). We now show that in some sense every
operator has this form, if, in a manner related to and very reminiscent of quantum information
theory, we allow the probabilities to go negative.

Definition 6. A function µ : {±1}n → R is a degree-` pseudo-distribution if it satisfies:

• Normalization:
∑

x∈{±1}n µ(x) = 1.

• Restricted non-negativity: For every polynomial p of degree at most `/2, Ẽx∼µp(x)2 ≥ 0,
where we define Ẽx∼µf(x) as

∑
x∈{±1}n µ(x)f(x).

Note that if µ was actually pointwise non-negative then it would be an actual distribution on
the cube. Thus an actual distribution over the cube is always a pseudo distribution.

Exercise 5: Show that a degree 2n pseudo-distribution is an actual distribution.

Exercise 6: Show that if µ is a degree ` pseudo-distribution, then there exists a degree-` pseudo-
distribution µ′ such that Ẽx∼µp(x) = Ẽx∼µ′p(x) for every polynomial p and that µ′(x) is a degree
` polynomial in the variables of x. (Hence for our purposes we can always represent such pseudo-
distributions with nO(`) numbers.)

Exercise 7: Show that for every polynomial p0 of degree at most `/2, there exists a degree `
pseudo-distribution µ on the cube satisfying Ẽx∼µp0(x) ≥ λ if and only if there exists a degree `
pseudo-expectation operator M as above satisfying {x2i = 1 : i = 1..n} such that M(p0) ≥ λ.

Therefore, we can say that the degree-` SOS algorithm outputs either a degree-` pseudo-
distribution over the solutions to E or ’fail’ and only outputs the latter if the former doesn’t exist.
In particular if it outputs ’fail’ then there isn’t any actual distribution over the solutions, and so
the fact that the algorithm outputs ’fail’ is a proof that the original equations are unsatisfiable.
We will see that by convex duality, the algorithm actually outputs an explicit proof of this fact
that has a natural interpretation.

Exercise 8: (optional— for people who have heard about the Sherali-Adams linear programming
hierarchy) Show that the variant of pseudo-distributions where we replace the condition that ex-
pectation is non-negative on all squares of degree `/2 polynomials with the condition that it should
be non-negative on all non-negative functions that depend on at most ` variables can be optimized
over using linear programming and is equivalent to ` rounds of the Sherali-Adams LP.

9



Are all pseudo-distributions distributions? For starters, we can always find a distribution
matching all the quadratic moments.

Lemma 7 (Gaussian Sampling Lemma). Let M be a degree-` pseudo-expectation operator for ` ≥ 2.
Then there exists a distribution (y1, . . . , yn) over Rn such that for every polynomial p of degree at
most 2, M(p) = Ep(y). Moreover, y is a (correlated) Gaussian distribution.

Note that even if M comes from a pseudo-distribution µ over the cube, the output of y will be
real numbers that although satisfying Ey2i = 1, will be in {±1}.

Unfortunately, we don’t have an analogous result for higher moments:

Exercise 9: Prove that if there was an analog of the Gaussian Sampling Lemma for every polyno-
mial p of degree at most 6 then P=NP. (Hint: show that you could solve 3SAT, can you improve
the degree to 4? maybe 3?)

Unfortunately, this will not be our way to get fame and fortune:

Exercise 10: Prove that there exists a degree 4 pseudo-distribution µ over the cube such that
there does not exist any actual distribution ν that matches its expectation on all polynomials of
degree at most 4. (Can you improve this to 3?)

5 Sum of Square Proofs

As we said, when the SOS algorithm outputs ’fail’ this can be interpreted as a proof that the
system of equations is unsatisfiable. However, it turns out this proof actually has a special form that
is known as an SOS proof or positivstenelsatz. An SOS proof uses the following rules of inference

p ≥ 0, q ≥ 0 |= p+ q ≥ 0

p ≥ 0, q ≥ 0 |= pq ≥ 0

|= p2 ≥ 0

They should be interpreted as follows. If you know that a set of conditions E = {p1 ≥
0, . . . , pm ≥ 0} is satisfied on some set S, then any conditions derived by the rules above would
on that set as well. (Note that we only mentioned inequalities above, but of course {p = 0} is
equivalent to the conditions {p ≥ 0,−p ≥ 0}.)

Definition 8. Let E be a set of equations. We say that E implies p ≥ 0 via a degree-` SOS proof,
denoted E |=` p ≥ 0, if p ≥ 0 can be inferred from the constraints in E via a sequence of applications
of the rules above where all intermediate polynomials are of syntactic degree ≤ `.

The syntactic degree of the polynomials in E is their degree, while the syntactic degree of p+ q
(resp. pq) is equal to the maximum (resp. the sum ) of the syntactic degrees of p, q. That is,
the syntactic degree tracks the degrees of the intermediate polynomials without accounting for
cancellations.

(Note: If we kept track of the actual degree instead of the syntactic degree we get a much
stronger proof system for which we don’t have a static equivalent form, and can prove some things
that the static system cannot. See the paper of Grigoriev, Hirsch and Pasechnik http://eccc.

hpi-web.de/report/2001/103/ for discussion of this other system.)

Definition 9. Let E be a set {p1 = · · · = pm = 0} of polynomial equalities. We say that E has a
degree-` SOS refutation if E |=` 0 ≥ 1.

10



It turns out that a degree-` refutation can always be put in a particular compact static form.
Exercise 11: For every d < `, prove that E = {p1 = · · · = pm = 0} (where all pi’s are of degree

d) has a degree-` SOS refutation if and only if there exists q1, . . . , qm of degree at most `′ = O(`)
and r1, . . . , rm′ of degree at most `′/2 such that∑

qipi = 1 + s (2)

where s =
∑m′

i=1 r
2
i , i.e. it is a sum of squares. (It’s OK if you lose a bit in each direction, i.e., in

the if direction it could be that `′ = 2` while in the only if direction it could be that `′ = `/2.)
Exercise 12: Show that we can take m′ to be at most n2`.
Exercise 13: Show that the set (p1, . . . , pm, s) satisfying (2) is a convex set with an efficient

separation oracle.

Positivstellensatz (Stengle 64, Krivine 74) For every unsatisfiable system E of equalities
there exists a finite ` s.t. E has a degree ` proof of unsatisfiability. Exercise 14: Prove P-satz
for systems that include the constraint x2i = xi for all i. In this case, show that ` needs to be at
most 2n (where n is the number of variables). As a corollary, we get that the SOS algorithm does
not need more than nO(n) time to solve polynomial equations on n Boolean variables. (Not very
impressive bound, but good to know. In all TCS applications I am aware of, it’s easy to show that
the SOS algorithm will solve the problem in exponential time. )

Exercise 15: Show that if there exists a degree-` SOS proof that E is unsatisfiable then there
is no degree-` pseudo-distribution consistent with E .

SOS Theorem (Shor, Nesterov, Parrilo, Lasserre) Under some mild conditions (see The-
orem 2.7 in survey), there is an nO(`) time algorithm that given a set E of polynomial equalities
either outputs:

• A degree-` pseudo-distribution µ consistent with E
or

• A degree-` SOS proof that E is unsatisfiable.

6 Discussion

The different views of pseudo distributions The notion of pseudo-distribution is somewhat
counter-intuitive and takes a bit of time to get used to. It can be viewed from the following
perspectives:

• Pseudo-distributions is simply a fancy name for a PSD matrix satisfying some linear con-
straints, which is the dual object to SOS proofs.

• SOS proofs of unbounded degree is a sound and complete proof system in the sense that they
can prove any true fact (phrased as polynomial equations) about actual distributions over
Rn.

SOS proofs of degree d is a sound and not complete proof system for actual distributions, but it
is a (sound and) complete system for degree d pseudo-distributions, in the sense that any true
fact that holds not merely for actual distributions but also for degree d pseudo-distributions
has a degree d SOS proof.

11



• In statistical learning problems (and economics) we often capture our knowledge (or lack
thereof) by a distribution. If an unknown quantity X is selected and we are given the
observations y about it, we often describe our knowledge of by a the distribution X|y. In
computational problems, often the observations y completely determine the value X, but
pseudo-distribution can still capture our ”computational knowledge”.

• The proof system view can also be considered as a way to capture our limited computational
abilities. In the example above, a computationally unbounded observer can deduce from the
observations y all the true facts it implies and hence completely determine X. One way to
capture the limits of a computationally bounded observer is that it can only deduce facts
using a more limited, sound but not complete, proof system.

Lessons from History It took about 80 years from the time Hilbert showed that polynomials
that are not SOS exist non-constructively until Motzkin came up with an explicit example, and
even that example has a low degree SOS proof of positivity. One lesson from that is the following:
”Theorem”: If a polynomial P is non-negative and ”natural” (i.e., constructed by methods known
to Hilbert— not including probabilistic method), then there should be a low degree SOS proof for
this fact.
Corollary (Marley, 1980): If you analyze the performance of an SOS based algorithm pretending
pseudo-distributions are actual distributions, then unless you used Chernoff+union bound type
arguments, then every little thing gonna be alright.

We will use Marley’s corollary extensively in analyzing SOS algorithms. There is a recurring
theme in mathematics of ”power from weakness”. For example, we can often derandomize certain
algorithms by observing that they fall in some restricted complexity classes and hence can be fooled
by certain pseudorandom generator. Another example, perhaps closer to ours, is that even though
the original way people defined calculus with ”infitesimal” amounts were based on false permises,
still much of the results they deduced were correct. One way to explain this is that they used a
weak proof system that cannot prove all true facts about the real numbers, and in particular cannot
detect if the real numbers are replaced with an object that does have such an ”infitesimal” quantity
added to it. In a similar way, if you analyze an algorithm using a weak proof system (e.g. one
that is captured by a small degree SOS proof), then the analysis will still hold even if we replaced
actual distributions with a pseudo-distribution of sufficiently large degree.

12


