
S3CS 2014: Sums of Squares July 3–4, 2014

Topic 6: Sparsest Cut and the ARV Algorithm

Lecturer: Boaz Barak Scribe: Tal Wagner

In this lecture we revisit the (Uniform) Sparsest Cut problem, a thoroughly studied opti-
mization problem introduced in Lecture 2. We present a breakthrough result of Arora, Rao and
Vazirani [?], that achieves an efficient O

(√
log n

)
-approximation algorithm. It is of interest to

us since it can be interpreted as an instantiation of the degree-4 SoS algorithm.
We will not give the full proof of [?], since it is very long and involved, but rather focus on

presenting the main ideas.

1 Problem Definition

For simplicity we define the problem over regular graphs, and remark that the results presented
here extend to general graphs as well.

Definition 1.1 (sparsity). Let G(V,E) be an r-regular graph on n vertices. For a subset of
vertices S ⊂ V such that S 6= ∅, V , denote S̄ = V \ S, and denote by E(S, S̄) the number of
edges crossing the cut (S, S̄).

The sparsity of the cut (S, S̄), denoted φ(S, S̄), is defined as

φ(S, S̄) =
nE(S, S̄)

r|S||S̄|
.

The sparsity of G, denoted φ(G), is defined as

φ(G) = min
S⊂V :S 6=∅,V

φ(S, S̄).

To get some intuition for this definition, observe that up to the multiplicative factor n/r
(which can be thought of as normalization), φ(S, S̄) is the ratio of the number of edges that
actually cross the cut to the number of edges that could have crossed it (had all the possible
edges been present).

Definition 1.2. The Uniform Sparsest Cut problem is, given a d-regular graph G(V,E) over
n vertices, to find S ⊂ V such that φ(S, S̄) = φ(G).

2 Main Theorem

The main result of this lecture is an O
(√

log n
)
-approximation for Uniform Sparsest Cut.

Theorem 2.1 (Arora-Rao-Vazirani [?]). There is a randomized polynomial time algorithm,
that given an r-regular graph G(V,E) on n vertices, finds with high probability S ⊂ V such that
φ(S, S̄) = O(

√
log n) · φ(G).

The best multiplicative approximation factor prior to [?] was O(log n) due to Leighton and
Rao [?]. The Cheeger-Alon-Milman inequality, discussed in Lecture 2, achieves a square-root
approximation, i.e. finds S ⊂ V such that φ(S, S̄) = O(

√
φ(G)).1

On the other hand, while Uniform Sparsest Cut is known to be NP-hard [?], all currently
known inapproximability results rely on stronger hardness assumptions.

1As explained in Lecture 2, the Cheeger-Alon-Milman inequality applies to a slight variation of Uniform
Sparsest Cut of which optimum cannot exceed 1, and hence a square-root approximation makes sense, i.e. φ(G) ≤√
φ(G).

6: Sparsest Cut and the ARV Algorithm-1

3 The ARV Algorithm

We will work under the simplifying assumption that φ(G) is attained by a bisection - that is,
there is S∗ ⊂ V with |S∗| = n/2 such that φ(G) = φ(S∗, S̄∗). Of course, this assumption is not
required for the analysis of [?].

We identify our vertex set V with [n] = {1, . . . , n}. Let x∗ ∈ {±1}n be the indicator vector
of S∗, i.e. for all i ∈ V , x∗i = 1 if i ∈ S∗ and x∗i = −1 otherwise. Observe that we have

E(S∗, S̄∗) =
1

4

∑
{i,j}∈E

(x∗i − x∗j)2.

Moreover since (S∗, S̄∗) is a bisection we have |S∗| = |S̄∗| = n
2 , and since G is r-regular we have

|E| = nr
2 . Plugging these into Definition 1.1, we may write

φ(G) =
1

2|E|
∑
{i,j}∈E

(x∗i − x∗j)2,

and now we can formulate our problem in the SoS framework.

3.1 The SoS Program

Our algorithm (that will be fully described in the next section) runs the SoS algorithm to get
a degree-4 pseudo-distribution {x} satisfying the constraints:

• x2i = 1 ∀ i ∈ [n]; (3.1)

•
n∑
i=1

xi = 0; (3.2)

• 1

2|E|
∑
{i,j}∈E

(xi − xj)2 ≤ φ. (3.3)

The constraints in eq. (3.1) ensure that the pseudo-distribution is over vectors in {±1}n. The
constraint eq. (3.2) ensures that the pseudo-distribution is over bisections (same number of
+1’s and −1’s). Eq. (3.3) is the minimization of our objective function: we can perform a
binary search in order to find the minimal φ for which these constraints are satisfiable (this is
a standard reduction of optimization to feasibility). Note that φ ≤ φ(G), since we have x∗ that
attains φ(G).

Our goal is to show that we can obtain from {x} a subset S ⊂ V that meets our approxima-
tion requirement. We make one more assumption, that our pseudo-distribution is “well spread”,
in the sense that

Ei,j∈[n]
[
Ẽ
[
(xi − xj)2

]]
≥ 1

10
. (3.4)

It turns out that in the complementary case, it is not difficult to obtain a constant-factor
approximation (and this was used prior to ARV). Hence this assumption focuses us on the
challenging case.

3.2 The Algorithm

To obtain an approximate solution from {x}, our approach is by reduction to a vertex separation
problem on graphs.

Definition 3.1. Let H be a graph over n vertices. We say H is separable if there are disjoint
subsets of vertices L,R, such that |L|, |R| ≥ Ω(n) and there are no edges crossing between them.

6: Sparsest Cut and the ARV Algorithm-2

The key structural result of ARV is the following.

Lemma 3.2 (ARV main lemma). Let {x} be a pseudo-distribution obtained from the SoS
program in Section 3.1 on the input graph G(V,E).

Put ∆ = c/
√

log n for a sufficiently small constant c. Define the graph H(V,EH) on the
same vertex set as G, with {ij} ∈ EH iff Ẽ

[
(xi − xj)2

]
< ∆.

Then H is separable, and the subsets L,R can be found with high probability in randomized
polynomial time.

Using this lemma we can obtain a sparse cut using standard techniques.

Lemma 3.3. Given subsets L,R as guaranteed by Lemma 3.2, we can efficiently find S ⊂ V
such that φ(S, S̄) ≤ O(φ/∆) = O(

√
log n)φ.

Now we can fully state the algorithm.

ARV approximation algorithm for Uniform Sparsest Cut:

1. Solve the SoS program stated in Section 3.1.

2. Construct the graph H as described above.

3. Apply Lemma 3.2 to find disjoint subsets L,R ⊂ V as in Definition 3.1.

4. Use Lemma 3.3 to obtain from L,R a subset S ⊂ V such that φ(S, S̄) ≤ O(
√

log n)φ(G).

4 Analysis

We will perform the analysis under the assumption that {x} is an actual distribution, and later
verify that all arguments used hold remain intact when {x} is a pseudo-distribution (of degree
4, in this case). This is fairly common when working with the SoS algorithm.

4.1 Preliminaries

Suppose that {x} is an actual distribution over vectors in {±1}n. The entries of a vector
drawn from {x} are correlated random variables x1, . . . , xn taking values in {±1}. We visualize
{x} as a {±1}-matrix A{x} of size ` × n, with columns corresponding to x1, . . . , xn and rows
corresponding to the points in the sample space of {x} (so ` is the size of the sample space). The
xi’s can now be thought of as (column) vectors in {±1}`.2 We stress that {x} is a distribution
over vectors in {pm1}n describing bisections in G (and corresponding to rows of A{x}), while

its random coordinates xi’s are interpreted as vectors in {±1}` (corresponding to columns of
A{x}). The reader is alerted to avoid confusion.

We go on to define a notion of distance between the xi’s. For t = 1, . . . , `, let pt denote the
probability to sample from {x} the value of the tth row in A{x}. For simplicity one may think
of p1, . . . , p` as the uniform distribution; it does not change the analysis.

Definition 4.1. Define d : [n]× [n]→ R≥0 by

d(i, j) =
∑̀
t=1

pt(xi(t)− xj(t))2 = E
[
(xi − xj)2

]
,

It straightforward to verify that d is a distance function, in the sense that it satisfies the
following properties:

2We remark in the usual presentation of the ARV analysis, which is outside of the SoS framework, the vectors
are not assumed to have entries in {±1}.

6: Sparsest Cut and the ARV Algorithm-3

1. d(i, i) = 0 for all i;

2. (Symmetry) d(i, j) = d(j, i) for all i, j;

3. (Triangle inequality) d(i, k) ≤ d(i, j) + d(j, k) for all i, j, k.

In fact, d is equivalent to both the Hamming distance and the ‖ · ‖1-distance.3

4.2 Why is ∆� 1/
√

log n Necessary?

Before turning to the main part of the analysis, let us show why our approach can only work
up to ∆ � 1/

√
log n and not greater values, which would have given a better approximation

factor. Note that we are showing this limitation even for actual distributions (rather than just
pseudo-distributions).

We rely on the following theorem, stated here without proof.

Theorem 4.2 (expansion of the boolean hypercube). Let c > 0 be a sufficiently large constant.
For L ⊂ {±1}`, denote

L̃ =
{
u ∈ {±1}` : ∃u ∈ L s.t. ‖v − u‖1 ≤ c

√
`
}
.

If |L| ≥ Ω(2`), then |L̃| ≥ (1− o(1))2`.

Put ` = log n, and let A be a {±1}-matrix of dimensions `× n, such that its n columns are
all the 2` = n possible {±1}-vectors of length `. (The order of the columns does not matter.)
Consider the distribution {x} defined by uniformly sampling a row from A. Note that for this
distribution, A is exactly the matrix A{x} defined in the previous section.

Since {x} is uniform over its support, it can be easily seen that

d(i, j) = E
[
(xi − xj)2

]
=
‖xi − xj‖1

2`
.

Recall that we have ∆ = c/
√

log n = c/
√
`. In the graph H defined in Lemma 3.2, a pair of

vertices i, j is adjacent if d(i, j) < ∆, or equivalently (by the above), if ‖xi−xj‖1 < 2∆` = 2c
√
`.

If we take c to be a large constant (rather than a small constant as in Lemma 3.2), then we can
apply Theorem 4.2. It tells us that for any choice of L such that |L| ≥ Ω(n), the subset R of
vertices that have no neighbors in L would have size no larger than o(n). This means that H
is not separable, and the conclusion of Lemma 3.2 does not hold.

4.3 Why is ∆� 1/
√

log n Sufficient? Proof of Lemma 3.2

We now turn to the core of the analysis, of showing that if ∆ = c/
√

log n then H is separable
(with constant probability, that can then be boosted).

Apply the Quadratic Sampling Lemma (see previous lecture for the formal statement and
proof) to obtain a Gaussian distribution {y} that matches the first two moments of {x}. This
is a distribution over vectors in Rn (with correlated entries), such that yi is associated with the
vertex i in H. Sample y ∼ {y} and define

L = {i : yi < −10} , R = {i : yi > 10}.

By the SoS program constraints, for each i we have E
[
yi
]

= E
[
xi
]
∈ [−1, 1] and E

[
y2i
]

=
E
[
x2i
]

= 1. Hence by standard properties of Gaussian random variables, we see that with high
probability, |L|, |R| ≥ Ω(n). If there are no edges crossing between L and R, then we are done.

3The equivalence is up to normalization and weighting by p1, . . . , p`, and up to a factor of 4 (for Hamming
distance) or 2 (for ‖ · ‖1-distance..

6: Sparsest Cut and the ARV Algorithm-4

Otherwise, we wish to remove a small subset of vertices from L and R in a way that eliminates
all the edges crossing between them, but retains their linear sizes. For convenience, we treat all
edges crossing between L and R as oriented edges from L to R.

To analyze this approach, let us derive a simple bound on the probability of an edge to cross
from L to R. Let {ij} be some edge in H. By definition this means that d(i, j) = E

[
(xi−xj)2

]
∆.

Moreover we know that E
[
yi−yj

]
= E

[
xi−xj

]
=∈ [−2, 2]. Hence yi−yj is a Gaussian random

variable with mean in [−2, 2] and variance bounded by ∆, and therefore,

Pr [|yi − yj | > 20] = exp(−1/∆). (4.1)

This means that the edge {ij} crosses from L to R with probability at most exp(−1/∆).
Now let us consider some examples of how we can avoid edges crossing from L to R.

• Suppose ∆ is as small as ∆ ≤ 1/3 log n. Then the probability in eq. (4.1) is roughly 1/n3,
which means, by a union bound over all edges in H (of which there are at most n2), that
with constant probability there are no edges crossing from L to R. In this case the proof
is finished.

• Suppose H has at most 2O(
√
logn) edges. Recalling our choice of ∆ as c/

√
log n for a

sufficiently small constant c, we see that we can apply the same union bound argument
as above.

•

4.4 From Vertex Separation to Sparse Cut: Proof of Lemma 3.3

We now prove Lemma 3.3. The proof is standard and is outside the core analysis of ARV (which
is Lemma 3.2); it is presented here for the sake of completeness.

Relying on the definition of d as a distance function between points in [n], we can define a
notion of distance between a point and a subset of points: For B ⊂ [n] and i ∈ [n], we let

d(B, i) = min
b∈B

d(b, i).

It is easy to verify that from the standard triangle inequality of d, we can obtain the following
triangle inequality for subsets: For B ⊂ [n] and i, j ∈ [n],

d(B, i) ≤ d(B, j) + d(j, i). (4.2)

To obtain our sparse cut, we sample τ ∈ (0,∆) uniformly at random (recall that ∆ was
defined in Lemma 3.2) and let

S = {i ∈ [n] : d(L, i) ≤ τ}.

Clearly we have L ⊂ S. Observe that in Lemma 3.2, the graph H was defined such that i, j
are neighbours in H iff d(i, j) < ∆. By hypothesis of Lemma 3.3 there are no edges crossing
between L and R, and therefore R ⊂ S̄. Since |L|, |R| ≥ Ω(n), we conclude that

|S| · |S̄| ≥ Ω(n2). (4.3)

We turn to counting the edges crossing the cut (S, S̄). Let {ij} be an edge in G and let χij
be the 0-1 random variable indicating whether the edge crosses (S, S̄). Suppose w.l.o.g. that
d(L, i) ≤ d(L, j). The edge crosses (S, S̄) iff both τ ≥ d(L, i) and τ < d(L, j) occur, and hence

Eτ
[
χij
]

= Pr[τ ∈ [d(L, i), d(L, j))] =
d(L, j)− d(L, i)

∆
≤ d(i, j)

∆
,

6: Sparsest Cut and the ARV Algorithm-5

where the final inequality is by eq. (4.2). Summing over all edges,

Eτ
[
E(S, S̄)

]
= Eτ

[∑
{i,j}∈E

χij
]

=
∑
{i,j}∈E

Eτ
[
χij
]
≤
∑
{i,j}∈E d(i, j)

∆
,

and now using Markov’s inequality we can find with high probability a threshold τ such that

E(S, S̄) ≤ O(1) ·
∑
{i,j}∈E d(i, j)

∆
. (4.4)

Finally, note that by eq. (3.3) we have∑
{i,j}∈E

d(i, j) =
∑
{i,j}∈E

E
[
(xi − xj)2

]
≤ 2|E|φ = 2nrφ.

Combining this with eq. (4.3) and eq. (4.4) we find that

φ(S, S̄) =
nE(S, S̄)

r|S||S̄|
≤ O(1) · φ

∆
,

as required.

4.5 From Actual Distribution to Pseudo-Distribution

5 Temp Graveyard

5.1 Squared Triangle Inequality for {±1}

The reason we need a degree-4 SoS program, is for {x} to have the following property.

Lemma 5.1. Let {x} be a degree-4 pseudo-distribution satisfying the constraints {∀i, x2i = 1}.
Then for all i, j, k,

Ẽ
[
(xi − xk)2

]
≤ Ẽ

[
(xi − xj)2

]
+ Ẽ

[
(xj − xk)2

]
. (5.1)

Proof. We first note that if {x} was an actual distribution over {±1}n then the lemma would
be easy, since the inequality (xi−xk)2 ≤ (xi−xj)2 + (xj−xk)2 would hold for every i, j, k (this
is trivial to verify by case analysis) and hence would clearly hold in expectation. However, in
order to prove the lemma for pseudo-expectation, we need to give an SOS proof.

By linearity of pseudo-expectation, eq. (5.1) is equivalent to

Ẽ
[
(xi − xj)2 + (xj − xk)2 − (xi − xk)2

]
≥ 0.

By rearranging, this becomes
Ẽ
[
(xj − xi)(xj − xk)

]
≥ 0.

Denote P (x) = (xj − xi)(xj − xk). We need to show that Ẽ
[
P (x)

]
≥ 0, so by definition, we

need to find a polynomial Q(x) such that P = Q2 (over {±1}).
We put Q = 1

2P . The fact that P = (12P)2 can be verified either by explicitly expanding
Q2 and plugging x2i = x2j = x2k = 1, or by just observing that P (x) ∈ {0, 4} over {±1}, which

renders P = (12P)2 immediate to see.
Note that our SoS proof Q2 of eq. (5.1) is a polynomial of degree 4, and this is why we need

{x} to be a pseudo-distribution of atleast this degree.

References

6: Sparsest Cut and the ARV Algorithm-6

	Problem Definition
	Main Theorem
	The ARV Algorithm
	The SoS Program
	The Algorithm

	Analysis
	Preliminaries
	Why is 1/logn Necessary?
	Why is 1/logn Sufficient? Proof of Lemma ??
	From Vertex Separation to Sparse Cut: Proof of Lemma ??
	From Actual Distribution to Pseudo-Distribution

	Temp Graveyard
	Squared Triangle Inequality for {1}

