
Homework 8: Fully homomorphic encryption

Total of 145 points

1. (45 points) The Pallier cryptosystem is defined as follows:

• Key generation: Choosem = pq where p, q are random n bit primes
(e.g., chosen randomly in the interval [2n−1, 2n]). Choose g to be a
random element in Z∗m2 . The public key is m, g and the secret key is
the factorization p, q.

• Verifying keys: Define λ be the least common multiple of (p−1) and
(q − 1) and for every a ∈ Z∗m2 let Λ(a) = b (aλ mod m2)−1

m c( mod m).
If gcd(Λ(g),m) 6= 1 then regenerate the keys.

• Encryption: To encrypt a message x ∈ Z∗m, choose r at random in
Z∗m and output gxrm( mod m2).

• Decryption: To decrypt the ciphertext c, output Λ(c)Λ(g)−1(
mod m).

It can be shown to be CPA secure under reasonable number theoretical
assumptions, similar to those underlying RSA.

a. (15 points) Prove that if the key passes the check then the order of g
in Z∗m2 is a multiple of m.

b. (15 points) Prove that decryption works: for every message x ∈ Z∗m,
the decryption of the encryption of x is x (i.e., Dd(Ee(x)) = x).

c. (15 points) Prove that it is additively homomorphic: for every x, x′ ∈
Z∗m, Dd(Ee(x)Ee(x′)( mod m2)) = x+ x′( mod m).

After you finish this exercise you might want to look at this document
from 2009 showing how Pallier encryption can be used for electronic voting.
Note the list of “joke candidates” for the world parliament they used on
page 8.

2. (60 points) Consider the following zero knowledge protocol based on a
homomorphic encryption scheme (G,E,D,EV AL) for a family F :

The public input is f ∈ F where |f | = poly(n) and maps {0, 1}n to {0, 1}.
Alice has an input x ∈ {0, 1}m such that f(x) = 1 and wants to prove to
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Bob that there exists such an x. We consider the following protocol for
this task:

Protocol 1:

• Alice generates (e, d) keys for the encryption scheme, and sends e,
together with (c1, . . . , cn) where ci = Ee(xi) to Bob

• Bob chooses b ←R {0, 1}. If b = 1 then Bob sends c′ =
EV AL(c1, . . . , cn, f) to Alice and if b = 0 then Bob sends c′ = Ee(0).

• Alice responds with b′ = Dd(c′) and Bob accepts if b = b′.

Lets say that the scheme has the identical ciphertexts property if for every
string e there exists a unique private key d such that (e, d) has nonzero
probability to be output by the generator G and for every ciphertexts
c1, . . . , cn and function f ∈ F , the distribution of EV AL(c1, . . . , cn, f)
and Ee(f(Dd(x1), . . . , Dd(xn))) is identical. (The randomness in this
distribution is only over the potential internal coins of EV AL and E.1)

a. (20 points) Prove that if the scheme has the identical ciphertexts
property then Protocol 1 is honest verifier zero knowledge, in the
sense that it satisfies completeness (with probability 1), soundness
(success in cheating is at most 0.9) and the zero knowledge property
is guaranteed if the verifier follows the protocol.

b. (20 points) Prove that Protocol 1 is not zero knowledge with respect
to a malicious verifier by giving a verifier strategy that always succeeds
in learning the 17th bit of x.

Consider now the following protocol:

Protocol 2:

• Alice generates (e, d) keys for the encryption scheme, and sends e,
together with (c1, . . . , cn) where ci = Ee(xi) to Bob

• Bob chooses b ←R {0, 1} and z ←R {0, 1}3n. If b = 1 then Bob
sends z and c′ = EV AL(c1, . . . , cn, f) to Alice and if b = 0 then Bob
sends z and c′ = Ee(0).

• Alice computes b′ = Dd(b) and chooses w ←R {0, 1}n and sends to
Bob y = PRG(w) + b′z( mod 2).

• Bob sends to Alice all the internal randomness used to compute c′.

• Alice checks that c′ was indeed computed as desired and if so sends to
Bob w and b′. Bob accepts if it indeed holds that y = PRG(w) + b′z(
mod 2) and b′ = b.

1The EV AL procedures we saw in the lectures were deterministic but we can get probabilistic
variants of them that satisfy a close enough property to the weak identical ciphertexts property.
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c. (20 points) Prove that if the scheme has the identical ciphertexts
property then Protocol 2 is a zero knowledge protocol (without the
need for zero knowledge)

3. (40 points) Hash functions and public key encryption seem like very different
creatures, but here we will show a relation between the two. Recall that
a collection of functions H mapping 10n bits to n bits is a collision
resistant hash function collection if for every efficient adversary A, if A is
given h chosen at random from H, then the probability that A outputs
x 6= x′ ∈ {0, 1}10n such that H(x) = H(x′) is negligible.

Let (G,E,D,EV AL) be an XOR homomorphic encryption scheme with respect
to XOR’s of 10n ciphertexts, where n is the length of the ciphertext. Consider
the following collection of functions H: to choose a random h ∈ H, we gen-
erate keys (e, d) for the homomorphic crypto system, and let c1, . . . , c10n be
n independent encryptions of zero. The function h will map x ∈ {0, 1}10n to
EV AL(f, c1, . . . , c10n where f(b1, . . . , b10n) = ⊕i:xi=1bi.

Prove that if the scheme is CPA secure then this hash function collection is
collision resistant. See footnote for hint2

2If there is such an adversary A and we are given a ciphertext c that we don’t know if it is
an encryption of 0 or an encryption of 1, we can make 10n − 1 encryptions of 0, and plug c
in some random index i among them to obtain c1, . . . , c10n−1 such that ci = c, and use this
tuple to define h. Then we could argue that the probability that the adversary outputs x and
x′ that satisfy h(x) = h(x′) but disagree on the ith bit is different depending on whether c
was an encryption of 0 opposed to when it was an encryption of 1.
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