Homework 6: Public key, RSA/Dlog and lattices

Total of 120 points

- 1. (KL Ex 8.10, 15 points) Prove that for every $x \in \{0, \ldots, m-1\}$ (even if x is not in \mathbb{Z}_m^*) if $ed = 1 \pmod{|\mathbb{Z}_m^*|}$ then $(x^e)^d = x \pmod{m}$.
- 2. (KL Ex 8.20, 25 points) Let m, e be as in the RSA problem, let $y \in \mathbb{Z}_m^*$, and let f_0 be the RSA function $f_0(x) = x^e$ and f_1 be its "shifted by y" variant $f_1(x) = y \cdot x^e$.
 - a. (10 points) Prove that given two inputs $x \neq x' \in \mathbb{Z}_m^*$ such that $f_0(x) = f_1(x')$, one can find $y^{1/e} \pmod{m}$.
 - b. (15 points) Conclude that $\ell = 10 \log m$, if we pick m, e, y as above and let $H_{m,e,y}(z_1, \ldots, z_\ell)$ be defined as $f_{z_1}(f_{z_2}(\cdots (f_{z_\ell}(1))\cdots))$ then this collection is a *collision resistant hash family* mapping $\{0, 1\}^\ell$ to \mathbb{Z}_m^* if the RSA function is hard to invert. That is, if there is an algorithm that given a random hash function H from this collection finds $z \neq z' \in \{0, 1\}^\ell$ such that H(z) = H(z') then there is an algorithm to invert the RSA function.
- 3. (One time signatures, 25 points) As I mentioned it is in fact possible to get digital signatures based on only private key cryptography. In this exercise we will show a baby version of this. We say that a signature scheme (G, S, V) is a one time signature scheme if it satisfies the security definition of digital signatures (with a public verification key) with the restriction that the adversary is only allowed to make a single query m to the signing oracle, and needs to output a signature on a messahe $m' \neq m$. Let $PRG : \{0, 1\}^n \to \{0, 1\}^{2n}$ be a pseudorandom generator. Prove that the following scheme is a secure one-time signature scheme for messages of length ℓ :
 - Key generation: Pick 2ℓ independent random strings in $\{0,1\}^n$ which we'll denote by $x_1^0, \ldots, x_\ell^0, x_1^1, \ldots, x_\ell^1$. The secret signing key is the tuple $(x_i^b)_{b \in \{0,1\}, i \in [\ell]}$ while the public verification key is the tuple $(y_i^b)_{b \in \{0,1\}, i \in [\ell]}$ where $y_i^b = PRG(x_i^b)$
 - Signing: To sign a message $m \in \{0,1\}^{\ell}$, output the ℓ -tuple $(x_1^{m_1}, \ldots, x_{\ell}^{m_{\ell}})$.

- Verification: To verify a message m w.r.t. signature $(x'_1, \ldots, x'_{\ell})$ and public key $(y^b_i)_{b \in \{0,1\}, i \in [\ell]}$, check that $PRG(x'_i) = y^{m_i}_i$ for all $i \in [\ell]$.
- 4. (30 points) Consider the following variant of the DSA signature scheme:
 - Key generation: Let \mathbb{G} be a cyclic group. Pick generator g for \mathbb{G} and $a \in \{0, \ldots, |\mathbb{G}| 1\}$ and let $h = g^a$. Pick $H : \{0, 1\}^{\ell} \times \{0, \ldots, |\mathbb{G}| 1\}$ $1\}\mathbb{G} \to \{0, \ldots, |\mathbb{G}| - 1\}$ and $F : \mathbb{G} \to \{0, \ldots, |\mathbb{G}| - 1\}$ to be some functions that we consider as random oracles. The public key is (g, h) (as well as the functions H, F) and secret key is a.
 - Signature: To sign a message m, pick b at random, let $f = g^b$, let c = F(f) and d = H(m, c) and then let $s = b^{-1}[d + a \cdot c]$ where all computation is done modulo $|\mathbb{G}|$. The signature is (f, s).
 - Verification: To verify a signature (f, s) on a message m, compute c = F(f) and d = H(m, c) and then check that $s \neq 0$ and $f^s = g^d h^c$.
 - a. (20 points) Prove that this is a secure one-time signature scheme in the random oracle model, assuming the difficulty of the discrete logarithm problem in \mathbb{G} . See footnote for hint¹
 - b. (10 points) Prove that this is a secure (many times) signature scheme in the random oracle model, assuming the difficulty of the discrete logarithm problem in \mathbb{G} .
- 5. (25 points) Prove that under the LWE assumption, the following variant of our lattice based encryption scheme is secure: (you can use the assumption of security of the scheme presented in class if it helps.)
 - Parameters: Let $\delta(n) = 1/n^4$ and let q = poly(n) be a prime such that LWE holds w.r.t. q, δ . We let $m = n^2 \log q$. (Same as before)
 - Key generation: Pick $x \in \mathbb{Z}_q^n$. The private key is x and the public key is (A, y) with y = Ax + e with e a δ -noise vector and A a random $m \times n$ matrix. (Same as before)
 - Encrypt: To encrypt $b \in \{0, 1\}$ given the key (A, y), pick $w \in \{0, 1\}^m$ and output $2w^{\top}A, 2\langle w, y \rangle + b$ (all modulo q of course). The difference is that instead of adding either 0 or q/2, we add either 0 or 1, but multiply this by 2 so the result would be *even* or *odd* as needed.
 - Decrypt: To decrypt (a, σ) , output 0 iff $|\langle a, x \rangle \sigma|$ is even. (Instead of asking this to be smaller than q/10.)

¹You need to design a reduction that takes $h = g^a$ and returns a using "in its belly" an adversary for the signature scheme. You can use h as the public key. The scheme ensures that to produce a valid signature the adversary will first need to ask F on the query f, and then ask H on the query m, F(f). The idea is that once an adversary makes a query f to the oracle F, then they have "committed" to the value b such that $g^b = f$ even if they didn't disclose it. Now, if they are able to successfully sign the message m with decent probability over the output of H(m, c) then we'll be able to find two different responses $d \neq d'$ for which they can sign successfully. This will yield two linearly independent equations on the two unknowns b and a.