
~ MathDefs ~

CS 127: Cryptography / Boaz Barak

Homework 1

Total of 141 points. (Note that while this exercise is long, 100 points are a
perfect score, so you don’t have to solve all questions if you don’t have the time
for it.)

0. (10 points + 5 points bonus) Log in to canvas and: (a) Post on the canvas
discussion board a short message introducing yourself to the rest of the
class- what’s your background and why you are interested in cryptography.
Feel free to also add something about your non academic interests and
hobbies. For a bonus of 5 points include a photo of yourself. (b) Answer
on the “Week 0” module in canvas the “background questionnaire” quiz.
This is not graded and there are no wrong answers- it’s just a way for me
to get a better sense of people’s backgrounds.

Exercises from the “mathematical background” handout.

1. (16 points) In the following exercise X,Y denote random variables over
some sample space S. You can assume that the probability on S is the
uniform distribution— every point s is output with probability 1/|S|. Thus
E[X] = (1/|S|)

∑
s∈S X(s). We define the variance and standard deviation

of X and Y as above (e.g., V ar[X] = E[(X − E[X])2] and the standard
deviation is the square root of the variance).

a. (2 points) Prove that V ar[X] is always non-negative.

b. (2 points) Prove that V ar[X] = E[X2]− E[X]2.

c. (2 points) Prove that always E[X2] ≥ E[X]2.

d. (2 points) Give an example for a random variableX such that E[X2] 6=
E[X]2.

e. (2 points) Give an example for a random variable X such that its
standard deviation is not equal to E[|X − E[X]|].

f. (2 points) Give an example for two random variables X,Y such that
E[XY ] = E[X]E[Y ].

g. (2 points) Give an example for two random variables X,Y such that
E[XY ] 6= E[X]E[Y ].
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h. (2 points) Prove that if X and Y are independent random variables
(i.e., for every x, y, Pr[X = x ∧ Y = y] = Pr[X = x] Pr[Y = y]) then
E[XY ] = E[X]E[Y ] and V ar[X + Y ] = V ar[X] + V ar[Y ].

2. (15 points) Suppose that H is chosen to be a random function mapping
the numbers {1, . . . , n} to the numbers {1, ..,m}. That is, for every i ∈
{1, . . . , n}, H(i) is chosen to be a random number in {1, . . . ,m} and that
choice is done independently for every i. For every i ≤ j ∈ {1, . . . , n},
define the random variable Xi,j to equal 1 if there was a collision between
H(i) and H(j) in the sense that H(i) = H(j) and to equal 0 otherwise.

a. (3 points) For every i ≤ j, compute E[Xi,j ].
b. (3 points) Define Y =

∑
i≤j Xi,j to be the total number of collisions.

Compute E[Y ] as a function of n and m. In particular your answer
should imply that if m < n2/1000 then E[Y ] > 1 and hence in
expectation there should be at least one collision and so the function
H will not be one to one.

c. (3 points) Prove that if m > 1000 · n2 then the probability that H is
one to one is at least 0.9.

d. (3 points) Give an example of a random variable Z (unrelated to the
function H) that is always equal to a non-negative integer, and such
that E[Z] ≥ 1000 but Pr[Z > 0] < 0.001.

e. (3 points) Prove that if m < n2/1000 then the probability that H is
one to one is at most 0.1.

3. (15 points) In this exercise we we will work out an important special case
of the Chernoff bound. You can take as a given the following facts:

I) The number of x ∈ {0, 1}n such that
∑
xi = k is

(
n
k

)
= n!

k!(n−k)! .
II) Stirling’s approximation formula: for every n ≥ 1,

√
2πn

(
n
e

)n ≤ n! ≤ 2
√

2πn
(

n
e

)n

where e = 2.7182 . . . is the base of the natural logarithm.

Do the following:

a. (5 points) Prove that for every n, Prx←R{0,1}n [
∑
xi ≥ 0.6n] <

2−n/1000

The above shows that if you were given a coin of bias at least 0.6, you
should only need some constant number of samples to be able to reject the
“null hypothesis” that the coin is completely unbiased with extremely high
confidence. In the following somewhat more challenging questions (which
can be considered as bonus exercise) we try to show a converse to this:

b. Let P be the uniform distribution over {0, 1}n and Q be the 1/2 + ε-
biased distribution corresponding to tossing n coins in which each
one has a probability of 1/2 + ε of equalling 1 and probability 1/2− ε
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of equalling 0. Namely the probability of x ∈ {0, 1}n according to Q
is equal to

∏n
i=1(1/2− ε+ 2εxi).

i. (5 points) Prove that for every threshold θ between 0 and n, if
n < 1/(100ε)2 then the probabilities that

∑
xi ≤ θ under P and

Q respectively differ by at most 0.1. Therefore, one cannot use
the test whether the number of heads is above or below some
threshold to reliably distinguish between these two possibilities
unless the number of samples n of the coins is at least some
constant times 1/ε2.

ii. (5 points) Prove that for every function F mapping {0, 1}n to
{0, 1}, if n < 1/(100ε)2 then the probabilities that F (x) = 1
under P and Q respectively differ by at most 0.1. Therefore, if
the number of samples is smaller than a constant times 1/ε2 then
there is simply no test that can reliably distinguish between these
two possiblities.

Exercises from Lecture 1

4. (20 points) Prove that every encryption scheme (E,D) is perfectly secret if
and only if for every plaintexts m,m′ ∈ {0, 1}`, the two random variables
{Ek(m)} and {Ek′(m′)} (for randomly chosen keys k and k′) have precisely
the same distribution.

5. (20 points- a bit harder bonus question) In the lecture we saw that any
perfectly secret private key encryption scheme needs to use a key as large as
the message. But we actually made an implicit subtle assumption: that the
encryption process is deterministic. In a probabilistic encryption scheme,
the encryption function E may be probabilistic: that is, given a message
m and a key k, the value Ek(x) is not fixed but is distributed according to
some distribution Cx,k. The decryption function is still given only the key
k and not the internal randomness used by E, and we require that for every
message m, Pr[Dk(Ek(m)) = m] > 0.99 where this probability is taken
both over the choice of the key k and the internal randomness used by E.
Prove that even a probabilistic encryption scheme cannot be perfectly secret
with a key that’s significantly shorter than the message. That is, show
that for every probabilistic encryption scheme (E,D) using n-length keys
and n+ 10-length messages, there exist two messages m,m′ ∈ {0, 1}n+10

such that the distributions {Ek(m)} and {Ek′(m′)} are not identical.

Exercises from Lecture 2

6. (20 points) Prove the Computational Indistinguishability phrasing of com-
putational security Theorem.
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7. (20 points) Give a direct proof (not going through computational indistin-
guishability) in your own words for the length extension theorem in the
special case t = 2 and when the messages arem0 = 00 andm1 = 01. That is,
show how to transform an adversary Eve that can distinguish between the
distribution C0 = (E′k0

(k1, 0), E′k1
(k2, 0)) and C1 = (E′k0

(k1, 0), E′k1
(k2, 1))

(for random k0, k1, k2) with advantage ε into an adversay Eve′ that runs in
time polynomial in the running time of Eve and can distinguish between
E′k(m′) and E′k(m′′) for two messages m′,m′′ ∈ {0, 1}n+1 with advantage
at least, say, ε/10.
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